
PH VSICAj' REVIEW VOLUM E 182, NUM HER 5 25 J UN E 1969

Regge-Pole Inelasticity, Partial Waves, and a Model for the S Matrix

RoszRT W. CHILDzRs

Department of Physics, University of Tennessee, Enoxville, Tennessee 37916

ARTHUR W. MARTIN*

Department of Physics, Rutgers, The State University, Ãm Brunswick, Near Jersey ON03

(Received 18 October 1968)

The asymptotic behavior of partial-wave amplitudes in the physical region, as deduced from Regge
theory, is used to calculate the inelasticity functions and partial-wave driving forces at large energies for
pion-pion and pion-nucleon scattering. The results provide useful information for N/D calculations. The
Regge-pole inelasticity functions possess a special property; they are asymptotically (in energy) independent
of /. This implies that inelastic unitarity at large energies closely resembles the elastic-unitarity condition
and suggests an approximate model for the two-body S matrix. The model incorporates Mandelstam analy-
ticity, inelastic unitarity, and crossing symmetry, and leads to integral equations for the absorptive parts
of the invariant amplitudes.

I. INTRODUCTION

~T has become evident over the last few years that
~- inelastic e6'ects can be of major importance in
partial-wave calculations. It is also clear that the larger
problem of determining the invariant amplitudes
A (s,t,N) through the requirements of analyticity, uni-

tarity, and crossing symmetry is not well defined with-
out a statement of inelastic unitarity. In this paper we
wish to point out that the asymptotic information pro-
vided by Regge-pole theory leads to models for inelastic
effects that can be useful in both partial-wave and
invariant-amplitude calculations.

In the X/D formalism'' the inelasticity function
must be given as input. In the low-energy region this
information can'be obtained from experiment, when

available, or from models for the e&ect of coupled two-

body channels. ' At high energies such methods are
impractical, but the Regge-pole phenomenology steps in
to provide a simple prescription for the inelasticity
function. We will use the statement of partial-wave
inelastic unitarity

ImA((s) =k(s)E((s) ~A ((s) ~', (1)

where k(s) is the appropriate kinematical factor, de-

pending upon the spins of the particles, and 2~(s) is the
ratio of the total to the elastic cross section in the 1th

partial wave.
The method for determining the asymptotic behavior

of R&(s) from Regge-pole theory is transparent; one
obtains the asymptotic form for A ~(s) and plugs it into

(1).This is done, with the necessary assumptions about
Regge-pole behavior, for the cases of pion-pion and pion-
nucleon scattering in Sec. II. The asymptotic behavior
of A ~(s), together with the assumed validity of partial-

*Research supported in part by the National Science Foun-
dation.' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

' G. Frye and R. L. Warnock, Phys. Rev. 130, 4/8 (1963).
' See, for example, J.J. Srehm and L. F. Cook, Phys. Rev. 170,

1381 (1968).

wave dispersion relations, also allows us to calculate the
asymptotic behavior of the partial-wave "driving
forces" in the physical region. This analysis is presented
in Sec. III.

One interesting property of the Regge-pole prediction,
and one that is easily understood, is that E&(s) is
asymptotically (in energy) independent of /. This fact
suggests a model for inelastic unitarity that, when
coupled with analyticity assumptions and crossing sym-
metry, leads to integral equations for the invariant
amplitudes (more precisely, the absorptive parts of the
invariant amplitudes). We do not know at this point.
whether consistant solutions of the equations exist.
Nevertheless, the structure of the integral equations is
sufFiciently simple that it should be possible to extract
the basic properties of the theory without enormous
computational labor. The development of this ap-
proximate 5-matrix formulation is dealt with in Sec.
IV. Section V is devoted to conclusions, and some
mathematical details are presented in an Appendix.

II. REGGE-POLE INELASTICITY FUNCTIONS

As noted in the Introduction, the asymptotic be-
havior of the inelasticity function E&(s) follows im-

mediately from partial-wave unitarity once the asymp-
totic behavior of A~(s) is known. The Regge-pole
results for A &(s) were stated by Chew, ' and derived with
more attention to details by Squiresi and more recently
by Warnock, so we will not go through the full calcu-
lation here. We do wish to outline the method, however,
to emphasize the assumptions made and the physics
behind the result.

In the case of pion-pion scattering we work with the
invariant amplitudes Ar(s, s), where I=O, 1, 2 denotes
the isospin and s is the cosine of the c.m. scattering
angle. The amplitudes are related to the partial-wave

4 G. F. Chew, Phys. Rev. 129, 2363 (1963).' E. J. Squires, Nuovo Cimento 34, 1277 (1964).
6 R. L. Warnock (to be published).

1762



fNELASTfCi~ Y, VARTfAL WAVES, AND MODI L OP 5 MAl. RIX l763

amplitudes through

A'(s, z) =Q (2t+1)Pg(z)A g'(s),

A )'(s) =- ds Pi(z)Ar(s, s).

A'(s, s)
1+exp[—is n(t)j

CI(t} &N(o

sinn. n(t)

1+exp[—in.n (tt)j+(—1)rCr(N) ga(e) (3)
slum'n (Q)

The optical theorem reads'

ImA 1(s s= 1)= (16m-) '[s(s—1)g'~'0„,~(s)

and the partial-wave amplitudes satisfy the unltar1ty
condition (1) with k (s) = [(s—1)/sJ".

We assume that the Pomeranchuk trajectory domi-
nates the elastic scattering at large energies, and we
write the Regge amplitudes in the form

where the constant term is also independent of $. The
erst 1-dependent term in the inelasticity goes as s '. The
physics underlying the / independence of the dominant
terms in (4) and (5) is easily seen. The Regge formula
with its shrinking di8raction peaks becomes at large
energies essentially 8 functions in the forward and
backward directions, a =&j., and the partial-wave pro-
jections of these "0 functions" are independent of /.

Finally, we note that the I independence of the inelas-
ticity function provides a particularly simple derivation
of the result

0 'tiD't

0.) '(s)
S~n'(0) ln(s)

The calculation for the case of pion-nucleon scattering
is quite similar to the spinless case and we simply state
the results. %'e work with the standard partial-wave
amplitudes' f&~1(w) which satisfy the unitarity condi-
tion (1) with k(s) =q, where q is the magnitude of the
three-momentum in the c.m. system. The assumption of
the dominance of the Pomeranchuk trajectory then

where t and I are the usual momentum-transfer vari-
ables. The optical theorem then gives

C'(0) = —(16m.)
—'0 ...'( ~ )

f~+'(~)
&0'tot

-+0[u-' ln '(w) j, (6)" 16m-a'(0)w ln(m)

with the standard assumption ~(0)= 1.
The asymptotic behavior of the partial-wave ampli-

tudes follows from inserting (3) into (2) and carrying
out the partial-wave projection. The result is'—'

[1+(—1)'+'3~ ~'( )
A zr(s)

16m.n'(0} ln(s)

vr i167rC'r (0)
X i— +

2 in(s) n'(0)og.gr(~) ln(s)

il(t+1)
+0[in '(s)j— (4)

a'(0)s ln (s)

where we have included the erst l-dependent term to
show that it is reduced by the factor [sin(s)j ' m
comparison with the dominant term. It has been as-
sumed that n'(0))0 for the Pomeranchuk trajectory,
and that n(t)(1—~ for —(s—1)&~t~& —b(~), where e

and 8(e) are positive. Tins last assumption, that the
amplitude at large energies is dominated by the forward
and backward peaks, is in agreement with present ex-

periment and with many theoretical considerations. '
The inelasticity function for the nonvanishing pion-

pion partial-wave amplitudes is then found from (1)
and (4) tobe

Smu'(0) in(s)
g,r(s): +0(const), (5)

~oo 0 I

' The units A=c=4ttt'=1, where p, is the pion mass, are used.' See, for example, T. Kinoshita, J. J. Loeffel, and A. Martin,
Phys. Rev. 135, 81464 (1964); G. Tiktopoulos and S. B.Treiman,
ibjd. 167, 1437 (1968).

where 0;„1(co) in (6) now refers to the total pion-
nucleon cross sections in the isospin states I=—,', &. In
this pion-nucleon case the erst l-dependent term is
smaller by a factor [m in(m) j ' than the leading term.

The asymptotic form of the inelasticity function is

32am'(0) ln(w)E~~r(u): -+O(const),

and the erst l-dependent term vanishes as m '. The
indusion of secondary trajectories with n(0) & 1 does not
enhance the 3 dependence of the asymptotic formulas„
nor does the inclusion of Regge branch cuts. s 6 These
asymptotic expressions for the inelasticity functions are
readily incorporated into partial-wave 1/D calcula-
tions. In setting up a speciic model there remains the
question of blending the intermediate-energy inelas-
ticity functions with the asymptotic forms. But this
problem can be handled in reasonable ways and
without the introduction of large numbers of arbitrary
parameters.

ID. ASYMPTOTIC BEHAVIOR OF
DRIVING FORCES

The results presented in Sec. II hold only for
s= w~ -+ +~.The asymptotic behavior of partial-wave
amplitudes as s —+ —~ requires knowledge of Regge
trajectories and residue functions outside the physical
region, '0 and the theoretical situation on this point is

'S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960)."R. Omnes, Phys. Rev. DB, 81543 (1964). See also the com-
ments of Ref. 5.
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presently in a stat, e of Qux. Omnes" has suggested, on
the basis of certain assumptions about Regge-pole be-
havior, that unsubtracted dispersion relations hold for
the partial-wave amplitudes. Kinoshita, "with assurnp-
tions of a quite different nature, suggests that at most
one subtraction is necessary.

In this section we assume that partial-wave dispersion
relations hold and calcula, te the asymptotic behavior of
the driving forces, as s ~ + pp, implied by Regge
theory. Consider pion-pion scattering. It is clear from
(4) that an unsubtracted dispersion relation for A i(s)
does not hold; the integral along the physical cut is
divergent. So we consider the once-subtracted relation

We not.e in passing that this result, suggests the asymp-
totic behavior for the discontinuity on the unphysical
cut

0 tot
ImA i{s+ip)

8zrn'(0) ln (=s)

The analysis for pion-nucleon partial-wave driving
forces in the m plane is quite similar. The main differ-

. ences are the existence of the two physical cuts, easily
handled by MacDowell symmetry, "and the additional
convergence factor supplied by the definition of the
partial-wave amplitudes. We write the unsubtracted
dispersion relation

with the partial-wave driving force 8 &(s) given by

s sp ds InlA i(s ) 1 "dw' Imfi~(w'yzp)
A ~(s) =A ~(sp)+8~(s)+ —,(7) f~~(w) =Bi+(w)+-

(s —sp) (s —s) 7t ~p 'lO —K

1 "dw' Imf(~z,~ (w'+ip)
(10)

s —sp ' ds' ImA i(s')
Bi(s)=-

7t ~ S —Sp S —S

s—sp
-P

ds IlilA ~(s )
+const. (9)

, (s' —sp)(s' —s)

To evaluate the asymptotic behavior of Bz(s) from (7),
we first break the integral over the physical cut into a
finite integral, with limits 1 to SI, say, with s&(s, and
the remaining in6nite integral.

In the limit of large s, the Gnite integral contributes a
constant plus vanishing terms. We then have, from (7),

Bi(s):ReA ((s)

where wp ——M+zz is the physical threshold and the
driving force B~+(w) is given by the contour int, egral
a,round the unphysical cuts

1 dw'f i~(w')
Bi+(w) =

2xz U 3) —K

The last integral on the right-hand side of (10) follows
from MacDowell symmetry.

As in the pion-pion case, we separate the integrals in

(10) into finite and infinite integrals, the first of which
vanish as m ' and in the second of which we can use the
Regge asymptotic forms LEq. (6)]. The results of the
Appendix then. give for the driving forces

Supposing s& to be so large that the Regge asymptotic
form can be used, we insert (4) into (9) and encounter
the integral

8~+(w)

o.z.z(~) In/in(w) j—+0(w ').
8zr'u'(0) w

I(s) =(s sp)P ds'(s' ——sp) '(s' —s) 'In '(s').
SJ

The asymptotic behavior of this integral is shown in the
Appendix to be

I(s):—In(In (s))+0 (const) .

It is also shown in the Appendix that the smaller terms
in the asymptotic expansion (4), those proportional to
ln P (s) with 4= 2, 3, , contribute only constant and
smaller terms to (9).

As a consequence, we find that Regge-pole theory to-
gether with the assumption of partial-wave dispersion
relations determines the asymptotic behavior of the
once-subtracted driving force $Eq. (8)j to be

If the partial-wa, ve dispersion relations hold, which
must remain an assumption at this time, then the Regge-
pole model leads to precise predictions for the asymp-
totic behavior of the driving forces in the physical
region.

Since the E/D method is based upon the validity of
the dispersion relations, it follows that 1V/D calculations
incorporating Regge behavior should employ phenome-
nological driving forces with the asymptotic behavior
found above. It is amusing (but not at all surprising)
that the Regge theory determines completely the
asymptotic behavior of the kernel function in the Ã/D
equations, both in the 8 l formalism and the
formalisrn. 6

IV. APPROXIMATE MODEL FOR THE 8 MATRIX

0 tot8~(s): In/in(s))+const.~" 8zr'u'(0)
» T. Kinoshita, Phys. Rev. 154, 1438 (1967).

The results presented in the previous sections are
rather straightforward consequences of Regge-pole

"S.W. MacDowell, Phys. Rev. 116, 774 (1959).
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asyroptotic behavior. They shed some light on the
"boundary conditions" of partial-wave calculations
with inelasticity, but there is clearly a great deal of
physics yet to be supplied. In particular, the basic in-
gredient of crossing symmetry is missing. In this section
we propose an approximate model for the two-body 5
matrix that overcomes this deficiency and that may be
close enough to the real world to be interesting.

Consider the mathematical problem delineated by the
conditions: crossing symmetry, elastic unitarity in the
three crossed channels, and the validity of the e-times—
subtracted Mandelstam representation. It is well known
that this problem is underdetermined; there are pre-
sumably an infinite number of solutions. The reason is,
of course, that a statement of inelastic unitarity is re-
quired to make the mathematics well dined. It is also
clear that an arbitrary statement will not do; inelastic
unitarity is too closely connected with the crossing
relations. "'4

Our model is suggested by the Regge-pole inelasticity
functions of Sec. II and the fact that they are asymp-
totically independent of /. For the sake of de6niteness
and simplicity we consider the scattering of neutral,
spinless particles. The generalizations of the model to
more complicated processes will be clear, We write the
unitarity condition in the s channel in the form

s —1 '
lmA (s,s) = R(s)

S

dQ„
A*(s,sg„)A (s,z„;)+F(s,z), (11)

wllele R($) = 1 and F(ss) =0 fol' s iil the elas'tlc iegloll
1 &~ s& 4. (We suppose that the first inelastic channel is
the four-meson state. )

It is obvious that inelastic unitarity can be written in
the form (11), since F(s,s) is completely unspecified.
But the Regge theory suggests that F(s,s) vanishes
rapidly for large s [with the appropriate choice for
E(s)j, as is seen by taking the partial-wave projection
of (11)

ImA ( (s) = [(s—1)/sj'"E(s)
~
A ( (s)

~

'+F g (s) .
We give R(s) the asymptotic behavior of (5) and see
from (4) that F~(s) o- s ' In '(s) for large s. Our model
consists of neglecting F(s,s) in the unitarity condition

(11) at first. F(s,z) cannot remain zero since that would
violate crossing symmetry, but it will in fact be de-
termined in a 6rst approximation through crossing
symmetry.

Before proceeding to the mathematics, it is helpful to
point out some of the general features of this approach.
First, it is clear the, t we are relying upon the Regge-pole
partial-wave results for all angular momentum states.

» A. J. Dragt, Phys. Rev. 156, 1588 (19M).
"A. YV. Martin, Phys. Rev. 173, 1439 (1968).

But it is known" that one cannot blithely interchange
the large-s and the large-1 limits, so we are mistreating
the very high angular-momentum components of the
invariant amplitude. We do not expect this to have a
serious eGect upon the model. Second, it is evident from
(11) with F=0 that the amplitude will have s-channel
double spectral functions with the I andau curves of the
"first wings" alone P=N=4s/(s —1) in our symmetric
casej. The "second wings" required by crossing must
come from F(s,s). Note that this implies that at large
energies the s-channel absorptive part receives a domi-
nant contribution from the 6rst wings of the double
spectral functions.

The model then consists of applying the approximate
unltallty condition (11) witll F=0 obtalillilg a Ieslll't
that is not crossing-symmetric, and reinstating crossing
by adding the second-wing double spectral functions
that are determined by crossing symmetry. There is an
immediate consistency check; the second-wing spectral
functions so determined must not modify the asymp-
totic behavior of the amplitude. If they do, the model
fails. If they do not, then, depending upon the com-
plexity of the mathematics, one could contemplate using
the first approximation for F(s,s) obtained and recycling.
But even after one cycle one should have a crossing-
symmetric amplitude with a fair approximation to
unitarity.

Finally, there is the question of parametrizing A(s) in
the region between the erst inelastic threshold and the
asymptotic domain. It is known, '4 for example, that
E&(s) for very large i exhibits a rather sudden rise from
values near unity to very large values in the region
about s=5, the crossover point for the leading Landau
curves. This is a consequence of the second wing of the
spectral function, which is missing in our 6rst ap-
proxirnation. We would suggest, instead of such be-
havior, that Z(s) should climb smoothly and slowly to
its logarithmic asymptotic behavior. This would. appear
to be a better approximation for the lower partial waves
that should dominate the amplitude in the intermediate
energy range.

%e turn to the integral equations that result from our
model. The mathematics is familiar; it is just like
applying elastic unitarity to the Mandelstam repre-
sentation, but with the crucial difference that "elastic"
unitarity now holds throughout the physical region. We
will present the results for the assumptions of an
unsubtracted and once-subtracted Mandelstam repre-
sentation. Further subtractions can be accommodated
in an obvious manner. For neutral, spinless particles the
invariant amplitude A(s, t,g) is symmetric in its three
variables. This implies that the double spectral function
p(s, t) is symmetric in its two variables.

We define the function (the absorptive parts) for
the case of the unsubtracted Mandelstam repre-

» See, in this regard, C. Goebel, Phys. Rev. Letters 21, 383
(1968); M. Kugler, i%@.21, 570 (2968).
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sentation

1 "Cxp(s,x) 1 " Cx p(s,x)
8 (s,t) =— +— . (12)

x—t x i x+s+t 1—
In the s channel we have ImA (s,t) =B(s,t), and because
of our simple crossing, relations we have the fixed-s
dispersion relation

1 "Cx B(x,s) 1 "Cx B(x,s)
A (s,t,l) =— +— . (13)

7r S—3 m y g —I
We now insert (13) into the unitarity condition (11),
carry out the angular integrations, and obtain the
integral equation

4R(s)
B(s,t) =

t s(s 1)j—'(2x'

X Cx Cy B*(x,s)B(y,s)H(x, y; s,t), (14)

where the kernel enjoys the integral representation

H(x, y; s, t)

Cs (2s+s —1)
(15)

, L(s—t+) (s —t—)j""(s—t) (s+t+s —1)

with

t+ (s—1) 'Lx"——'(y+ s—1)"'~y'" (x+s—1)'('7'.

The kernel can be expressed in terms of I.egendre
functions (equivalently, logarithms) as

which now holds for all positive s. Results known previ-
ously for the double spectral function in the elastic
region" can therefore be extended throughout the
physical region in this model.

Second, because the kernel is symmetric in x and y,
the only surviving part of the expression B*(x,s)B(y,s)
is the real part, namely, ReB(x,s) ReB(y,s)+1mB(x,s)
XImB (y,s). This indicates that the range of integration
in (14) (roughly the erst quadrant in the xy plane) can
be halved by cutting along the diagonal. This should
help to simplify the analysis. Finally, the most im-
portant feature of (14) is the "reversed" structure of the
variables. All of the t dependence on the right-hand side
is in the kernel. Suppose, for example, one chose a form
for B(x,s). The integral in (14) then yields the t depend-
ence of B(s,t) which translates back into the s depend-
ence of B(x,s), and so forth. In this way the problem is

more like an integral equation in a single variable than
one in two variables. The dependence upon the two
variables is strongly coupled in a self-consistent manner.

Because of the nonlinearity of (14),we are unaware of
possible existence or uniqueness theorems for the solu-
tions. To conclude the formulation of the model, how-

ever, let us suppose that a complex function B(s,t), with
1~& s, t& ~, is found which satisfies (14). Note that the
t usymmetry (t -~ I= 1—s—t) of the amplitude is pre-
served by the kernel (15). This means that B(s,t) is
defined for all t by the continuation of (14) and is

symmetric in I, and N. But since the second wings of the
s-channel double spectral functions are missing, it is
impossible at this stage to have s-t or s-I crossing
symmetry.

We therefore construct the symmetric double spectral
function

H(x, y; s, t)

1 —,'(t++t )—t

L'(& —~+) (t —t-) 7"' L(t —&+) (&
—&-)3'")

+
L(t+s —1+t+)(t+s —1+t )j"'

—,'(t++t )+(t+s—1)
XQo . (16)

L(t+s —1+t+)(t+s —1+t )]'('

We note some features of the integral equation. First, it
is complex; the kernel (15) develops an imaginary part
for t&~t+&~4s/(s —1), and the imaginary part of B(s,t),
which is the first wing of the double spectral function,
is given by the familiar expression

4Z(s)
pi(s, t) =

Ps (s —1)ji('n-

Cx Cy B*(x,s)B(y,s)
X 8(t—t,), (17)

L(t-t+) (t-t-)j'"
1

p(s, t) =8(st—4s—t)pi(s, t)+8(st —4t —s)pi(t, s), (18)

where pi(s, t) is given by (17) and is known from the
solution of the integral equation. This "corrected"
spectral function is inserted in (12) and makes an
inelastic region contribution to the absorptive part
B(s,t). As mentioned above, the large-s behavior of

B(s,t) must be essentially unaffected by this modifi-

cation. Otherwise the model is internally inconsistent.
The last step involves inserting the modified B(s,t)
into (13) to obtain a manifestly crossing-symmetric
amplitude.

In reinstating crossing symmetry in this way we have
inevitably tampered with unitarity. In the inelastic
domain (our region of almost complete ignorance) this
does not bother us. In fact, it is an advantage because
the close interconnection between crossing and inelas-

ticity has been exploited in a first approximation. Hut
we have also tampered with elastic unitarity, and this is

a more serious matter. We observe that there is a simple

check on the degree to which elastic unitarity has been

affected. Equation (17) is an exact statement for s in

' See, for example, A. W. Martin, Phys. Rev. 162, 2534 (2967).
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first approximation. Finally, one reinstates crossing by
symmetrizing the double spectral function as in (18),
computing the modified absorptive part by (19), and
obtaining the manifestly crossing-symmetric invariant
amplitude by (20). Note that all parameters are de-
termined except X, the value at the symmetry point. At
this time we see no way to determine X within our
approximate model. We observe, however, that one can
recycle the calculation without the necessity of speci-
fying the subtraction constant.

V. CONCLUSIONS

Inelastic unitarity is bound to become a more and
more important factor as S-matrix calculations grow in
sophistication. The various S/D prescriptions for in-

corporating partial-wave inelastic effects are well

known, ' and the larger problem of determining the in-
variant amplitudes is not even defined without a state-
ment of inelastic unitarity. The Regge-pole phenome-
nology, which seems to provide an adequate description
of high-energy scattering, directly yields' ' the asymp-
totic behavior of the partial-wave amplitudes in the
physical region, and it is a short step to extract the
asymptotic behavior of the inelasticity function R&(s).
We have presented the results for the cases of "pion-pion

and pion-nucleon scattering.
The partial-wave asymptotic behavior, together with

the assumed validity of partial-wave dispersion rela-
tions, also permits us to deduce the asymptotic behavior
of the driving forces in the physical region. Since the
Ã/D equations can be cast in a form" such that only
physical-region information is required, these twin re-
sults determine completely the asymptotic behavior of
the kernel in the S/D method. The findings in the Rg
formalism thus complement those of Warnock in the g~

formalism. ' Of course, the asymptotic information
provided by the Regge theory still leaves a great deal of
physics to be determined. One of the primary difhculties
of partial-wave calculations has been the inability to
incorporate crossing symmetry in a rigorous manner.

With the crossing-symmetry problem in mind, one
notes that the Regge-pole inelasticity functions possess
a striking feature. They are asymptotically (in energy)
independent of I. This implies that at large energies the
full unitarity condition for elastic processes assumes a
form much like the exact statement of unitarity in the
elastic energy range. That is, the Regge theory implies
that to a good approximation all asymptotic inelastic
effects can be lumped into a multiplicative factor times
the solid-angle integral over elastic amplitudes.

This observation leads to an approximate formulation
of the two-body S-matrix problem that we have dis-
cussed in detail in Sec. IV. The model requires the
solution of nonlinear integral equations and the meeting
of certain internal-consistency demands. It does not

"J.L. Urete, Phys, II,'ey, 123, 1459 (1961).

seem likely that exact solutions will be readily found.
On the other hand, it should be possible to find the
asymptotic behavior of the solutions without great
difhculty and to judge thereby the eventual success or
failure of the model.

APPENDIX

In this Appendix we derive the asymptotic behavior
of a class of integrals required in the analysis of Sec. III.
We define the integrals

Ip(s) =I'
dg

, x(x —s) 1np(x)

(A1)

Sk—1

=Z
k=~ Xk

s&x.

The change of variables y=ln(x) then yields

In(s—e)

Ip(p) = ——
(si)

1n(s—e)00

dyyp —z „,k 1 s 1n(s1)

+ P Sk-1
k=1 1n(s+s)

dy y-Pp-"~. (A2)

The first integral is readily evaluated (the limit p=0
can be taken since the principal-value singularities now
reside in the infinite sums). The first integral also turns
out to dominate the asymptotic behavior of Ip(s). To
show this we denote the sum of the last two terms on the
right-hand side of (A2) by Ip(s), make the variable
change h=ky, and obtain

pP—I ln(s—s) Ip

Ip(s) = —P
k 1 Sk+1 in(s )p

Chh &e'

+ Q pp —1$k-1

k 1 (s+s)
dh t Pp '. (A3)--

These integrals are related to the usual exponential and
logarithmic integrals, but we do not need the full
apparatus here. We require only the integration. -by-

I (~) =
, x(x+s) 1np(x)

and first consider Ip(s). We break the principal-value
integral at the singularity, according to the definition,
and employ the binomial expansions in the convenient
foim

gk
(x—s)

—'= —s—' —p —,g(s
k=1 Sk+I
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parts jdentjtieq

2 I'(p+p) e' e'
dt t Pe'= P. „„ ,- .-)

&(q+P+1)+ (Q f
—

&
—P-~g&

1'( )

~ (-1) 1 (P+P)
dt t Pe- —(—1)'

2 o I"(P)a~Pe

1"(q+P+1)
X dt t

—~—~—'e—'.
1(P)

(A4)

where f'(222+2) is the Riemarin f' function.
We now return to (A2) and obtain the final results

Ip i(s)= —s 'ln[ln(s)/ln(si)7+Ip i(s),
Ip~i(s) = [(p—1)s7 '[ln' p(s) —ln' p(si)7+Ip~i(s),

with Xp(s) given by (A6). The cases in which P is zero or
a negative integer are special (and trivial) and do not
concern us here. The evaluation of Jp(s) [Eq. (A1)7
proceeds in a similar way. It is convenient to break the
integral at the point x=s and to use the binomial
expansions

„ ( 1)2~2
(x+s)—'=s '+ P- —, 2:&s

k 1 SR+1

(—1)"si

where

The last integrals on the right-hand sides of (A4) we
denote henceforth by the general symbol E(q+1). s&x.
These remainder terms are always smaller in magnitude k~1 g~

than the terms obtained by extending the p sums one
unit.

The same analysis as before then leads to the results

We use the identities (A4) in (A3), interchange the Jp i(s) =s ' ln[ln(s)/ln(si)7+ Jp i(s),
orders of the infinite and finite sums, set 2=0 where it J (s) [(1 P)s7

—1Dnl—P(s) lni—P(s )7+J (s)
does not affect convergence, and obtain

1 2 1'(P+P) 1 (—1)"s" (s—e)'-
Ip(s) =- Z

s 2~ F(p) ln2'+p(s) 2=i k2'+' (s+e)' s'

1 ~ r(P+P) . si2
+—Q —Q +E(q+1). (A5)

s 2~ I'(p) in2'+p(si) &=i k"+'s2

The sum involving si in (A5) is obviously convergent
and the whole term is of order s '. In the first sum on the
right-hand side of (A5) only the p=0 term involves
sums divergent in the limit ~ —+ 0. These are the usual
In(e) terms in principal-value integrals and are readily
seen to cancel. The k sums with p ~&1 are convergent in
the limit e=0 and are simply Riemann f' functions. We
also note that only the terms with p odd survive. As a
consequence we can write Ip(s) in the form

2 ~ r(2~+ p+1)f (2N+2)
Ip(s) =—Z

s m p p(p) in2n+p+1(s)

+E(q+1)+O(s ') (A6)

2 2 F(2n+P+1)2t(222+2)J (s)=—Z—
s ~ 1'(P) ln'"+P+'(s)

+E(q+1)+O(s ')

and 2t (I) is the 2t function defined by

2t(22) = Q (—1)" 'k "
k=1

and related to the Riemann f function by

~( )= (1-2'-")1-( )

In the analysis of Sec. III the integrals involve the
subtraction point so. The fact that the subtraction point
does not affect the asymptotic behavior of the integrals
(as is intuitively obvious) is readily shown by expanding
(s —so) binomially and using partial-fraction identi-
ties. The so-dependent terms are a factor s ' smaller
than the asymptotic results presented above.


