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The Nucleon and the Roper Resonance
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A coupled two-channel bootstrap calculation is performed for the static system of ~E and mmE states in
the positive-parity I=J=$ state. For the 7r~N state, we use an analysis of Ball et a/. which reduces the
three-particle system to a two-particle system with a modi6ed phase space. The calculations are made using
the Eja method and the static Bethe-Salpeter equation. The results are in reasonable agreement with the
experimental positions and partial widths, and imply that the Roper resonance is primarily a +AN resonance.

for the output nucleon. The calculations are first made
in the E/D framework and then the static 3ethe-
Salpeter equation is solved using Pagels's approxi-
mation. Both the calculations yield more or less the
same result that the bootstrap parameters for the masses
and coupling constants agree with the experimental
numbers quite well, The value of the coupling of the
Roper resonance to the xE comes out somewhat smaller
than the experimental value, but is not unreasonable
considering the approximations involved. The bootstrap
values are such that the Roper resonance comes out at
about 1500 MeV with a partial decay width of —',m
for decay into md% but a considerably smaller decay
width for decay into ~X, and the nucleon coupling to
the mE agrees very well with the experimental number,
while its "coupling" to the scalar xm system is about
two times smaller than the corresponding Roper-
resonance coupling. The smallness of this coupling
suggests a justihcation for the success of the current-
algebra calculations~ of the m-E scattering lengths.

The model which we use is similar to the one which
Ball, Shaw, and Wong~ use in their analysis of the E'lI
mN partial-wave amplitude. Their analysis consists of
a two-channel ED ' calculation, with the two channels
being the xS and the 0X systems; 0 is taken to be an
5-wave resonance with a mass of 3.5m . Our emphasis,
however, is on the bootstrap aspect of the problem, that
the forces due to the E*, S, and Roper-resonance ex-
changes produce the same particles in the direct
channel, whereas the Ball-Shaw-Wong analysis uses a
one-pole parametrization in terms of four parameters
to reproduce the general experimental features of the
E'» xÃ partial wave. Furthermore, our analysis in
terms of the xm scattering-length approximation and
the formalism of Ball, Frazer, and Nauenberg' is more
general than the essentially single-particle 0. approach
of Ball, Shaw, and Kong, ~ especially in view of the
highly dubious nature of the existence of the 0-

resonance.
The two-channel analyses do provide a bootstrap

basis for the nucleon and the Roper resonance, with the
nucleon being a bound state of xlV and the Roper
resonance being a resonance of primarily the m.xlV
state.

I. INTRODUCTION

~HE static model has been fairly successful in
describing the low-energy I'-wave mE scattering.

The model was used by Chew' to suggest that in m-E

scattering, the E exchange gives rise to forces which are
strong enough to produce the E* resonance, while the
forces due to E* exchange can produce an X bound
state. The calculations' with the static Bethe-Salpeter
equation have since yielded results which essentially
agree with those of Chew, who used the static X/D
model with linearized D function.

This situation is, however, disturbed by the presence
of the Roger resonance' at 1470 MeV and with a total
width of 210 MeV. This resonance has the same
quantum numbers as the nucleon except for its position
and width, and it is very difGcult indeed to Gnd forces
which can produce two nearby zeros in the D function
for a single-channel calculation. Furthermore, the
Roper resonance decays to a significant extent into
~mX, the partial width being about &m in spite of the
small phase space for the ~m.X channel. The situation
therefore seems to demand a two-channel calculation
involving E-wave m.F and xwX states in the I=J=~
channel.

ln this paper, we present a two-channel xE and mxX
static calculation in the positive-parity I=J=-, state.
On account of the small phase space for the xmE state
and the low-energy nature of our computations, it is
reasonable to assume that the xm. are in the 5-wave
state. Furthermore, unless there is a low-energy 5-wave
mm resonance, we wiQ be justihed in making a scattering-
length approximation for the xw interaction. For the
treatment of the three-particle system md%, we use the
unstable "particle" analysis given by Ball et a/. ,

' which
allows us to treat the m.x state as a single-particle state
but with a weighted phase space. The input static
forces in this simplified two-channel system are due to
exchanges of the nucleon, the Roper resonance, and the
N~. The cutofF is axed so as to give the correct position

' G. F. Chew, Phys. Rev. Letters 9, 233 (1962).' S.N. Biswas and L. A. P. Bald,zs, Phys. Rev. 156, 1511 (1967).
A. H. Rosenfeld et al., University of California Radiation

Laboratory Report No. UCRL-8030, 1967 (unpublished).
4 This would be consistent with the S-wave resonance at higher

energies, say, the S meson at 800 MeV.
~ J. S. Sall, W. R. Frazer, and M. Nauenberg, Phys. Rev.

478 (1962).
128, 6 Y. Tomozawa, Nuovo Cimento 46A, 707 (1966).

7 J.S.Ball, G. Shaw, and D. Mong, Phys. Rev. 155, 1725 (1967).
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Q. COUPLED-CHANNEL N/D PROBLEM

I,et 7» denote the I=J=-,' positive-parity amplitude
for m.+N ~ a.+N, Tq2 for m+N~ m+~+N, Tg& for
vr+z+N~ 7r+N, and T22 for 7/+n+N. ~ m.+7r+N.
I'or the energies in which we will be interested, it will
be a good approximation to assume that the mm in the
x7fiV channel are in an 5-wave state. For the treatment
of this x~E state, we use the analysis of Ball et al. ,

'"

for which one first writes

Tgg=3EI»,

Tgg ——Mg2f(/),

T22 ——M22f(/) f(t'),

e ~0 sin60
f (~) ~1/2

(~ 4+2)1/2
(2)

with Sp being the 5-wave I=0, ~m phase shift, t is the
invariant square of the energy and momentum of the
arm- system, and p, is the pion mass. The 3f~~ and %22
thus defined are free from the singularities due to the
xm interaction. Furthermore, the t dependence of M;;
will be ignored. The T;; are so normalized that the
unitarity condition reads

ImMg =3f;g*pI,M/,;, (3)

p2=
Ct/(a& —2p)

(Gl' —t)'/2j f(/, ') j' /E), (4,)

C being a constant which is so dehned8 as to give
p2= (aP—m')'" for the narrow-widt:h approximation
of an 5-wave m~ resonance of mass m.

It is easy to solve (3) in the framework of the N/D
method, for which one writes

M =ED-i,

where E and D are 2X2 matrices, E has only left-hand
singularities, and D has only right-hand singularities.
The unitarized solution to 3f is then given in terms of
X and D:

1 Im/lira(„. )D(~1)
N(co) =— d(u',

where the discontinuity is due to the singularities in
the total energy variable, and for the static model

p
—(~2 ~2)3/2

diagonal matrix with diagonal elements pi and p2, an&i

A. is a cuto6.
We solve the set of equations (6) with the input

forces coming from the exchanges of the E, the E*,
and the Roper resonance. The static expressions for
M;;~ are

~ QNl ~ 7B1 16 QN*l
M'gP(cu) =— +— +—

9 co 9 co+Ay 9 (u+Ag

7NQ'N2 7B1782
M)2s(&a) =/M'2p(~) = +

a& &v+

'YN2 782
M2p(u) = +--

N 4)+Dr

where the scattering length u is taken9 to be
j aj =1.2

in units of the pion mass. Our results will be independent
of the sign of the scattering length. The cutoff A is so
determined as to give a zero in the determinant of
D(ar) at +=0, corresponding to the nucleon pole. We
then Gnd that the experimental numbers for the various
coupling constants and masses in (7) reproduce them-
selves as solutions of (6), i.e., the bootstrap parameters
are close to the experimental numbers. The approxi-
mate bootstrap parameters are

A = 12P, yNg=0. 5, QN2 ~ 4)

yg) =—0.05, and yg2 =2.5,
(9)

where we have taken C= 1/25, compared to the experi-
mental numbers

jvmj =05, &/. =3 g,

j~~ j=0.14, and j~~ j=2.5,
(10)

where yN~ is the coupling of the nucleon to the mA

channel, y~2 is the "coupling" to the (n~)cV channel
with the mm being in an 5-wave state, and similar
de6nitions for the Roper resonance and the X~; the
d„are the mass diGerences

6y
=mg —tÃN and 62 = mN+ —mN .

Equations (6) can now be solved using (7). For the
evaluation of phase space p2 we use scattering-length
parametrization for f(t):

1 ~ p(s)')N(co')
D(~) =1— eke',

(6) corresponding to Roper-resonance partial widths of
2m each for decays" into the 7rN and (~z.)N channels.

where the superscript 8 stands for the projected Born
term, / stands for integration along the left, p is the

Taking a difterent value for C only redefines the matrix
elements 3f», 3II2&, and M» by constant factors.

' Our calculations are independent of the sign of a. The mag-
nitude we have taken is consistent with the experiments: L. W.
Jones et al. , Phys. Letters 2I, S90 (1966); W. D. Walker et al. ,
Phys. Rev. Letters 18, 630 (f967); E. Malamud and P. Schlein,
ibid. 19, 1056 (1967).' The comparison with the experimental widths has the dif-
ficulty due to the correction factors, which we take to be the same
as for the N*.
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The mass of the Roper resonance comes out somewhat
larger and the Roper-resonance coupling to mS is
considerably smaller than the respective experimental
values, but still the over-all agreement is reasonable
considering all the approximations that go into the
calculation. We have no direct experimental infor-
mation on yN~, but the fact that the 7fE scattering
lengths are correctly given by ignoring the I=O state
in the mw —+ EN channel suggests that y~2 is probably
small and this conclusion is supported by our result.

III. STATIC BETHE-SALPETER EQUATION

In order to confirm the results of the N/D calcu-
lation, we will redo the calculations within the frame-
work of a two-channel static Bethe-Salpeter equation.
With the M;; defined as before, the equation reads

M(M', co) = V(a', co)

where V,, (co',u&") are the off-shell potentials which are
the same as the Born projections in (7) except that cu

is replaced by co'+a&"—co, with co being the on-shell
energy. To facilitate the solution of (11),we generalize
the Noyes" procedure and write

M(~', (v) = f(a&',a)M((v, a&), (12)

where f(M', co) is a 2+2 matrix and f(co,a&) is the unit
matrix. Then one can write

GO
—(d

11

4
p (~ll)~ll

+& &l+&

for diGerent values of 0.. For A=9p, we have

COi 072~ 6.7p )

Cg = $600, C2= 1i.

(17)

There is, however, a difhculty in evaluating the residues
in. (13) arising from the pole in. V at ca =0 owing to the
nucleon exchange. We can avoid this diKculty by
shifting the mass of the exchanged nucleon to, say,
the mass of the E*. This modification is not serious
since the forces due to the nucleon exchange are not
important for the formation of the nucleon. Alterna-
tively, one may interpret this as implying the superi-
oritv of the analytic ED—' method. for solving the
nucleon problem. Anyway, with this modification we
can solve Eqs. (13) and (14). The bootstrap solutions
for these equations are

This leads to approximately the same results as those
from the N/D method. However, this approximation
has the serious shortcoming that the M is not a sym-
metric matrix, reminiscent of the similar difhculty
arising in the determinantal approximation for the
two-channel 1VD ' solution. " Therefore, we use an
alternative approximation, a generalization of Pagels's
approximation to the two-channel problem. The
analysis is standard" and reduces to writing in (14)

pi(~) =C~&(~—~~)

p2(a)) =C25(a) —cu2),

where C; and co; are constants. Their values are ob-
tained by 6tting

and
XV(~p)) (13) A=9p, , ygg=0. 45, 7y2=1.2,

(19)
~g=4p, ) yRg= —0.035) and yg2=2. 6.

1
X

As a first approximation, one may take

f(co'p&) = V(ar', a&) V '(s),co) .

"H. P. Noyes, Phys. Rev. Letters 15, 538 {1965).

These numbers are in close agreement with the results
of the ED ' method, thus giving us confidence that
out solutions are essentially correct.

From the results, it is seen that in the bootstrap
framework, the nucleon is primarily coupled to the
mN channel, whereas the Roper resonance is coupled
mainly to the ~xX state. The situation is similar to the
~-P system where @ is coupled mainly to the EK
system and or to the px system.

(15)
'2 F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 {1962).
"See, for example, Ref. 2.


