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A coupled two-channel bootstrap calculation is performed for the static system of N and wwxV states in
the positive-parity I=J=#% state. For the ==V state, we use an analysis of Ball e al. which reduces the
three-particle system to a two-particle system with a modified phase space. The calculations are made using
the NV /D method and the static Bethe-Salpeter equation. The results are in reasonable agreement with the
experimental positions and partial widths, and imply that the Roper resonance is primarily a ==V resonance.

I. INTRODUCTION

HE static model has been fairly successful in
describing the low-energy P-wave =V scattering.
The model was used by Chew! to suggest that in =V
scattering, the V exchange gives rise to forces which are
strong enough to produce the N* resonance, while the
forces due to N* exchange can produce an N bound
state. The calculations? with the static Bethe-Salpeter
equation have since yielded results which essentially
agree with those of Chew, who used the static N/D
model with linearized D function.

This situation is, however, disturbed by the presence
of the Roger resonance® at 1470 MeV and with a total
width of 210 MeV. This resonance has the same
quantum numbers as the nucleon except for its position
and width, and it is very difficult indeed to find forces
which can produce two nearby zeros in the D function
for a single-channel calculation. Furthermore, the
Roper resonance decays to a significant extent into
7N, the partial width being about 4, in spite of the
small phase space for the 7wV channel. The situation
therefore seems to demand a two-channel calculation
involving P-wave mN and 7N states in the I=J=%
channel.

In this paper, we present a two-channel #V and =7V
static calculation in the positive-parity I=J=1% state.
On account of the small phase space for the ==V state
and the low-energy nature of our computations, it is
reasonable to assume that the =7 are in the S-wave
state. Furthermore, unless there is a low-energy S-wave
w7 resonance, we will be justified in making a scattering-
length approximation for the == interaction.* For the
treatment of the three-particle system 77N, we use the
unstable ‘“particle” analysis given by Ball ef al.,> which
allows us to treat the == state as a single-particle state
but with a weighted phase space. The input static
forces in this simplified two-channel system are due to
exchanges of the nucleon, the Roper resonance, and the
N*. The cutoff is fixed so as to give the correct position
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for the output nucleon. The calculations are first made
in the N/D framework and then the static Bethe-
Salpeter equation is solved using Pagels’s approxi-
mation. Both the calculations yield more or less the
same result that the bootstrap parameters for the masses
and coupling constants agree with the experimental
numbers quite well. The value of the coupling of the
Roper resonance to the mV comes out somewhat smaller
than the experimental value, but is not unreasonable
considering the approximations involved. The bootstrap
values are such that the Roper resonance comes out at
about 1500 MeV with a partial decay width of 3.
for decay into mxV but a considerably smaller decay
width for decay into .V, and the nucleon coupling to
the 7V agrees very well with the experimental number,
while its “‘coupling” to the scalar == system is about
two times smaller than the corresponding Roper-
resonance coupling. The smallness of this coupling
suggests a justification for the success of the current-
algebra calculations® of the =V scattering lengths.

The model which we use is similar to the one which
Ball, Shaw, and Wong” use in their analysis of the Py
wN partial-wave amplitude. Their analysis consists of
a two-channel ND~! calculation, with the two channels
being the wV and the ¢V systems; ¢ is taken to be an
S-wave resonance with a mass of 3.5m,. Our emphasis,
however, is on the bootstrap aspect of the problem, that
the forces due to the N*, N, and Roper-resonance ex-
changes produce the same particles in the direct
channel, whereas the Ball-Shaw-Wong analysis uses a
one-pole parametrization in terms of four parameters
to reproduce the general experimental features of the
Py wN partial wave. Furthermore, our analysis in
terms of the 7 scattering-length approximation and
the formalism of Ball, Frazer, and Nauenberg® is more
general than the essentially single-particle ¢ approach
of Ball, Shaw, and Wong,” especially in view of the
highly dubious nature of the existence of the o
resonance.

The two-channel analyses do provide a bootstrap
basis for the nucleon and the Roper resonance, with the
nucleon being a bound state of #V and the Roper
resonance being a resonance of primarily the =xV
state.

8Y. Tomozawa, Nuovo Cimento 46A, 707 (1966).
7 J.S. Ball, G. Shaw, and D. Wong, Phys. Rev. 155, 1725 (1967).
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1I. COUPLED-CHANNEL N/D PROBLEM

Let T'y; denote the I=J=1% positive-parity amplitude
for 74+N— a+N, Ty for 7+N — o+7+N, Ty for
rm+nr+N—7+N, and Ty, for 7+7+N — v+7+N.
FFor the energies in which we will be interested, it will
be a good approximation to assume that the 77 in the
mrN channel are in an S-wave state. For the treatment
of this #xN state, we use the analysis of Ball et al.?®
for which one first writes

T11=M11,

T12=M12f(l)7 (1)
Too=Muxnf(t)f{),
where
(t) =lll2w (2)
O

with 8¢ being the S-wave I=0, 7= phase shift, ¢ is the
invariant square of the energy and momentum of the
wr system, and u is the pion mass. The M1, and My,
thus defined are free from the singularities due to the
wm interaction. Furthermore, the ¢ dependence of M;
will be ignored. The T';; are so normalized that the
unitarity condition reads

ImM ij= M s*prM s, 3)

where the discontinuity is due to the singularities in
the total energy variable, and for the static model

p1= (w?—p?)*?
and

P2=M ﬁ w: (=02 f(2) 12<t*4#2>1/2dt, 4

T t

C being a constant which is so defined® as to give
pa= (w?—m*)'? for the narrow-width approximation
of an S-wave nr resonance of mass .

It is easy to solve (3) in the framework of the N/D

method, for which one writes
M=ND", 5

where V and D are 2X 2 matrices, V has only left-hand
singularities, and D has only right-hand singularities.
The unitarized solution to M is then given in terms of
N and D:

1 rImM3(w)D(w’
M) = / _T(__S_Zdw
m™Jl —w
1A P@')N (@) ©
D(w)=1-—-—/ ——,————dw’,

where the superscript B stands for the projected Born
term, / stands for integration along the left, p is the

8 Taking a different value for C only redefines the matrix
clements M2, My, and My by constant factors.
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diagonal matrix with diagonal elements p; and pg, and
A is a cutoff.

We solve the set of equations (6) with the input
forces coming from the exchanges of the N, the N¥,
and the Roper resonance. The static expressions for

M ;B are
Tyn® 1 vr® 16 yarsd
M8 (0) =— —4— — s
9 w Ywt+A; 9 wtA,

YNIYN2 YRIYR2
M1 (0) =M 9% (w) = ) M
w w+A1
YN YRE
M 29®(w) =—+ )
w w+A1

where yyi is the coupling of the nucleon to the =iV
channel, vy is the “coupling” to the (rm)N channel
with the =7 being in an S-wave state, and similar
definitions for the Roper resonance and the N*; the
A; are the mass differences

Ar=mp—my and Ay=my*—my.

Equations (6) can now be solved using (7). For the
evaluation of phase space ps we use scattering-length
parametrization for f(¢):

fO=1 / E_i(l—:lu?)l/z:l |

where the scattering length a is taken? to be |a|~1.2
in units of the pion mass. Our results will be independent
of the sign of the scattering length. The cutoff A is so
determined as to give a zero in the determinant of
D(w) at w=0, corresponding to the nucleon pole. We
then find that the experimental numbers for the various
coupling constants and masses in (7) reproduce them-
selves as solutions of (6), i.e., the bootstrap parameters
are close to the experimental numbers. The approxi-
mate bootstrap parameters are

A=124,
Ar=~5pu,

where we have taken C=1/25, compared to the experi-
mental numbers

®)

yv1=0.5, ywe=14,

9)

’le%—‘—0.0S, and 7mz2.5,

A=3.8,
}’y}nl z2.5,

’7N1] ’\~"0.5,
|vRr1] =0.14,

(10)

and

corresponding to Roper-resonance partial widths of
im, each for decays! into the 7V and (wm)N channels.

9 Our calculations are independent of the sign of a. The mag-
nitude we have taken is consistent with the experiments: L. W.
Jones et al., Phys. Letters 21, 590 (1966); W. D. Walker ef al.,
Phys. Rev. Letters 18, 630 (1967); E. Malamud and P. Schlein,
ibid. 19, 1056 (1967).

10 The comparison with the experimental widths has the dif-
ficulty due to the correction factors, which we take to be the same
as for the N*.
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The mass of the Roper resonance comes out somewhat
larger and the Roper-resonance coupling to 7V is
considerably smaller than the respective experimental
values, but still the over-all agreement is reasonable
considering all the approximations- that go into the
calculation. We have no direct experimental infor-
mation on vyys, but the fact that the mV scattering
lengths are correctly given by ignoring the 7=0 state
in the 7 — NN channel suggests that vy, is probably
small and this conclusion is supported by our result.

III. STATIC BETHE-SALPETER EQUATION

In order to confirm the results of the N/D calcu-
lation, we will redo the calculations within the frame-
work of a two-channel static Bethe-Salpeter equation.
With the M ;; defined as before, the equation reads

M (o' w) =V (o' w)
1 / V(' w")p(w" )M (")

do’, (11)

T W' —w

where V(o' ') are the off-shell potentials which are
the same as the Born projections in (7) except that w
is replaced by w’4w”—w, with w being the on-shell
energy. To facilitate the solution of (11), we generalize
the Noyes! procedure and write

M (o' w)=f' )M (0w), (12)

where f(w',w) is a 2X2 matrix and f(w,w) is the unit
matrix. Then one can write

w—w
XV (ow) (13)
and
J('w) =V (" )V (0w0)
L Viww)pw") fle”w)
XI:H—— / / dw"]
™ w—w'’
L Vi(w'w)p(e”) f(w" w)
—_ / ( dw”. (14)
™ w—aw"
As a first approximation, one may take
J(@' @)=V () V" ww). (15)

1 H. P. Noyes, Phys. Rev. Letters 15, 538 (1965).
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This leads to approximately the same results as those
from the N/D method. However, this approximation
has the serious shortcoming that the M is not a sym-
metric matrix, reminiscent of the similar difficulty
arising in the determinantal approximation for the
two-channel ND—! solution.!? Therefore, we use an
alternative approximation, a generalization of Pagels’s
approximation to the two-channel problem. The
analysis is standard®® and reduces to writing in (14)

p1(w)=C1d(w—w1), (16)
p2(w) = Cad(w—ws),

where C; and w; are constants. Their values are ob-
tained by fitting

A 0i w”)dw” C,‘
/ P& _ )
W't wita
for different values of a. For A~9u we have
~we~06.7
w1~ w2 06.7u, (18)

C1~1600, Cy=~11.

There is, however, a difficulty in evaluating the residues
in (13) arising from the pole in ¥ at w=0 owing to the
nucleon exchange. We can avoid this difficulty by
shifting the mass of the exchanged nucleon to, say,
the mass of the N*. This modification is not serious
since the forces due to the nucleon exchange are not
important for the formation of the nucleon. Alterna-
tively, one may interpret this as implying the superi-
ority of the analytic ND—! method for solving the
nucleon problem. Anyway, with this modification we
can solve Egs. (13) and (14). The bootstrap solutions
for these equations are

A~%, yx1~045,
A1%4:M, YR1= —0035,

These numbers are in close agreement with the results
of the ND~! method, thus giving us confidence that
out solutions are essentially correct.

From the results, it is seen that in the bootstrap
framework, the nucleon is primarily coupled to the
N channel, whereas the Roper resonance is coupled
mainly to the 7wV state. The situation is similar to the
w-¢ system where ¢ is coupled mainly to the KK
system and w to the pr system.

~1.2
YN2 ) (19)
and yge=2.6.

2 F, Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).
13 See, for example, Ref. 2.



