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The quark model for meson-nucleon scattering is treated by means of Glauber theory, using Reggeized
quark scattering amplitudes. The multiple-scattering effects are calculated, and numerical estimates of their
magnitudes are obtained by fitting the resulting forms to the available data. We find that the correction
terms obtained in this way are generally subtractive and amount to 159, of the total cross sections. They
disappear at a rate intimately connected with the shrinking of the diffraction peak ; when the latter phenome-
non begins to occur, our model predicts that total cross sections will show an increase of several millibarns.
The multiple-scattering terms are essentially Regge-cut effects, and therefore may be helpful in explaining the
nonvanishing polarization observed in mp charge exchange. Using a simple model of this type, we obtain
reasonably good fits to all types of pion-nucleon scattering data including both elastic and charge-exchange
polarizations as well as total and differential cross sections.

I. INTRODUCTION

HE additive quark model, despite the naiveté of

its physical content, has met with considerable
success in predicting relations between cross sections
observed for various scattering processes. Since the
additivity assumption embodies the impulse approxi-
mation, it has been suggested in several recent papers'~®
that corrections to this model may be calculable by
means of the Glauber® formalism for scattering of
composite particles.

The effects of these “multiple-scattering” corrections
can be observed in three basic ways. First, since they
are nonlinear and therefore nonadditive, the simple
relations obtained from additivity will be replaced by
more complicated nonlinear ones. Such equations have
been obtained by Franco,! who derives nonlinear rela-
tions among total cross sections involving mesons,
protons, and antiprotons, and by the author, in a form
supplying correction terms to the antisymmetric sum
rule. Secondly, in the framework of multiple diffraction,
the differential cross section will possess a characteristic
“dip” structure resulting from the interference of the
different orders of scattering. As Harrington and
Pagnamenta? have emphasized, this mechanism may
account for the angular behavior of proton-proton
scattering. Finally, reactions forbidden by the additivity
principle may be allowed through double-scattering
terms; for example, in a previous paper® we have shown
that the data on double charge or hypercharge exchange
can be so interpreted. It is possible in that case to study
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the double-scattering amplitudes directly, rather than
through interference effects with the leading terms.

In this paper we shall attempt a quantitative study
of multiple-scattering effects in the quark model of
meson-nucleon interactions. The interactions of the
quarks are assumed to be described by Regge theory, in
order to consider the energy variation of the resulting
amplitudes. The multiple-scattering terms can be evalu-
ated exactly by use of an exponential form of the Regge
amplitude, and correspond in the well-known way to
Regge cuts. In Sec. IT we describe the details of our
model, and in Sec. IIT we use it to estimate the magni-
tudes of these terms by fitting the measured meson-
nucleon total cross sections. We find that the contri-
butions of double scattering are subtractive and of
magnitude about 159, of the observed cross sections.

The fact that the model provides a natural mecha-
nism for generating a term with Regge-cut behavior
suggests the consideration of the pion-nucleon charge-
exchange polarization. We therefore extend the calcu-
lations to include spin in Sec. IV, and use the resulting
forms to fit a large amount of data on pion-nucleon
interactions, including polarizations, in Sec. V.

II. MODEL

Our calculations are based upon the formalism de-
veloped by Glauber® for the consideration of scattering
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by a composite particle. Excellent reviews of the deri-
vation and use of this theory already exist, so we shall
not give a lengthy description of it here; the essential
features can be shown by considering the simple process
pictured in Fig. 1. An incident particle of momentum k
is scattered from a bound state of two particles (for
example, a deuteron). The form factor of the bound

state is denoted by
550 = [ &1 4 ©etvate),

where ¥5(r) is the bound-state wave function in the
c.m. frame of the two particles, and the scattering of the
incident particle by the free state of either of the con-
stituent particles is described by a scattering amplitude
fn(k,q), q being the momentum transfer. For the mo-
ment we neglect spin and isospin; then according to the
Glauber theory, the scattering process shown is de-
scribed by an amplitude

Io(k,q) = fn(k,@[Sp(3q)+Sp(—3q)]
+§7—:‘; /d2q’SD(q’)fN(k, %Q-i*q')fN(k, %q_q/) ) (2.1)

This equation, which forms the basis for the calculation
which we shall present, is familiar in lower-energy
nuclear physics, where it has been used frequently with
considerable success.

In order to evaluate simply the essential results of the
Glauber model embodied in Eq. (2.1), we shall now
make two simplifying assumptions. First, we assume
that the scattering amplitudes fx(k,q) are effectively
exponential in the square of the momentum transfer,

Iu(l,q)=fre .

This form is generally correct in most simple scattering
processes at sufficiently high energies and small mo-
mentum transfer. Secondly, we shall assume that the
form factor Sp(q) is effectively unity in the region of
interest. This assumption is strictly tenable only in the
extreme forward direction. In fact, in the case of
nucleon-deuteron scattering it is known that the vari-
ation of the deuteron form factor is responsible for a
substantial part of the angular variations of the dif-
ferential cross section, even in the diffraction region.
Our consideration will not apply to the deuteron, how-
ever; we shall instead decompose either nucleons or
mesons into their constituent quarks. The present
understanding of the form factors of hadrons on the
basis of the quark model is far from complete, and the
experimental work on meson form factors is often
meager. It is true, however, that the form factors of the
hadrons seem to decrease less rapidly than that of the
deuteron, corresponding to the expectation that the
quarks forming the hadrons are tightly bound. Further-
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more, it often seems in nuclear scattering that the results
are rather insensitive to the form factor. This result
is not surprising when we consider that if we make the
exponential approximation in the double-scattering
term, the main contribution to the scattering amplitude
must come from momentum transfers for which both
[39+q'| and |3q—q’| are small, i.e., in which |q’| is
small. This insensitivity is particularly significant in our
applications to the quark model because the single-
scattering amplitudes, which would involve free quarks,
are not known. As an example we consider the possi-
bility that the form factor is also exponential in ¢2. A
trivial calculation shows that the difference between the
definitions
Ik =fe?, Sp(3q)=1
and
Sl = fe a0, Sp(hq) =¢-betn

comes only from the double-scattering terms, and that
these terms are in the ratio

[v/(v+38)JeP <15,

Since we expect that <y if the quarks are tightly
bound, we see that for reasonably small mementum
transfers the difference should be quite small. In all the
applications we shall consider only small momentum
transfers are involved, so it is reasonable to hope that
the effects of this assumption will not be severe.

Making these two assumptions, then, we find from
(2.1) that

Fo(kq) =2fxe 7P+ (ifn*/ 2ky)e 2. (2.2)
This relation serves as prototype for all the multiple-
scattering processes we shall consider. It is easily
extended to more general circumstances; for example,
spin and isospin can be included quite naturally, as we
shall presently show. If the scattering in question is
that of a k-particle composite system by an /-particle
one, a result analogous to (2.1) is similarly obtained, and
contains (kl)!/nl(kl—n)! terms describing #n-tuple
scattering.? The possibility of two different types of
scattering process being involved in the multiple scat-
tering (which is the case in the deuteron, of course) is
also easily considered. The double-scattering integral
can be performed even if the slopes of two diffraction
peaks are different, since

/d2pe~n(4}q+p)”—w(%q—p)2

2
= exp(
Y1+

Y1Y2

qz). (2.3)

Y1+72

This result can, in fact, be extended to z-tuple scatter-
ing, since it is quickly proved by induction that the
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relevant form is

[ apia=3: 00 expE v

=LCry=Y/ A 7)(E %] exp[—(lzl e lgr]. (2.4)

In order to consider the energy variation and the
phase of the multiple-scattering terms, we now assume
that the amplitude fy(k,q) corresponds to a Regge
pole. Since an integration over momentum transfer is
involved in the multiple-scattering terms, however, it
is necessary to employ a simplified version of the Regge-
pole amplitude. The traditional form is

1 ,re—i‘lra(t)
F(s,)=[2a()+1]8 (t)—,‘—()—s"(” )

sinma(t

2.5)

where B(¢) is the residue function, «(f) the pole’s tra-
jectory, 7 the signature, and s and ¢ have their usual
meanings. The extraneous factors in (2.5) clearly pro-
hibit the exact integration over ¢ of this amplitude in
any but pathological cases. We, therefore, adopt a much
simpler form, which contains nonetheless all of the
essential features of (2.5), by writing

Frt(s,t)=—cy(s/is9)**®, for r=-+1 (2.6a)
Fr(s,t) =ic_(s/isg)*=®, for r=—1. (2.6b)

It is simply a result of analyticity plus crossing sym-
metry that the dependence on s/7 in Egs. (2.6) correctly
reproduces the phase of the Regge amplitude given, in
(2.5), by the signature factor 147e~2®.7 The con-
stants ¢y and so are chosen so that they reproduce the
¢t dependence of the residue function; that is, we assume
that it is possible to write approximately, for =1,

cosima(?)
22a()+11BA)————=—ci(s0)~+®, (2.7a)
sinma(f)
and for 7= —1, similarly,
sindra(f)
2[2a()+118(H)————=—c_(s0)~=®. (2.7b)
sinma(f)

The exponential / dependence in the residue function
often invoked in order to fit the experimental diffraction
peaks is thus pictured as representing an incorrect
normalization of the energy. A trivial calculation shows
that the value of so necessary for compatibility with
typical high-energy data is between 0.001 and 0.1 GeV?,
depending on the slope of the Regge trajectory.

As a simple example in which the essential results
following from the definitions (2.6) can easily be seen, we
consider the exchange of a single Regge pole. To be
definite we assume that the Regge pole involved is the

7R. J. Eden, Phys. Letters 19, 695 (1965).
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Pomeranchuk, with positive signature and «(0) =1. The
required exponential dependence on ¢? is obtained by
writing

a(g?) =1—p¢%. (2.8)

The scattering amplitude can now be written by making
in (2.2) the substitution

ng—w* =C(s /iso)l—-ﬂq’ ,

: fN= —C(S/iso),
yielding

180

(2.9)
that is,
v=81In(s/iso),

iC? 5\ 218
+——-——<——> . (2.10)
2kB In(s/si0) \iso

We notice at once that the double-scattering term
has the logarithmic s dependence which typifies a Regge
cut. It is, in fact, a well-known general result that the
iteration of a Regge-pole term, whether as a multiple-
scattering integral or in some other guise, leads to the
appearance of terms having this behavior. This point
was made as long ago as 1962 by Amati, Stanghellini,
and Fubini® in considering the multiperipheral model
of high-energy scattering. It was subsequently shown in
a treatment of Feynman-diagram singularity structure
by Mandelstam,® however, that the cut they found was
canceled by other terms, and that only nonplanar
diagrams could lead to Regge cuts. Such diagrams
appear only if the structure of both particles involved
in the scattering process is considered. This result is,
therefore, difficult to reconcile with the Glauber for-
malism, which produces a cut regardless of the structure
of the noncomposite particle. The contrast, even in
language, between the physical assumptions of Glauber
theory and the ponderous mathematical apparatus of
diagrammatic techniques is a formidable one, and the
resolution of the problems involved is far from apparent.
The viewpoint we shall adopt is a phenomenological
one; we regard the Glauber formalism as a tool supply-
ing an eminently reasonable parametrization of the
scattering amplitude. As such, it can be used indepen-
dently of whether the actual form of the cut term is
ultimately vindicated or not.

It is sufficient for our examination of the essential
features of the amplitude (2.10) to study its asymptotic
form, using the high-energy approximation s=2Mk.

Then (2.10) becomes
c:M s\ 18
t— <—> .
Bso In(s/is0) \iso

(2.11)

8D, Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento
26, 896 (1962).

%S, Mandelstam, Nuovo Cimento 30, 1127 (1963); 30, 1148
(1963). We are grateful to Dr, I, Drummond for an interesting dis-
cussion of this problem,

S 1—842
fR<s,q2>+—2c<,—>
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FiG. 2. Contributions of single and double scattering and of the
interference between them to the differential cross section.

We examine first the total cross section, which is ob-
tained by using the optical theorem. Assuming for the
moment; that s3>so, so that In(s/sis) is essentially real,
we have

or(s)=(4n/k) Imfz(S,0)

MC 1 MC\?
w2 )t ) |
So B In(s/so)\ so

The multiple-scattering contribution is immediately
seen to be subtractive, implying that the total cross
section increases to a constant value. The opposite
situation is observed in experimental hadronic total
cross sections. If several trajectories are involved,
however, the increasing behavior may be hidden. More
simply, a positive double-scattering contribution can
result from a pole with negative signature because of the
extra ¢ in the definition (2.6b), or from the inclusion of
double isospin-flip terms because of the Clebsch-
Gordan coefficients. In any case, however, the multiple-
scattering contribution vanishes with increasing energy
at least logarithmically because of the shrinkage of the
diffraction peak. We also note in (2.12) that the mass
M and the constant C appear only in the combination

(2.12)
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MC/so, so that this result does not depend directly on
the choice of M, the mass of the component particle.
Except for the term BIn(s/so), which represents the
slope of the single-scattering diffraction peak, the result
is also insensitive to sq.

We look next at the differential cross section. For the
large-energy, small-momentum-transfer limit being
considered, we obtain

do 1r] P
ReTUL

MO\ / s\~ cosknBq2 /MCY / s \~iP2*
So So ln(S/So) So So

+m<ﬂf—j>z<i)_ﬁq]. (2.13)

Once again M and C appear only as MC/so, and 8 and
so appear always as related to the single-scattering dif-
fraction peak slope. Of particular interest in (2.13) is
the energy dependence of the three terms. We have seen
already in the total cross section that for ¢?=0 the single
scattering is dominant at s —oc. For nonzero values of
g% however, the opposite result is obtained. The ratio
of the double-scattering term to the single is propor-
tional to (s/s0)?e"/[In(s/s0) 1%, and, therefore, for suffi-
ciently high energies the former dominates. The behavior
implied by (2.13) is pictured in Fig. 2; at very small ¢?
we see mainly the single-scattering term. For larger ¢?
the interference between single and double scattering
becomes more important and may cause dips in the
differential cross section. Finally, as sufficiently large
values of ¢? the double-scattering term becomes
dominant. A convenient measure of how rapidly the
limiting behavior is approached is obtained by finding
the value of ¢% for which the contributions of single and
double scattering are equally important. Setting

() w6 e

we find

q02=2|:ln<ln—:;>—ln<jz—z>] / (/3 1ni>, (2.15)

which has only the slightest decreasing behavior with
increasing s. The structure of the differential cross
section therefore changes very slowly with increasing
energy, but ultimately arrives at a limit in which the
contribution of the single scattering term is visible only
within an arbitrarily small range of momentum transfer.

III. APPLICATION TO MESON-NUCLEON
TOTAL CROSS SECTIONS

In order to estimate more accurately the magnitudes
of these effects, we have applied this Regge formalism to



182 QUARK MODEL,

the parametrization of the meson-nucleon scattering
amplitudes. An immediate problem in such an appli-
cation is choosing which interaction to Reggeize. The
most basic level of elementarity indicates that the
quark-quark amplitudes should be chosen, but it is
also conceivable that quark-nucleon or quark-meson
amplitudes might be more appropriate.

We have attempted to fit the six meson-nucleon total
cross sections using Regge amplitudes both for the
quark-quark interaction and for the quark-nucleon;
consideration of the quark-meson system is not perti-
nent here, since it does not yield any relations among the
six amplitudes FT+P(S:q2)’ FT-P(s:q2)7 FK+P(Ssq2):
FK+n(s’qz), FK'P(S;qz)a and FK—”(S;q2)~

The details of our procedure are more easily written
down in the case of Reggeized quark-nucleon inter-
actions. Here the meson-nucleon scattering amplitudes
are given by a sum of two terms

Fun(5,9>) =Fun'(s,q) +Fun’(s,¢%),

representing, respectively, single and double scattering
of the nucleon N by the quark-antiquark pair. Each of
these is given in terms of the six basic quark-nucleon
interactions, which we denote by feu»(5,¢%), faun(s,9?),
f)\z’(s>q2)’ f@?(s7qz)’ fﬁp(s’qg)7 and pr(S,qz) (We assume,
of course, that isosymmetry is maintained on the quark-
nucleon level).

For the nonstrange quarks the Reggeization of these
amplitudes is equivalent to that of the nucleon-nucleon
system, which involves basically four poles with dif-
ferent sets of quantum numbers. The four poles we
denote as usual by P, p, w, and R; their amplitudes are
given in the form (2.6) by

3.1)

Fo(s,g?) = —P(s/iso)*>(® (3.2a)
F ,(5,q%) =1p(s/is0) % (™, (3.2b)
Fo(s,q?) = —iw(s/ise) @ (3.2¢)
Fr(s,q%) =R(s/iso)*B ™., (3.2d)

The trajectories ap(g?), a,(¢?), and ar(g?) are assumed
to be linear in g2,

ai(g?) =a;+B:g?, 3.3)
for =P, p, w, R, and the residue constants P, p, w,

and R are real. In terms of these Regge amplitudes we
have

Jop=Fp—F,+F,—Fg, (3.4a)
fap=Fp—F,—F,+Fg, (3.4b)
Jeo=Fp+F,—F,—Fg, (3.4¢)
Fgp=Fp+F,+F,+Fx. (3.4d)

For the scattering of the isosinglet strange quark the
p and R poles, having I =1, cannot contribute; otherwise
the situation is similar. To introduce independent
amplitudes for the contributions of P and w to frp and
fxp, however, would lead to an undetermined system of

MULTIPLE SCATTERING, REGGE
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equations. The reason is that the six amplitudes we are
considering have been shown to be related, in the pres-
ence of multiple scattering, by an equation similar to
the weak Johnson-Treiman relation. Consequently at
any fixed energy only five independent quantities, i.e.,
five residue constants, can be determined from the six
total cross sections. We have already introduced four
residue constants in the amplitudes (3.2); to include
both P and w in fy, and fx, would lead to a total of six
independent parameters at each energy, and therefore
no unique solution for the residues would be possible.
A consistent assumption which has been invoked several

- times in earlier work on the quark model® is that the

Pomeranchuk limit has been reached for the strange-
quark interactions. It should be noted that the effects
of this assumption on our model can be observed only
as small changes in the energy variations of the double-
scattering terms, and therefore are inconsequential.
We therefore neglect the contribution of w to fip and
fxp, sO that the scattering of quark and antiquark is
identical:

(5,92 = fxn(s,92) =F P'(5,4%)

= —Cp(s/isg)2P @ . (3.4e)

In terms of these Regge poles the contributions of
single scattering to the six meson-nucleon amplitudes
are given by

Pyl =2F p2F, (3.52)
Fo-pl=2F p—2F, (3.5b)
Fgtp!=Fp—F,+F,—Fp+Fp, (3.5¢)
Fg+)'!=Fp—F,—F,+Fp+Fp, (3.5d)
Fg-p'=Fp+F,—F,—Fp+Fp, (3.5¢)
Fg-*=Fp+F,+F,+Fr+Fp . (3.5f)

The double-scattering integrals can be performed as in
Sec. II. We have noted there that the resulting terms
depend upon both the slopes of the Regge trajectories
and the normalization energy so, but only in that the
slope of the diffraction peak must be correctly given.
Since we shall consider only total cross sections here,
it is probably sufficient to take all four slopes the same,
Bp=PB,=B,=Br=p. Then the double-scattering ampli-
tudes assume a much simpler- form, especially at
¢*=0; if we write

£=[4kB In(s/iso) T, (3.6)
then
FF+P2(S70) = Ef@?(syo)fg)—lﬁ(syo) ) (373')
Fr=p%(5,0) = £ fonn(5,0) f35(5,0) , (3.7b)
14‘K+1?2(s70) = Ef(?ﬁ(syo)fXP(s)O) ) (3'7C)
Fr**(5,0) = £ fan(s5,0) f50(5,0) 3.7d)

(1;"6F)or example, H. J. Lipkin, Phys. Rev. Letters 16, 1015
6).
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Tapre I. Summary of the results obtained in five different fits to the total cross-section data of Galbraith
et al. (Ref. 11), using various forms of the Reggeized quark model.

Fit A C D E
Interaction Reggeized Quark-nucleon Quark-quark
x? 65.5 59.6 190 90.1 65.2
,(wN) (mb) 19.6 =+ 0.38 0 272 +0.8 244 0.1 0
7, (KN) (mb) 19.3 =+ 0.38 0 20.1 +13 18.7 0.1 0
ap (GeV™2) 1 0.9874 0.006 1 1 0.9354:0.001
apr (GeV2) e e cee 0.50720.009 .o
a, (GeV~?) 0.9724 0.001 0.9694 0.002 0.64440.061 0.7000.019 0.638=4 0.027
a, (GeV™2) 0.336+ 0.011 0.2874 0.027 0.53240.035 0.4834-0.009 0.1294 0.010
ak (GeV™2) 0.2254 0.012 0.276% 0.029 0.5294-0.138 0.4234-0.008 0.8034 0.043
P (mb MeV) 0.8314 0.016 0.990+ 0.081 0.3854-0.001 0.3464-0.001 0.704+ 0.007
Cp (mb MeV) 0.811+ 0.016 0.8694 0.043 0.18240.002 0.1834-0.001 0.331% 0.004
p (mb MeV) —2.45 £ 0.06 —2.31 £ 0.14 —2.37 £0.95 —1.80 +0.20 —2.69 = 047
» (mb MeV) —99.8 &+ 9.2 —146  +32 —0.75340.194 —10.5 =£0.3 —199  *16
R (mb MeV) 129 +18 61.6 =+21.0 3.90 +5.62 104 0.9 0.244+ 0.101
P’ (mb MeV) e s cee 5.22 40.48 v
Fr=52(5,0) =Ef\p(s5,0) f5(s,0) (3.7¢) in the quark-quark system. Working out the resulting
B _ _ forms is tedious but straightforward, and we shall omit
Fx=n(5,0) = £ha(50) fii(5,0), @7  the equations obtained for the sake of brevity. In form

where the quark-nucleon amplitudes are given by Egs.
(3.4).

If we wish to consider the Reggeization of the quark-
quark amplitudes instead, the procedure will be similar;
for parallel trajectories the results (3.7) will still hold,
but the quark-nucleon amplitudes will contain terms
corresponding to single, double, and triple scattering

k, GeV/e

Fic. 3. Comparison with the experimental data of the fit ob-
tained using the P, w, p, and R poles to parametrize the quark-
nucleon amplitude. The K*p data have been displaced by 1 mb
for clarity.

they are very similar to the above, except that there
are now terms corresponding to six orders of scattering
instead of two.

Using these basic parametrizations and the MINROS
function minimization program, we have obtained least-
X% fits to the total cross-section data of Galbraith
et al.}! Our choice of 8 and sy in all of these fits is 3=0.5
GeV™2 50=0.002 GeV? corresponding to a diffraction
peak slope of about 9 GeV—2 The results of the five

different models are summarized in Table I.
28 For fits A and B, the quark-nucleon interaction was
Reggeized using four poles, as described above. The
o6 | Pomeranchuk trajectory was fixed at ap(0)=1 in fit A,
°f
24 |
6L O (T*p)
o 22}
€
5 4t W
20 )
orlK™N) _—
L Oy (K*n)
| T
8 I % X X f Y
1 L L
c o} 0, (K*p)
6 x——* x x T X OpK'n) -
Or (Krp)-l TS
oL /______p__ﬂ_,———————-———
1 1 1 1 1 1 1 1 ) L L { ( 1
6 8 10 12 14 16 18 6 8 10 12 14 16 18
k, GeVA :

F16. 4. Double-scattering contributions to the meson-nucleon
total cross sections in the fit shown in Fig. 3.

11'W, Galbraith ef al., Phys. Rev. 138, B913 (1965).
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5
Double Scattering T (MN)
28 -
4t -G (t"p)
\
26l O, mb I -G (t*p)
3
-0 (K~p)
24l 2 -g,Kn) T
-Gy (K'n)
_O'D (KfP)
a 22} '
€
o} T ) )
riple Scattering Opg(MN')
2ol (~Cpsllp)  3-CrelKTp)  5-OpgdK'n)
Gy KT) S T 2Ot 4oyt e k)
1
2
K* 34
18 > 7 M IGT( " X o0 | ; ~
1 1 T T I T T e 3 10 1z 216 18
\x‘ X ky GeV,
. X X . - . e /c
T (Kp)-1 FiG. 6. Double- and triple-scattering contributions to the meson-
nucleon total cross sections in the fit shown in Fig. S.
1 1 1 1 1 1 1
6 8 10 12 14 16 18

k, GeV/e

Fic. 5. Comparison with the experimental data of the fit ob-
tained using P, P’, w, p, and R poles to parametrize the quark-
quark amplitude. The K*p data have been displaced by 1 mb for
clarity.

yielding constant asymptotic total cross sections. The
inclusion of a second vacuum trajectory P’ in the usual
way did not improve this fit noticeably. An alternative
model in which the Pomeranchuk trajectory is a free
parameter'? produced a slight improvement, shown in
fit B. Since the best fit chooses ap<1, the total cross
sections vanish asymptotically in this model.

In both of these fits, the best value of the p trajectory
intercept is surprisingly high. The reason for this
result is that the double-scattering term corresponding
to double p exchange has the form

Tm{ilip(s/iso)* ]} = —p*(s/s0)** cosmap

which is positive for a,>% and quite important for «,
near 1. In that case it acts effectively as a “second
vacuum trajectory” contribution, thus explaining why
addition of a P’ was not helpful.

In order to show the general details of these fits we
present in Fig. 3 the results obtained with fit A. The
contributions of double scattering to the total cross
sections are shown in Fig. 4.

In the other three fits, the Regge exchange was as-
sumed to be in the quark-quark amplitude. A four-
pole model with ap(0) fixed at 1 to yield constant
asymptotic total cross sections leads to fit C. This model
is not capable of reproducing the decreasing behavior of
the pion-nucleon data, and the resulting poor fit is

12N, Cabibbo,A{T. J. J. Kokkedee, L. Horwitz, and Y. Neeman,
Nuovo Cimento 45A, 275 (1966).

manifested in the high X? value obtained. The addition
of a second vacuum trajectory P’ results in fit D, which
is substantially better than C; an even greater improve-
ment is obtained in fit E, where the P intercept was
allowed to vary. As in B, it chooses ap<1 for the best
fit, leading thereby to vanishing asymptotes.

The general shape of the results obtained in these
three fits can be seen in Fig. 5, where we show fit D.
The contributions of double and triple scattering are
shown in Fig. 6. The double-scattering terms are all
subtractive and amount to about 159, of the single
scattering; the triple scattering contributes a very small
positive cross section. The three higher orders of scat-
tering yield terms which are entirely negligible.

In all of these fits the phenomenological nature of the
model should be kept in mind. Our intention has been
to show that the quark model with multiple scattering
is capable of describing meson-nucleon total cross
sections, and to obtain an estimate of the magnitude
of the multiple-scattering effects. The approximations
that were necessary were not severe. Taking all of the
Regge trajectories to be parallel, for example, may be
inconsistent with the diffraction peak data; but the
magnitudes of the multiple scattering terms should
surely depend much more on the average behavior of
these slopes than on their interplay.

Our principal conclusion in this section, therefore,
is that a sizable .part of presently observed total cross
sections can be attributed to multiple-scattering effects
in the quark model. This result is obtained by Regge-
ization of either the quark-nucleon or the quark-meson
amplitude, and the same conclusion is reached regard-
less of whether the total cross section is asymptotically
constant or vanishing. :

If it is constant, however, our model predicts that, at
higher energies, an increase toward an asymptotic
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I'16. 7. Extension of the fit shown in Fig. 5 to superhigh energies.

value larger than those presently measured should be-
come apparent as the double-scattering terms diminish
in importance. This effect is present in all three fits
(A, C, and D) for which ap(0)=1. The rate at which
this asymptote is approached is determined by the
shrinkage of the diffraction peak, i.e., by the constant
so. The present nonshrinkage of the peaks leads to a
very small so, and thereby to a slow disappearance of
multiple-scattering effects. To illustrate this point we
show in Fig. 7 the extension of fit D up to £=10 000
GeV/c. More rapid shrinkage of the diffraction peak
would, of course, lead to the appearance of increasing
total cross sections at lower energies.

We expect that this property is a general one, and it
should not depend crucially upon the numerical details
of these fits. Similar conclusions have been reached by
Frautschi and Margolis'® on the basis of the Chou-
Yang model and Regge cuts; their model corresponds
to infinitely composite hadrons, however, and they
estimate asymptotic cross sections much larger than
those we find. If an increase in total cross sections
should be observed experimentally, it would thus
provide evidence for the composite nature of elementary
particles, but not the degree of compositeness.

IV. INCLUSION OF SPIN EFFECTS

It is well known by now that although Regge theory
is generally successful in describing a great many two-
body processes, it is unable to explain simply the non-
vanishing polarization observed in the reaction
7~p — w%. The nature of this charge-exchange process
is such that a single set of quantum numbers, corre-
sponding to the p pole, can be exchanged, but the polari-
zation due to the exchange of a single Regge pole van-

(1913685). C. Frautschi and B. Margolis, Nuovo Cimento 56A, 1155
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ishes. In the usual Regge framework there have been
attempts to explain the observed polarization of about
159, as resulting from the interference of the p with
direct-channel resonances,* with a second pole p’
having the same quantum numbers as the p,5 or with a
Regge-cut term.6

We have noted in the preceding sections that if the
single-scattering amplitude is written in Regge form,
then the multiple-scattering terms possess the s de-
pendence characteristic of a Regge cut. Our model
therefore provides a natural mechanism for the expla-
nation of the charge-exchange polarization. It is clear, of
course, that we cannot meaningfully analyze this effect
without considering simultaneously the entire body of
pion-nucleon elastic and charge-exchange phenomena in
a formalism complete with all spin and isospin compli-
cations. To that task we shall devote Sec. V.

Before becoming deeply involved with the detailed
calculations of the multiple-scattering effects which
result when spin and isospin are included, however, we
wish to show in a simpler model the essential features
which arise. We therefore return to the basic deuteron
model considered in Sec. II. The simplest technique for
the inclusion of spin in this model is to keep the com-
posite particle and its components spinless and assign
spin % to the incident particle. The Glauber model is
valid even in the presence of spin provided any possible
ordering ambiguities are resolved, which is accomplished
by taking the anticommutator. The expected general-
ization of (2.1) is then

Fo(q)=Fn(@)[Sp(G@)+So(—39)]
+Zvr% /d2q'.S'((l'){FN(%‘}—q’),FN(%q+q,)}+. (4.1)

Both Fp(q) and Fy(q) are now taken to be matrices
in the spin space of the system. A convenient form
giving Fy(q) in terms of scalar amplitudes is

Fy(q)=f(@)+2g(@kXq o,

where o is the spin operator for the incident particle.
In terms of this definition we find that

{Fx(39+4),Fn(39—q)}+=2[f(Ga+4) f(39—4")
+g(Ga+q)gGa—a)k* (3> —¢'H) ]
+kXq-o fGa+q)g(Ga—q)+/Ga—4)s(3a+4q")]
+2kXq o f(39+49)g(3a—q")
—fGa—q)gGat+q)]. (4.3)
We evaluate (4.1) now under the assumptions made

in Sec. II, namely, that the amplitudes are exponentials
in g2 and that the form factor S(q) is approximately

(4.2)

4 R. K. Logan and L. Sertorio, Phys. Rev. Letters 17, 835

(1966).

15 H, Hogaasen and A. Frisk, Phys. Letters 22, 91 (1966);
H. Hogaasen and W. Fischer, 4bid, 22, 516 (1966).

16 C, B. Chiu and J. Finkelstein, Nuovo Cimento 48A, 820

(1967).
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unity throughout the region in which there are impor-
tant contributions to the amplitudes. Specifically, we

write
f@=fye e, (4.42)
g(q) =gne 7. (4.4b)

We have taken the same slope v for both spin-flip and
spin-nonflip terms for the sake of simplicity; the results
are not crucially dependent upon this equality. The
integrations in the double-scattering term can be
performed, yielding

i 1
Fo(a)= 2fzve—w”+——[f~2+gN2k2<%q-‘ )]e_w
2ky 2y

1
+k><q-o(ZgNe—W”+———ngNe"*W*>. (4.5)
2ky

We relate this result to the Regge model used in
Sec. IIT in the obvious way. As before, we write for
the nonflip amplitude

) fne e =C(s/iso)8, (4.6)
- f=—Cls/is0), (4.72)
v =B In(s/is0) . (4.7b)

For the spin-flip amplitude we define a simplified
version of the usual Regge formula

1+Te~i1ra(t)
Sa(t)-—l

G(s,t) =aRs(?)

(4.8)

sinmwa(f)
by writing

kgne™ LS iD(s/is0)+F @, 4.9)
Then in the high-energy limit, using the approximation
s=2MFk and In(s/iso)=In(s/s¢), we obtain for the Regge-
ized amplitude corresponding to Fp(q)

s 1—Bq¢2
FR(&‘I"’) = —'ZC(—"‘)

YAY))

MSo

1 s\ 1-38a
— lc-pfrpg—emem——— ) | —
+ﬁ ln(s/so)[ <4q 28 ln(s/so))](iso>

2M s\#?  MsCD /s \"82
e 2(0) i) ]
So 180 B In(s/s0) \iso

(4.10)

It should be noted here that the spin-flip term in the
single-scattering amplitude can contribute via double
scattering to the forward nonflip amplitude, and there-
fore to the total cross section. The simple physical
meaning of this fact is that two consecutive spin-flip
processes with opposite momentum transfers will
produce forward nonflip scattering. Should this effect
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be large, it would preclude the possibility of neglecting
spin in considering forward scattering, as we did in
Secs. IT and ITI. We shall find, reassuringly, that the
contributions to the total cross sections of such terms
are very small,

The polarization resulting from (4.10) can be calcu-
lated using scalar amplitudes, which are conveniently
defined by writing

Fr(s,9®) =F (5,93 +kXq-0G(s,4%) . (4.11)

The polarization parameter P is then determined by

do
Pd_sz: 2Re[F*(s,g)G(s,¢)IN(s,¢),  (412)
with the kinematical factor A(s,¢?) given by
A(s,q%) =kk’ sind
={[(;k+F)—g*1[g*— (k—F)?]}2, (4.13)

k' and 6 being the final momentum of the incident par-
ticle and the scattering angle. We note that the asymp-
totic behavior of A(s,¢?) for nonzero ¢? is given by

As,g2) > 2kg as s (4.14)
and that
A(s,0)=0. (4.15)
From (4.10) we have
s\h Ms,
F(s,q?) = —2C<—> e
) B In(s/so)
1 5\ 1-1622
e O
2,3 ln(S/So) 1:80
(4.16)

() (]

The single-scattering terms in F(s,g?) and G(s,q?) are
90° out of phase, so that they produce, as expected,
no polarization. The same is true of the two double-
scattering terms. Contributions to the polarization thus
come only from interference between the single-scatter-
ing amplitude in F(s,¢?) and the double-scattering in
G(s5,9?), and vice versa. Equation (4.12) then yields

do DM s, 1
P—= Sq—————[ZCZ—DZ(%qz———————)]
aQ B In(s/so) 28 In(s/s¢)

s\ 236¢%
X <——> sintmBq?. (4.17)
So

The differential cross section do/d$ is given in this case
by

do/dQ= IF(S,qz) ] >+ P\(S:qz)G(S,qz) I 2 (4.18)
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and at high energy the dominant contribution for ¢2>0
comes, as before, from the multiple-scattering terms.
Asymptotically, then, we have

dtf MS()

W(m)z{[CZ"W@“M)T

2—Bq?
+4g202D2} <i> . (4.19)

So

It follows from (4.17) and (4.19) that for ¢>>0 the
asymptotic behavior with s of the polarization parame-

ter is given by
P (s/s0) 184" In(s/s0).

The polarization thus goes to zero, but only extremely
slowly. As an example, we take typical values of the
parameters to be 38¢2=0.2, 50=0.002; when s increases
from 2 to 2000, the polarization decreases only by a
factor 3.

We see, therefore, that a nonvanishing polarization
will result from multiple-scattering effects even if the
single-scattering process involved permits the exchange
of only one Regge pole, and that this polarization will
decrease asymptotically toward zero at high energy so
slowly as to appear almost constant. These observations
are fully consistent with the experimental facts regard-
ing the reaction n~p — w%. We, therefore, turnnow toa
detailed calculation of pion-nucleon interactions in
terms of the Reggeized quark model with multiple

scattering.

(4.20)

V. APPLICATION TO PION-NUCLEON
SCATTERING

The general pion-nucleon scattering amplitude with
full spin and isospin complexity included can be written
conveniently in the form

Fan(5,9%) =Foo(5,¢%) +2F 01(5,¢) T+ T
+kXq-on[F1o(5,9)+2Fu(s,¢) T Tw], (5.1)

where T,, Ty, and ox denote, respectively, the isospin
operators of the pion and of the nucleon and the spin
operator of the nucleon. In the scalar functions F.;(s,¢?)
it is clear that ¢ and j correspond to the spin and isospin
exchanged. The actual amplitudes for the pertinent
physical scattering processes are obtained in the ob-
vious way, by taking the (matrix) from (5.1) between
the appropriate spin-isospin states; for spin exchange 1,

FiE(s,g) =Fao(s,g?)=£F (5,9 (5.2a)
describes elastic 7+P interactions, while
F1%(s,q%) =V2ZF a(s,9%) (5.2b)

describes the charge-exchange reaction.
We shall review briefly here the connection between

these amplitudes and the quantities measured experi-
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mentally. The total cross section for (w+p) scattering
is given through the optical theorem,

o*(s) = (4n/k) ImF %(s,0) . 5.3)
The phases of the forward nonflip elastic amplitudes
also are known and are usually specified by giving the
ratio of the real to the imaginary part, which we shall

denote b
oy ReF¢*(s,0)

T~ (5.4)

7t (s) =

At nonzero momentum transfer, the differential cross
sections and the polarizations are measured for all three
processes. The former are given in the laboratory frame
by

do
E(S,(f) = IFO(S7QZ) I 2+ ]MS,QZ)FI(S,QZ) [ 2) (55)

L

where Fi(s,q?) refers to any of the three amplitudes
defined in (5.2) and A(s,¢?) is the kinematical factor
defined in (4.13). This quantity is converted to an
invariant distribution

da( Clsa?) da( ) »
—LS, )= ()T ) 0¢
7 7*)=C(s,g dQqu (5.6a)
with
™
C(S,ff)“—‘;;ej; [(R2p?) (B2 4-u*) ] 2
q2
—ul1— , (5.6b
g ( 2M2>} ( )

in terms of the previously defined quantities, u(M) being
the pion (nucleon) mass. The polarization, finally, is
calculated as in (4.12),

do
P(3,92)=2 Re[FO*(s;q2)F1(syq2):|>‘(S:q2) /E (57)

The first step in applying the multiple-scattering
formalism in the pion-nucleon system is to decompose
the nucleon into its quark structure, which we assume
to be given by the SU(6) spin-isospin wave functions

p= 18"V [£2(CLPLNF+CLINFC L+ 5P O)
F (O 109+ P50 1T AP I, P+ PP
F9,CL0++ I PxPL) ], (5.8a)

ny=(18)" V[ F2(N 1N P++ N O+ + PN s)
£ (M NFC L+ TN I P TP T+ 5P LI
+@ LI INF+CLIFNL) ], (5.8b)

In Eq. (5.8), p+ (p-) denotes a proton with spin up
(down), and 7., ®4, and .. analogously represent the
spin states of the neutron and the nonstrange quarks.
The total pion-nucleon scattering amplitude Frx(s,q?)
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then consists of three terms,

3
FrN(S,92)=Z F”Ni(s,q‘l)’ (59)
i=1

corresponding to single, double, and triple scattering of
the pion by the three quarks of the nucleon. If we denote
the pion-quark scattering amplitude by F.q(s,q)2, which
is a matrix in the spin-isospin space of the pion-quark
system, then in the strong-binding approximation the
Frn(s,q?) are given by

FWNI(S;QQ) =Z F'irQi(siqz) ) (5.10‘&,)

i
F wN2(S:92)=4—“k / @*¢' 2 Frols,(34—9)%)

2 i#j
XFo(s,(3a+4)?), (5.10b)
Fn3(s q2)=i<__i.>2 / & / &g
" 6\onk
X 5 F oi(5,(34—q)?)
XFroi(s,(3a—0q"))F r:(s,(d'+4")?) . (5.10¢)

The summations over Q;, etc., in (5.10) refer to the three
quarks, and have been so taken that symmetry under
the interchange of quark labels is guaranteed.

The pion-quark amplitude can be expressed by scalar
functions precisely as was the pion-nucleon amplitude
itself,

Frq(s,99) = foo(s,95)+2for(s,¢)Tx-Tg
kXq-oq[ f10(s,9%)+2/11(5,¢) T Te].

The contributions to the F;(s,q?) of single, double, and
triple scattering, denoted hereafter by F;;"(s,¢%), n=1,
2, 3, are then calculated in terms of the fi;(s,¢®) by
inserting (5.11) into the expression (5.10). To ~valuate
the matrix elements of the spin and isospin operators,
using the SU(6) wave functions (5.8), is then a matter
of a large amount of tedious but straightforward arith-
metic. In fact, we shall neglect entirely the triple-
scattering effects, which we expect to be small, and thus
we summarize below the contributions of only those
matrix elements necessary for considering single and
double scattering. Using the (w*p) states, we find that
spin-nonflip terms arise only from the matrix elements

(| X Los mtpa)=3, (5.12a)

(5.11)

wtpa] T T Tailrp) =3, (5.12b)

(rtpe]E [kX(Ga—a) oo kX (Ga+q) 00,17 ps)
=—$k(1*—¢"), (5.12¢)
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(rpal & (T To)(ToTo) rip)==1,  (5.12)

(W*Pi|§ (kX (3a—q) o0 (kX (39+4") - o0,]

X (Ty- Tort T To)) | wpa) =bii(ig—¢'), (5.12¢)
(rtps] T kX (Ba—a)-oq kX (a+a) oq,]

i)
X (Tr-To)(ToTo,) |mtps) =5k (1¢*—q'*)/12, (3.12f)

while spin-flip terms result from

(mtpe| X (kXq-og) |7 pe)=—}kq, (5.13a)
<""+p:tiz (Tr-To) (kX q-oq) |7t p=)

= —(5/12)kg, (5.13b)
(T psl é (T+-To)(kXq-0q) |mtp5)=5kg,  (5.13¢)

(rtpy l 2 (T To) (T TQj)kxq' ("Qz+“Qj) l 7I’+Pi>

i
=—3%kg. (5.13d)

[For simplicity in (5.13) we have defined q to be in the
y direction. 1¢; is the unit operator in the Q; space. ]

It is easily verified that isosymmetry is maintained
for the double-scattering terms. Consequently it
suffices to calculate the (r*p) amplitudes; those for
(z—p) are obtained by changing the sign of T, and the
amplitudes for the charge exchange are related to the
elastic amplitudes by the familiar equation

V2ZM(n=p = wn)=M(rtp — 7tp)—M(x=p — 7p),

where M denotes any of the above matrix elements.
This result is tantamount to fio (fi1) being even (odd)
under charge conjugation.

To carry out the integrations necessary in the double-
scattering terms now requires a parametrization of the
pion-quark amplitude. As we have pointed out in Sec.
IV, the most basic premise would be the use of a simple
representation for the quark-quark interactions; the
pion-quark amplitude would then be obtained by apply-
ing the multiple-scattering formalism again, this time
decomposing the pion into quark and antiquark.
Effectively, however, this procedure leads only to an
extremely complicated parametrization of the pion-
quark interactions. The quark-quark scattering process
has five helicity amplitudes, each of which involves at
least four Regge poles. As a result, both the complexity
of the algebra and the number of parameters are vastly
larger than would result from simply Reggeizing the
pion-quark amplitudes. In order that our parametri-
zation be amenable to computerized fitting programs,
we choose this less complicated technqiue.

For the pion-quark amplitude, analogously to the
usual pion-nucleon Regge theory, only trajectories
with positive G parity, namely, the vacuum and the
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p trajectories, are allowed. We do not expect that the
Pomeranchuk trajectory alone will be able to reproduce
satisfactorily the decreasing total cross sections, so we
shall invoke the traditional mechanism of a second
vacuum trajectory P’. A substantial reduction of the
computer time required can be achieved by taking the
two vacuum trajectories to be parallel. We, therefore,
parametrize the I =0 amplitudes as

foo(s,q?) = —Ro(s/iso)=PPe, (5.14a)
f10(5,g%) = —Ru(s/iso)~BP2 (5.14b)

with residues Ry and R; containing the energy depen-
dence of both the P and P’ poles, i.e.,

Ro=P¢+Py(s/iso)**", (5.152)
Ry=P1+Py/(s/ise)*?" 1. (5.15b)

The I'=1 amplitudes are those corresponding to the p
pole only,

These equations define the real constants P;, Py, ps,
ap, o, Bp, B, and so on which our calculation will
depend.

The double-scattering integrations can be carried out
using the parametrizations above, and employing these
results along with the matrix elements summarized in
(5.12) and (5.13), we find eventually that the various
F*(s,q?) are given by

Fool(s,g%) = —3Ro(s/s0) 874, (5.17a)
Foi'(s,g%) =ipo(s/iso) *e=Fea", (5.17b)
F10'(s,q?) = —Ry(s/iso) 824" (5.17¢)
Fui'(s,g%) = (5/3)ip1(s/iso) o= 1=Fse?, (5.17d)

i FaPP(sg) (s \ e
ruta= [ L)
2kL28p In(s/is0) \iso

Fopp(s’q2)
28, In(s/is0)

(i)'”] (5.180)

FiG. 9. Comparsion with the
experimental data of the fit
obtained for the ratio of real

to imaginary part of the pion-
nucleon amplitudes.

for(s,g%) =2ipo(s/iso) 2—Fee (5.162)
Ju(s,g%) =2ip1(s/ise) 2 1Fot", (5.16b)
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i FOPP(S)QZ)

F012(S;q2) =_———
2k (Bp+B8,) In(s/iso)
s —BPBpa?/(BP+Bp)
X <—) , (5.18b)
7:.5'0
s aptl s op—1
FQPP(S,QZ) = -—-ZipoR()('“*) +%lp1R1k2<~>
YAY)) 180

1
| ——)
[(ﬁpw,,) In(s /iso) q]

ip FEP(s) g s\ere
1’“102(5,92)=—*’:*———< )
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F1PP(S) =ROR1(S/’I:S()) ,

Fype(s) = —Fpops(s/iso)** 1,

1 F]_PP(S)
Fi(s,q%) =— -
2k (Bp+8,)? In(s/is0)
s \—BPBpa%/(BP+Bp)
X <—-> , (5.18d)
AY))

FiPe(s)= "‘[(5/3>i3PP1R0'—%’iﬁppoRl](S/iSo)“”.

The amplitudes for the relevant physical processes
are obtained by inserting these forms into (5.2). Our
Reggeized quark model can then be tested by perform-
ing a least-X? fit to the experimental data using the
amplitudes calculated in (5.17) and (5.18). For this
purpose we choose from the extensive literature a
selection of 230 data points describing all the physical
quantities listed above at various energies and momen-
tum transfers. The total cross sections and phase
measurements are taken from the high-precision data
recently obtained by Foley ef al.,' which cover a range
in laboratory momentum from ~7 GeV/¢ to ~22
GeV/c for (rtp), and to ~28 GeV/c for (x—p), with
errors of the order of only 0.39% in ¢ and of 159, in 7.
The differential cross sections are taken from the mea-
surements by Foley ef al.'® for the elastic scattering and
from those by Stirling et al.'® for the charge-exchange
process; the polarization data are due to Borghini
et al.? for elastic scattering and to Bonamy et al.?! for
charge exchange. The range of laboratory momentum

in these measurements is from ~6 to 18 GeV/c¢ for

( 1 % J. Foley et al., Phys. Rev. Letters 19, 193 (1967); 19, 330
1967).

18K. J. Foley et al., Phys. Rev. Letters 11, 425 (1963).

19 A, V. Stirling et al., Phys. Rev. Letters 14, 763 (1965).

20 M. Borghini ¢ al., Phys. Letters 24B, 77 (1967).

21 P. Bonamy et al., Phys. Letters 23, 501 (1966).
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F16. 16. Contributions to the total cross sections of double
scattering and of double spin-flip terms.

do/dt, and to 12 GeV/c for the polarization. The range
in momentum transfer has been arbitrarily limited; in
order to reduce the importance of the strong-binding
assumption, we used only points for which the invariant
four-momentum transfer was such that —¢<0.30 GeV?2.
All of the parameters defined in Egs. (5.14)-(5.16) were
taken to be free. The best fit obtained to the data pro-
duces a X2 value of 510.2 for 219 degrees of freedom, with
the parameters given by

ap =0.1628--0.0002
a,=0.5242-£0.0001
Br (=Bp)=0.487620.0005 GeV-2,
8,=0.7839-£0.0008 GeV-2,
Py=4.668=-0.026 mb MeV ,
P1=0.07830-£0.00092 mb?'2,
Py =0.633940.0013 mb GeV,
Py =6.818--0.081 mb®/2,
po=0.03009=:0.00043 mb GeV,
p1=3.937£0.042 mb¥/2,
50=0.01285--0.00007 GeV?.

Except for the rather low value of the P’ intercept, the
parameters of the Regge trajectories are in accord with
the results of earlier Regge models. It is also interesting
to note that the best-fit value of the normalization
constant s is roughly the pion mass squared.

The ratio of X2 to the number of degrees of freedom is
2.33, which is somewhat high to be considered a good fit.
Qualitatively, however, the results are in reasonably
good agreement with the experimental situation; dif-
ferences of systematic errors between various experi-
ments may have increased the value of X2. A detailed
comparison of the model with the fitted data is given in
Figs. 8-14.

The agreement with the data is quite satisfactory for
the elastic and charge-exchange polarizations, and, in
fact, for almost all of the other experimental quantities.
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I'16. 17. Extension of the fit obtained for the total cross sections
to the superhigh-energy region.

Only in the case of #n(s), where the measured values are
generally larger than the model predicts, is there any
consistent disparity between fit and data. The total and
differential cross sections are very well fitted, including
particularly the structure in the charge-exchange pro-
cess at near-forward angles. To reproduce this dip by
means of exponential amplitudes requires that spin-flip
terms, negligible in the elastic reaction, must be quite
important here (Fig. 15).

In general, the effects of double scattering are fairly
significant in these results. Their contribution to the
total cross sections are shown in Fig. 16, along with that
resulting particularly from the double spin-flip terms.
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F1c. 18. Contributions of single scattering, double scattering,
and the interference between them to the differential cross section

at superhigh energies.



1710 NATHAN

The smallness of the latter is reassuring evidence that
the neglect of spin effects in earlier sections was not
unreasonable. As noted in Sec. I1, the disappearance of
the double-scattering effects at higher energies will
cause the total cross sections to increase slightly toward
an asymptotically constant value; from the parameters
of this model we deduce that this limit is

0o(mN) =25.6620.28 mb.

The leading multiple-scattering contributions decrease
only logarithmically, however, so that the increasing
behavior becomes apparent only at superhigh energies.
In order to see how rapidly o,(rN) is approached, we
give in Fig. 17 an extension of the model up to £ =10 000
GeV/c. It is again evident that the advent of the asymp-
totic region is still rather distant.

The importance of double scattering can also be seen
in the differential cross sections. Interference between
double and single scattering leads to a subtractive term
with magnitude about § of that resulting purely from
the single-scattering term. The evolution with energy of
the contributions of single and double scattering, and
of their interference, to the (7+p) curves can be seen in
Fig. 18. The situation for the other reactions is very
similar. In all three cases the range of { we are studying is
still dominated by the single-scattering term.

It appears, then, that the quark model with multiple
scattering is capable of reproducing, qualitatively and,
to a reasonable extent, quantitatively, the pion-
nucleon scattering amplitude.?? In view of the approxi-

22 F, Henyey et al. [Phys. Rev. Letters 21, 946 (1968)] obtain
on the basis of a Reggeized absorption model results which are
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mations made, the results must be considered encourag-
ing; in particular, we would hope that a proper treat-
ment of the form factor and the use of a completely
free P’ trajectory would lead to a more comprehensive
fit of the data, including even the dips observed at
larger angles. A further extension of the model would be
the calculation and comparison with experiment of the
amplitudes for the production of nucleon resonances.
Since the form factor in this case involves the overlap
of the octet and decuplet spatial wave functions, the
strong-binding assumption we have used may not be
valid. We expect that future research efforts may
clarify both of these possibilities.
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very similar to ours in their treatment of spin and isospin and in
the appearance of the Regge-cut term. They attempt to fit the
“dip” structure of pion-nucleon charge exchange as a double
diffraction minimum, estimating the parameters of the elastic
amplitude from experiment and including only the helicity flip
amplitude in their calculations. As in Ref. 2, they concentrate on a
region of larger momentum transfer, where the validity of the
strong-binding approximation is less certain. Our results differ

uantitatively from theirs for these reasons as well as the fact that
they have not attempted to fit elastic scattering or polarization
data; qualitatively, however, their approach is quite similar to
ours,



