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Validity of Approximations Used in Mesonic Atom Calculations*
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The Deser-Goidberger-Baumann-Thirring (DGBT) formula pa=rI3(aZ&s/(Era()g and other various
approximations commonly used to extract meson-nucleus scattering lengths from energy-level measurements
on mesonic atoms are studied by means of a model calculation and are shown to be inadequate for most of
the x=mesonic atoms commonly considered. A simple empirical formula is obtained in place of the DGBT
formula for the m=mesonic atoms of the light nuclei. The DGBT formula is also examined for the case of
the X=He4 atom and is found to be a good approximation.

I. INTRODUCTION
' 'N recent years several measurements' ' of the tran-
- - sition energies in mesonic atoms have been made
using new x-ray detectors such as bent-crystal and Ge
solid-state detectors. These measurements are more
accurate and include more nuclei than the ones made
about a decade ago.4 The energy spectra of the mesonic
atoms obtained in these measurements contain infor-
mation about the strength of the meson-nucleus strong
interaction, which shows up as deviations of the mea-
sured energy spectra from the expected electromagnetic
energy spectra. As a matter of fact, these deviations
give the same information about the meson-nucleus
interactions as is contained in the low-energy elastic
x-nucleus phase shifts.

To analyze these mesonic atom data, several
authors' ' have tried to obtain formulas relating these
deviations (the energy-level shifts and spreads) to
the low-energy scattering parameter, the scattering
length. ' " The problem is hard and use of approxima-
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tions is unavoidable, since it involves a Coulomb wave
function which deviates only slightly from the regular
Coulomb wave function. The approximations that have
been used are 6rst-order perturbation theory and Born
approximation, ' or somewhat equivalently, the bound-
ary condition model, ' and an approximation based on
formal scattering theory. ' Errors involved in these
approximations are dificult to estimate and could be
quite appreciable: In particular, the small energy-level
shifts and spreads observed do not guarantee that
perturbation theory is a good approximation. Small
deviation in eigenenergy is only a necessary condition
for validity of the approximation.

In a previous paper" (hereafter referred to as SC),
we made a detailed optical-model calculation to obtain
accurate meson-nucleus scattering lengths from the
mesonic atom data. In this calculation the Coulomb
wave function at an energy Ers+BE&s was expanded
in powers of e=AErs/lErsl LHere Ers is 1S energy
level of the meson in a point Coulomb potential and
DE],s is the (complex) level shift. ] This calculation
can be done to any order of accuracy desired and the
calculations in SC, which were done to order e', were
estimated to give errors in hE~g well within the experi-
mental errors. Results obtained by this procedure
will be referred to as SC results and are considered to
be essentially exact results for the purpose of deter-
mining the accuracy of other approximations.

It was found that the SC calculation gave values of
the probability that the x meson exists inside the
nucleus, which is only about half the value given by a
perturbation calculation. This shows that perturbation
theory is not a good approximation. Nevertheless, the
formula (hereafter referred to as the DGBT formula)

o/&= l~E»/IErs I,
originally obtained by Deser et ul. , has still been used
to estimate the meson-nucleus scattering length u from
the energy-level shift and spread BErs. (Here 8 is the

m=nucleus interaction when the point Coulomb interaction is
turned off.' T. L. Trueman, Nucl. Phys. 26, 57 (1961);A. Partensky and
M. Ericson, ibid. $1, 382 {1967).

"R.Seki and A. Cromer, Phys. Rev. 156, 93 (1967). See also
L. P. Fulcher, J. M. Eisenberg, and J.LeTourneux, Can. J.Phys.
45, 3313 (1967).
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—(1) Exact VR=10 MeV

R=l. 3A F1/3
Exact

FIG. 3. Schematic diagram of the
model calculation. The percent en-
ergy-level shift ratios nE&s/~ Eis

~

with the methods 1—4 are shown in
Fig. 1 and the +=nucleus scattering-
length ratios with methods A-E are
shown in Fig. 2. Thick lines i.n the
diagram imply that calculations are
made using SC; the values of two
quantities connected by the thick lines
are obtained by a very good approxi-
mation. Thin lines imply that calcula-
tions are made with the labeled ap-
proximations. "Exact" refers to the
SC method.

(2) Exact,
no F.C.D.E. ,

(3) Perturbat ion

Semi-
perturbation

PERCENT ENERGY-LEVEL

SHIFT RATIO'~1S/ ElS
(Fig. 3.)

Born

Exact,
no F.C.D.E.

Semi-perturbat ion
+Born (DGBT) (D)

Perturbationi
�+Born

(E)

SCATTERING LENGTH RATIO

(Fig. 2)

Iethods of SC are in close agreement with the rea
ha eg)erimental data. The choice of the square-well s ape

the potential should not alter any major conclusions
. this model calculation, since, as was shown in SC,
termination of the scattering length from the

iesonic atom data is independent of the detailed shape
the potential, just as it is in the case of the low-

xergy nucleon-nucleon scattering analysis.
The calculation methods used are the following:

(1) the SC method including correctly the finite
targe distribution of the nuclei;
(2) the SC method without the 6nite charge dis-

ibution;
(3) first-order perturbation theory,

++is $» (») Vz4 is(»)d'»

=Vs{1—L2(R/B)'+2(R/B)+1)

X exp( —2R/B)); (2)

(4) semiperturbation theory,

hE»- j $»(0) ~

' V zd'» =4s Vz(R/B)'.

Here its(») = (Bss.) "' exp( —»/B) is the unperturbed
bound-state Coulomb wave function. Note that if we
neglect terms of order (R/B)' and higher in Eq. (2),

I I I

i.O
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Fxo. 4. Empirical relation between
the DGBT formula and the SC
("exact") calculation. The ratio of the
scattering lengths calculated by the
DGBT formula to those calculated
"exactly" are shown for the model-
calculation shift (X), method 1 in
Fig. 1, the Stearns and Stearns data
(Ref. 4) for the level shift (open
circles), and the Jenkins et al. data
{Ref. 1) for the level shift (closed
circles) and spread (A). An empirical
line 1—0.022 shown in the figure fits
all these points reasonably well. This
line yields the empirical relation be-
tween the scattering length and the
energy-level shift spread, Eq. (7), in
the text.
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methods 3 and 4 become identical. Method 4 is used to
obtain the DGBT formula, Kq. (1), by combining it
with Born approximation for the scattering length,

VgcPr

Zzo. 5. An analysis of the 2t=nMsonic atom data from CERN
{Ref. 2) and the 7r=HC4 data from Virginia {Ref. 3), using the
empirical relation Eq. {7).ag and ug are the real and imaginary
part of the ~=nucleus scattering length, respectively.

a using the DGBT formula, Eq. (1), from the exact.
energy-level shifts, model D (curve 1 in the Fig. 1).
Alternatively in model E, we calculate u using the
formula

&/~-'v'L1 —(1+2v+2v')e' "'?'~&is/I &~ s I

=k(A&»/!E»l)l:1+iv+(21/20)~'+ .j (6)

where y=E/B. This formula is obtained by combining
perturbation theory, Eq. (2), and Born approximation,
Eq. (4), while the DGBT formula is obtained by com-
bining the MtÃfp8rkltb81$01z 'theory Eq. (3) and Born
approximation, Eq. (4), as mentioned before.

These various model calculations of the scattering
length a (A, B, C, D, K) are shown in Fig. 2. To
examine the validity of the various approximations
more clearly, we plot the ratio of each of these model
results to A, the exact value.

To clarify the procedure explained above, we list
the approximations involved in each scattering length
calculation:

(A) SC with finite charge distribution, which we
refer to as the "exact" calculation,

where p is the reduced mass of the x-nucleus system. '
The results of the calculations are shown in Fig. 1.

From this Ggure we see that the perturbation calcu-
lation yields larger values of the energy-level shifts
than the exact calculation by a factor of about 2. This
corresponds to the conclusion obtained in SC concerning
the probability of the x meson being inside of the
nucleus, as mentioned in Sec. I. Note that the semi-
perturbation theory, the one used to obtain the DGBT
formula, yields a larger deviation from the exact value
than does the full perturbation theory.

Next, we proceed to calculate the x -nucleus scat-
tering lengths with various approximations from the
energy-level shifts shown in Fig. I. In this way we ran
examine the validity of the diferent approximations
in various combinations.

If we start with the exact energy-level shifts (curve
1 in Fig. 1) and calculate the potential, including the
6nite charge distribution, using the SC method, we
get back to the model potential Vg ——10 MeV. Then
using the exact relation between Vg and c,

a= R—(1/P) tanh(P2|!), (~)

where p= (2y, Vg/h')'", we obtain the exact scattering
length: model A. Alternatively, we can use Eq. (4)
and calculate the Born approximation to a: model 8.
Also we can calculate a using these exact energy-level
shifts but neglecting the Qnite charge distribution:
model C. That is, we use the energy-level shifts of
curve I in Fig. I, and generate potentials Vg using
the formalism of SC, but without a charged distributed
over the nucleus. These potentials will diGer from
the model potential, Vg ——IO MeV, and will generate a
di6'erent set of scattering lengths. Next, we calculate

too-
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Fn. 6. The E=Hc4 strong-interaction potential as a function
of thc Ig energy-level sh1ft DEBH. Thc rad1us of thc potcnt1al 18
taken to be 2.j.9 F. The curve is shorn for positive level shifts,
AEHH&0, corresponding to a positive potential and repulsive
interaction.
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l.5—

FIG. 7. X -He' scattering length as
a function of the 1S energy-level shift
AEHH. The contri'bution of the finite
charge distribution in the nucleus to
the shift is taken to be 0.17 keV,
which is calculated exactly for a uni-
form charge distribution with a radius
of 2.19 F. The scattering length is
calculated exactly and by the DGBT
formula.
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(B) Born approximation,
(C) SC, neglecting the 6nite charge distribution,
(D) semiperturbation and Born approximation (the

DGBT formula),
(E) perturbation theory and Born approximation.

Figure 2 shows that the DGBT result (curve D)
deviates from curve A by more than 20% for nuclei
with A&9 and, thus, is inadequate for treating such
nuclei. Furthermore, Fig, 2 shows that curve D gives
a larger error than curve E and that this difference
increases with A. Thus, calculation E (perturbation
theory) is better than calculation D (DGBT), though
neither gives really reliable results.

From Fig. 1, we see that the semiperturbation
results (curve 4) give the worst values of the energy-
level shifts, and from Fig. 2, we see that the Born
approximation (curve B) gives the worst values of the
scattering lengths. The DGBT formula, Eq. (1), states
that these two quantities are proportional. When this
formula is used, the errors in these two approximations
partially cancel each other and give a smaller error
than the errors of either the semiperturbation or the
Born approximation, separately. As seen in Fig. 2, the
DGBT formula and Eq. (6) give smaller scattering
lengths than the exact calculation. Judging from this,
we see that the semiperturbation and the perturbation
calculations give a larger error than the Born
approximation.

Sunimarizing this section, we show a schematic
diagram of the model calculation made in this section
in Fig. 3.Thick lines in the figure imply that calculations
are made exactly (that is, but the method of SC); the

values of two quantities combined by the thick lines
are related, to a very good approximation. Thin lines
imply that calculations are made with the less accurate
approximations. The meanings of the abbreviated
labels in the figure are clear from the content of this
section.

III.APPLICATION OF THE MODEL CALCULATION

In the same way as curve E in Fig. 2 was obtained,
we have also obtained the ratio of the x -nucleus
scattering length which was calculated by using the
DGBT formula to those calculated using SC from the
experimental data of Stearns and Stearns' (shift only)
and of Jenkins et al. ' (shift and spread). The nuclear
radii were taken from the high-energy electron scat-
tering results. '2 It is seen from the results shown in
Fig. 4 that both the real and the imaginary parts of u

fall along the straight line 1—0.02A, so that we have
the approximate result

a= (1—0.022)—'(~~8) (hE»/I 8» I )

for nuclei with 4&3 &25. This empirical formula
should be useful for rapid analysis of future experiments
of the 1S energy-level shifts aed the spread in x-
mesonic atoms.

As an example of the application of this formula, we
have obtained the x -nucleus scattering lengths from
the recent x-mesonic atom data from CERN' and
Virginia. The results are shown in Fig. 5.

"R. Herman and R. R. Hofstadter, High Erlergy Electro'
Scattering Tables (Stanford University Press, Stanford, 1960).
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F&G. 8. The contribution to the shift
of the 6nite charge distribution, AE1q',
in the E=He4 atom. A uniform charge
distribution is assumed. The contri-
bution is calculated exactly, by per-
turbation theory, Eq. (8) in the text
{the curve P1), and by the semiper-
turbation theory, Eq. (9) in the text
(the curve P2).
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IU. CASE OF THE K—-He4 ATOM

The E=He4 atom is the only E=mesonic atom
whose energy spectrum has been measured. The
Argonne group reported the upper limit of the 15
energy-level shift to be i.0 keV and that of the spread
(~mEis) to be 0.7 keV "The.se values correspond to
an upper limit on the scattering length of 0.22—i0.i 7 F,
as we will show later; this is quite small considering
the large values of the E-nucleon scattering lengths. ' A
new measurement is underway to clarify this situation. "

In this section, we compare the E -He4 scattering
lengths calculated by the methods of SC and by the
DGBT formula. Because of the somewhat ambiguous
situation mentioned above, the comparison is made for
energy-level shift from —0.5 keV to i2.0 keV. In the
SC calculation the square-well potential is again used
for the reason mentioned in Sec. II. The range of the
square well is set to be 2.i9 F, the value obtained from
high-energy electron scattering data. '2 The effect of the
6nite charge distribution is calculated to be O. i7 keV
for a uniform charge distribution with the same radius
as the square well. The results are sho~n in Figs. 6
and 7. Figure 6 shows the real part of the K -He4

strong-interaction potential as a function of the energy-
level shift for the given well radius. The height of the
potential depends strongly on the level shift; a change

'~ G. R. Burieson, D. Cohen, R. C. Lamb, D. N. Michael, R. A.
Schluter, and T. O. White, Phys. Rev. Letters 15, 70 (1965);
D. N. Michael, Ph.D. thesis, University of Chicago, 1966
(unpublished).

~4The average value of the E -proton and E -neutron scat-
tering lengths is about 0.6—i0.5 F. t M. Sakitt t,t al. , Phys. Rev.
139, 8719 (1965); J. K. Kim, Phys. Rev. Letters 14, 29 (1965).
See also J. K. Kirn, ibid. 19, 1074 (1967)j.

'~ R. A. Schluter (private communication'j.

in the energy-level shift from 1. to 5 keV corresponds to
a change in the potential height from 3 to 29 MeV. In
Fig. 7, we show the scattering length calculated from
this potential and also calculated using the DGBT
formula. We see that the DGBT result deviates by, at
most, 15% from the SC result. This is similar to the
m-mesonic atom case (Fig. 2), where for A =4 the D GBT
result (curve D) deviated by only 10% from the SC
result. Note that this does not guarantee that per-
turbation theory or Born approximation give indi-
vidually a small error because the errors in these
approximations partially cancel each other in the
DGBT formula, as shown in Sec. II.

If the level shift and spread are as small as the one
measured, electric effects other than the point Coulomb
one would become important in the observed level
shift. We have made a comparison of the effect of the
finite charge distribution in this atom using the per-
turbation calculation and the SC calculation. The
result is shown in Fig. 8. Perturbation theory gives the
effect of the uniform charge distribution (Zen//2E)

XP(r/&)' —3j (r &E) on the 1Senergy level AEi s' to be

EEqs'= (2Zem/5E)q'$1 —(5/6)g+3q' . j—
where g=ZE/8; for most of the mesonic atoms in
light nuclei, we have q&i. Curve Pi in Fig. 8 is cal-
culated using the leading term of the above expression,

AEis' (2Ze'/5E)g'.

This was obtained by Cooper and Henley" and is
frequently used because of its simple form. Curve P2

"L.Cooper and E. Henley, Phys. Rev. 92, 801 (1953),
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is calculated with the next term taken into account,

EZys' (2Ze~/SE)1PD —(5$/6) j. (9)

As seen in the Fig. 8, this correction is small ( 3%) in
this atom, and higher corrections within this first-order
perturbation theory are not needed here. The result
of the exact calculation is also shown in this figure. The
error introduced by use of these approximations is
about 10'Po, or less than 0.05 keV for 2.0 F(R(3.0 F,
and could be neglected considering the current experi-
mental error.

It has been shown that the vacuum-polarization

effect is quite important in mesonic atoms of the light
nuclei. '~ In analyses of future experiments, this e8'ect

should be examined more closely by taking into account
the effect of the Gnite size of the nucleus on the vacuum
polarization.
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Veneziano Parametrization for Nonstrong Amplitndes*

R. C. BRowER mn M. B. HALpERN

Department of Physics and Lamrence Radiation Laboratory,

University of California, Berkeley, California 04780
(Received 24 February 1969)

Veneziano-like parametrizations are found for photoproduction, Compton scattering, and current algebra.

I. INTRODUCTION

KCENTI Y, Veneziano' gave a simple parametriza-
tion for hadronic amplitudes which is crossing-

symmetric, displays Regge behavior, and satisfies dual-
ity. It is our purpose in this paper to find a similar
parametrization for nonstrong amplitudes, for example,
photoproduction, Compton. scattering, and current
algebra —thus putting the nonstrong problem on an
equal footing with the strong. In general, we shall con-
centrate on the features that distinguish these ampli-
tudes from purely hadronic ones—namely, double poles
(gauge invariance, low-energy theorems, etc.) and 6xed
poles (in angular momentum, with nontrivial form fac-
tors). On the other hand, we shall not go into much de-
tail. about problems that our parametrization shares
with the purely hadronic problem —i.e., parity doubling,
isospin degeneracies, factorization, etc.

In Sec. II, we construct a Veneziano parametrization
for a photoproduction amplitude that has Regge asymp-
totic behavior in all channels and gives the correct Born
approximation (low-energy theorems) at low energies.
In Sec. III, the same technique is used to construct
the amplitudes for physical (chargeless photons)
Compton scattering (yn. ~ yn) Anat. u.ral solution
yields an 3'= 1 pion with a parity partner that decouples
at J=O. Moreover, we suggest a natural scheme for

*Research supported in part by the U. S. Atomic Energy Com-
mission and in part by the Air Force Once of Scientific Research,
OfEce of Aerospace Research, U. S. Air Force, under Grant No.
AF-AFOSR-68-1471.' G. Veneziano, Nuovo Cimento 57, 190 (1968).

introducing into the double-helicity-Rip amplitude a
Pomeranchukon which couples in the forward direction.
Section IV treats current-algebra amplitudes and Axed

poles in the t channel. We find solutions to current-
algebra sum rules with form factors parametrized by
p and p-satellite poles. In this parametrization, a corre-
lation exists between 6xed poles in the s channel and
asymptotic behavior of form factors. The correlation
may be taken to mean that form factors must fall faster
than any power of t.

The problem of combining the results of Secs. III
and IV into a good phenomenological description of
Compton scattering is presently under investigation.

II. PHOTOPRODUCTION

Here we investigate a Veneziano parametrization for
photoproduction amplitudes. In particular, we are in-
terested in those special features associated with the
zero mass of the photon and required by gauge invari-
ance. The pole terms for soft-photon couplings (called
Born terms in this paper) are in fact the main issue,
since gauge invariance requires them to have a particu-
lar form. ' As emphasized in Ref. 2, the photon, unlike
a massive vector particle, can couple to a nonsense pole
if the internal mass is the same as the external mass
(soft-photon coupling). On the other hand, the hard-
photon couplings (other poles to which the soft photon
does not couple) obey the usual selection rules of angular

' F. Arbab and R. C. Brower, Phys. Rev. 178, 2470 (1969};R.
C. Brower and J. Dash, i&d. 175, 2014 (1968).


