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Quark Model, Multiple Scattering, and Regge Theory*
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The quark. model for meson-nucleon scattering is treated by means of Glauber theory, using Reggeized
quark scattering amplitudes. The multiple-scattering eBects are calculated, and numerical estimates of their
magnitudes are obtained by Qtting the resulting forms to the available data. We 6nd that the correction
terms obtained in this way are generally subtractive and amount to 15% of the total cross sections. They
disappear at a rate intimately connected with the shrinking of the diGraction peak; when the latter phenome-
non begins to occur, our model predicts that total cross sections will show an increase of several millibarns.
The multiple-scattering terms are essentially Regge-cut effects, and therefore may be helpful in explaining the
nonvanishing polarization observed in mP charge exchange. Using a simple model of this type, we obtain
reasonably good 6ts to all types of pion-nucleon scattering data including both elastic and charge-exchange
polarizations as well as total and differential cross sections.

I. DTTRODUCTION

'HE additive quark model, despite the naivete of
its physical content, has met with considerable

success in predicting relations between cross sections
observed for various scattering processes. Since the
additivity assumption embodies the impulse approxi-
mation, it has been suggested in several recent papers' '
that corrections to this model may be calculable by
means of the Glauber' formalism for scattering of

composite particles.
The effects of these "multiple-scattering" corrections

can be observed in three basic ways. First, since they
are nonlinear and therefore nonadditive, the simple
relations obtained from additivity will be replaced by
more complicated nonlinear ones. Such equations have

been obtained by Franco, ' who derives nonlinear rela-

tions among total cross sections involving mesons,

protons, and antiprotons, and by the author, 4 in a form

supplying correction terms to the antisymmetric sum

rule. Secondly, in the framework of multiple diffraction,
the differential cross section will possess a characteristic
"dip" structure resulting from the interference of the
different orders of scattering. As Harrington and
Pagnamenta' have emphasized, this mechanism may
account for the angular behavior of proton-proton
scattering. Finally, reactions forbidden by the additivity
principle may be allowed through double-scattering

terms; for example, in a previous paper' we have shown

that the data on double charge or hypercharge exchange

can be so interpreted. It is possible in that case to study

the double-scattering amplitudes directly, rather than
through interference effects with the leading terms.

In this paper we shall attempt a quantitative study
of multiple-scattering effects in the quark model of
meson-nucleon interactions. The interactions of the
quarks are assumed to be described by Regge theory, in
order to consider the energy variation of the resulting
amplitudes. The multiple-scattering terms can be evalu-
ated exactly by use of an exponential form of the Regge
amplitude, and correspond in the well-known way to
Regge cuts. In Sec. II we describe the details of our
model, and in Sec. III we use it to estimate the magni-
tudes of these terms by Gtting the measured meson-
nucleon total cross sections. We Gnd that the contri-
butions of double scattering are subtractive and of
magnitude about 15/~ of the observed cross sections.

The fact that the model provides a natural mecha-
nism for generating a term with Regge-cut behavior
suggests the consideration of the pion-nucleon charge-
exchange polarization. We therefore extend the 'calcu-
lations to include spin in Sec. IV, and use the resulting
forms to 6t a large amount of data on pion-nucleon
interactions, including polarizations, in Sec. V.

IL MODEL

Our calculations are based upon the formalism de-
veloped by Glauber' for the consideration of scattering
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FIG. 1. Scattering by a two-
component composite particle.
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by a composite particle. Excellent reviews of the deri-
vation and use of this theory already exist, so we shall
not give a lengthy description of it here; the essential
features can be shown by considering the simple process
pictured in Fig. 1. An incident particle of momentum k
is scattered from a bound state of two particles (for
example, a deuteron). The form factor of the bound
state is denoted by

SQ(q) = O'" Ps*(r)e'~ Vs(r),

where P))(r) is the bound-state wave function in the
c.m. frame of the two particles, and the scattering of the
incident particle by the free state of either of the con-
stituent particles is described by a scattering amplitude
f~(k,q), q being the momentum transfer. For the mo-
ment we neglect spin and isospin; then according to the
Glauber theory, the scattering process shown is de-
scribed by an amplitude

fz&(k, q) =fw(k, q))S))(-',q)+Sn( —2»)]

more, it often seems in nuclear scattering that the results
are rather insensitive to the form factor. This result
is not surprising when we consider that if we make the
exponential approximation in the double-scattering
term, the main contribution to the scattering amplitude
must come from momentum transfers for which both
(-', q+q'( and (-', q —q') are small, i.e., in which [q'[ is
small. This insensitivity is particularly significant in our
applications to the quark model because the single-
scattering amplitudes, which would involve free quarks,
are not known. As an example we consider the possi-
bility that the form factor is also exponential in q'. A
trivial calculation shows that the difference between the
definitions

f)) (k,q) =fe &~', S-r)(-', q) =1

f&(k q) =fp (v Pf4)-a —
SD(&q) & Pa /—4—

comes only from the double-scattering terms, and that
these terms are in the ratio

L~/(v+ :P)j""".-
d'q'Sn(q') f~(k, 2»+q')f~( k» —q') ( )

This equation, which forms the basis for the calculation
which we shall present, is familiar in lower-energy
nuclear physics, where it has been used frequently with
considerable success.

In order to evaluate simply the essential results of the
Glauber model embodied in Eq. (2.1), we shall now
make two simplifying assumptions. First, we assume
that the scattering amplitudes f)))(k,q) are effectively
exponential in the square of the momentum transfer,

f~(k, q) =fme

This form is generally correct in most simple scattering
processes at sufBciently high energies and small mo-
mentum transfer. Secondly, we shall assume that the
form factor S~(q) is effectively unity in the region of
interest. This assumption is strictly tenable only in the
extreme forward direction. In fact, in the case of
nucleon-deuteron scattering it is known that the vari-
ation of the deuteron form factor is responsible for a
substantial part of the angular variations of the dif-

ferential cross section, even in the di8raction region.
Our consideration will not apply to the deuteron, how-

ever; we shall instead decompose either nucleons or
mesons into their constituent quarks. The present
understanding of the form factors of hadrons on the
basis of the quark model is far from complete, and the
experimental work on meson form factors is often
meager. It is true, however, that the form factors of the
hadrons seem to decrease less rapidly than that of the
deuteron, corresponding to the expectation that the
quarks forming the hadrons are tightly bound. Further-

Since we expect that P«y if the quarks are tightly
bound, we see that for reasonably small momentum
transfers the difference should be quite small. In all the
applications we shall consider only small momentum
transfers are involved, so it is reasonable to hope that
the effects of this assumption will not be severe.

Making these two assumptions, then, we 6nd from
(2.1) that

f~(k,q)=2f~e ~~'+(if~/2k')e &&') . (2.2)

d2Pg 'Y1(kC+P) ~&2($g—P) ~

+1++2
exp —

g . 2,3
+1++2

This result can, in fact, be extended to n-tuple scatter-
ing, since it is quickly proved by induction that the

This relation serves as prototype for all the multiple-
scattering processes we shall consider. It is easily
extended to more general circumstances; for example,
spin and isospin can be included quite naturally, as we
shall presently show. If the scattering in question is
that of a k-particle composite system by an l-particle
one, a result analogous to (2.1) is similarly obtained, and
contains (kl)!/e!(kl —m)! terms describing n-tupie
scattering. ' The possibility of two diGerent typesof
scattering process being involved in the multiple scat-
tering (which is the case in the deuteron, of course) is
also easily considered. The double-scattering integral
can be performed even if the slopes of two diffraction
peaks are different, since
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'relevant form is

n n

d'Pi d'P-6(a —2 9') exp(Z v'f')
(2.8)n(qs) =1—Pq'.

Pomeranchuk, with positive signature and n(0) = 1.The
required exponential dependence on q' is obtained by
writing

'n n n

=E(2s)" /(H 'Y;)(g 7; ')j expr —(Py; ') 'q'g. (2.4)
i=1 9',=1 i=1

In order to consider the energy variation and the
phase of the multiple-scattering terms, we now assume
that the amplitude f&r(k, q) corresponds to a Regge
pole. Since an integration over momentum transfer is
involved in the multiple-scattering terms, however, it
is necessary to employ a simplified version of the Regge-
pole amplitude. The traditional form is

1+re rw a(-t&

P(s, t) =L2n(t)+1]P(t) s ~'&, (2.5)
sine. n(t)

where p(t) is the residue function, n(t) the pole's tra-
jectory, ~ the signature, and s and t have their usual
meanings. The extraneous factors in. (2.5) clearly pro-
hibit the exact integration over t of this amplitude in
any but pathological cases. We, therefore, adopt a much
simpler form, which contains nonetheless all of the
essential features of (2.5), by writing

F&r+(s, t) = c+(s/i—sp) ~+&'&, for r =+1 (2.6a)

F~ (s,t) =ic (s/isp) "&, for r= —1. (2.6b)

It is simply a result of analyticity plus crossing sym-
metry that the dependence on s/i in Eqs. (2.6) correctly
reproduces the phase of the Regge amplitude given, in
(2,5), by the signature factor 1+re " &'&.r The con-
stants c~ and so are chosen so that they reproduce the
t dependence of the residue function; that is, we assume
that it is possible to write approximately, for r =+1,

cos-', e n(t)
2L2n(t)+1jP(t) = —c+(sp) '+&'&, (2.7a)

sins n(t)

and for v = —1, similarly,

sinsis n(t)
2$2n(t)+1]P(t) = —c (sp)-~-&o. (2.7b)

sins n(t)

The exponential t dependence in the residue function
often invoked in order to fit the experimental di6raction
peaks is thus pictured as representing an incorrect
normalization of the energy. A trivial calculation shows
that the value of so necessary for compatibility with
typical high-energy data, is between 0.001 and 0.1 GeV',
depending on the slope of the Regge trajectory.

As a simple example in which the essential results
following from the definitions (2.6) can easily be seen, we
consider the exchange of a single Regge pole. To be
de6nite we assume that the Regge po1e involved is the

' R. J. Eden, Phys. Letters 19, 695 (1965).

The scattering amplitude can now be written by making
in (2.2) the substitution

that is,
f&re ""=C(s/isp)

fear

C———(s/isp), y =P ln(s/is p),

(2.9)

yielding
] Pq2

f~(s,9') = 2C ——
'LSO

Cs (s) -»"
2kp ln(s/si p) Lisp)

(2.10)

D. Amati, A. Stanghellini, and S. Fubini, Nuovo Cimento
26, 896 (1962).

« S. Mandelstam, Nuovo Cimento 30, 1127 (1963); BO, 1148
(1963).Ne are grateful to Dr, I, Drummond for an interesting dis-
cussion of this problem,

We notice at once that the double-scattering term
has the logarithmic s dependence which typifies a Regge
cut. It is, in fact, a well-known general result that the
iteration of a Regge-pole term, whether as a Inultiple-
scattering integral or in some other guise, leads to the
appearance of terms having this behavior. This point
was made as long ago as 1962 by Amati, Stanghellini,
and Fubini' in considering the multiperipheral model
of high-energy scattering. It was subsequently shown in
a treatment of Feynman-diagram singularity structure
by Mandelstam, ' however, that the cut they found was
canceled by other terms, and that only nonplanar
diagrams could lead to Regge cuts. Such diagrams
appear only if the structure of both particles involved
in the scattering process is considered. This result is,
therefore, diQicult to reconcile with the Glauber for-
malism, which produces a cut regardless of the structure
of the noncomposite particle. The contrast, even in
language, between the physical assumptions of Glauber
theory and the ponderous mathematical apparatus of
diagrammatic techniques is a formidable one, and the
resolution of the problems involved is far from apparent.
The viewpoint we shall adopt is a phenomenological
one; we regard the Glauber formalism as a tool supply-
ing an eminently reasonable parametrization of the
scattering amplitude. As such, it can be used indepen-
dently of whether the actual form of the cut term is
ultimately vindicated or not.

It is sufhcient for our examination of the essential
features of the amplitude (2.10) to study its asymptotic
form, using the high-energy approximation s=2Mk.
Then (2.10) becomes

f (s,v')+ —2C(—) + (—)
(2.11)
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MC/so, so that this result does not depend directly on
the choice of M, the mass of the component particle.
Except for the term Pin(s/so), which represents the
slope of the single-scattering diffraction peak, the result
is also insensitive to sp.

We look next at the differential cross section. For the
large-energy, small-momentum-transfer limit being
considered, we obtain

0.01

(2.13)

="-"
(-:.)

"'-; ':,.'(..')(-:.)
'

/Ma, ' s)-«'-
+

4p in(S/So)]'k So ) Sp)

0.001

0.0001—

FIG. 2. Contributions of single and double scattering and of the
interference between them to the differential cross section.

We examine first the total cross section, which is ob-
tained by using the optical theorem. Assuming for the
momenti that s)&so, so that ln(s/sio) is essentially real,
we have

or(s) = (kr/k) Immi(S, O)

Once again M and C appear only as MC/so, and P and
sp appear always as related to the single-scattering dif-
fraction peak slope. Of particular interest in (2.13) is
the energy dependence of the three terms. We have seen
already in the total cross section that for q'=0 the single
scattering is dominant at s ~~. For nonzero values of
q', however, the opposite result is obtained. The ratio
of the double-scattering term to the single is propor-
tional to (s/so)«'/fin(s/so) j', and, therefore, for suK-
ciently high energies the former dominates. The behavior
implied by (2.13) is pictured in Fig. 2; at very small q
we see mainly the single-scattering term. For larger q'
the interference between single and double scattering
becomes more important and may cause dips in the
differential cross section. Finally, as suKciently large
values of q', the double-scattering term becomes
dominant. A convenient measure of how rapidly the
limiting behavior is approached is obtained by finding
the value of q2 for which the contributions of single and
double scattering are equally important. Setting

(2.12)

The multiple-scattering contribution is immediately
seen to be subtractive, implying that the total cross
section increases to a constant value. The opposite
situation is observed in experimental hadronic total
cross sections. If several trajectories are involved,
however, the increasing behavior may be hidden. More
simply, a positive double-scattering contribution can
result from a pole with negative signature because of the
extra i in the definition (2.6b), or from the inclusion of
double isospin-Rip terms because of the Clebsch-
Gordan coefficients. In any case, however, the multiple-
scattering contribution vanishes with increasing energy
at least logarithmically because of the shrinkage of the
diffraction peak. We also note in (2.12) that the mass
M and the constant C appear only in the combination

we find
s MCi- si

gal=2 ln~ ln——ln
( P ln—~, (2.15)

$0 2Pso) sp J

which has only the slightest decreasing behavior with
increasing s. The structure of the differential cross
section therefore changes very slowly with increasing
energy, but ultimately arrives at a limit in which the
contribution of the single scattering term is visible only
within an arbitrarily small range of momentum transfer.

III. APPLICATION TO MESON-NUCLEON
TOTAL CROSS SECTIONS

In order to estimate more accurately the magnitudes
of these effects, we have applied this Regge formalism to
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F (s,qm) = P($/iso)~~—'"', (3.2a)

F.(~ q') =ip(~/i~o)"" ' (3.2b)

F (s,q') = ia)(s/i—so) «'&,

F(ss, )q=R(s/iso) "'"'.
(3.2c)

(3.2d)

The trajectories n~(q'), n, (q'), and n~(q') are assumed
to be linear in q',

~'(q') =~'+p'q', (3.3)

for i =I', p, co, E, and the residue constants I', p, ~,
and R are real. In terms of these Regge amplitudes we
have

f~ —P~ —P +P —Ps (3.4a)

fg,,=FI P. Fp+Fz, — —(3.4b)

fy, =Fp+F.—Fp
—Fs, (3.4c)

Fv7„=Fp+F„+F,+Fg. (3.4d)

For the scattering of the isosinglet strange quark the
p and 8 poles, having I=1, cannot contribute; otherwise
the situation. is similar. To introduce independent
amplitudes for the contributions of P and co to tv and

fr» however, would lead to an undetermined system of

the parametrization of the meson-nucleon scattering
amplitudes. An immediate problem in such an appli-
cation is choosing which interaction to Reggeize. The
most basic level of elementarity indicates that the
quark-quark amplitudes should be chosen, but it is
also conceivable that quark-nucleon or quark-meson
amplitudes might be more appropriate.

We have attempted to Qt the six meson-nucleon total
cross sections using Regge amplitudes both for the
quark-quark interaction and for the quark-nucleon;
consideration of the quark-meson system is not perti-
nent here, since it does not yield any relations among the
six amplitudes F +v(s, q'), F v(s, q'),-F»+„(s,q'),
F»+ (s,q'), F» „(s,q'), -and F»- (s,q').

The details of our procedure are more easily written
down in the case of Reggeized quark-nucleon inter-
actions. Here the meson-nucleon scattering amplitudes
are given by a sum of two terms

I'~&(~,q') =F~N'(s, q')+F~~'(s, q'), (3.&)

representing, respectively, single and double scattering
of the nucleon E by the quark-antiquark pair. Each of
these is given in terms of the six basic quark-nucleon
interactions, which we denote by tv(s, q'), f~„(s,q'),
fq„(s, q), fyv(s, q'), fK„(s, q), and f r(vs, q) (we assume,
of course, that isosymmetry is maintained on the quark-
nucleon level).

For the nonstrange quarks the Reggeization of these
amplitudes is equivalent to that of the nucleon-nucleon
system, which involves basically four poles with dif-
ferent sets of quantum numbers. The four poles we
denote as usual by I', p, ~, and R; their amplitudes are
given in the form (2.6) by

F.+v'=2FI+2F„
I' — '=2Fy —2Fp,

F»+p'=Fr F~+FI, Fs+&'—r', —
p»+„&=pr ji p+' p—~+p I,'

F»- '=Fr +F~—P —F»+Fr '

p» & pp+p„+-p +ps+—pr'.

(3.5a)

(3.5b)

(3.5c)

(3.5d)

(3.5e)

(3.5f)

The double-scattering integrals can be performed as in
Sec. II. We have noted there that the resulting terms
depend upon both the slopes of the Regge trajectories
and the normalization energy sp) but only in that the
slope of the diBraction peak must be correctly given.
Since we shall consider only total cross sections here,
it is probably sufhcient to take all four slopes the same,
Pp=P, P„=Pg=P. Then the double-scattering ampli-
tudes assume a much simpler form, especially at
q2=0; if we write

$=L4kp in(s/iso) j ',
then

F +„'(s,O) = $f „(s,O)f—(s,O),

F -„'(s,0) =$f „(s,0)f—(s,O),

F»"'(~ 0) = &fo.(~ 0)f~.(E,O),

F»' '(»0) =kfxv(»0)tv(»0)

(3.6)

(3.7a)

(3.'Ib)

(3.7c)

(3.M)
' For example, H. J. Lipton, Phys. Rev. Letters 16, 1015

(1966).

equations. The reason is that the six amplitudes we are
considering have been shown to be related, in the pres-
ence of multiple scattering, by an equation similar to
the weak Johnson-Treiman relation. ' Consequently at
any axed energy only five independent quantities, i.e.,
five residue constants, can be determined from the six
total cross sections. We have already introduced four
residue constants in the amplitudes (3.2); to include
both P and or in f&,v and fr,„would lead to a total of six
independent parameters at each energy, and therefore
no unique solution for the residues would be possible.
A consistent assumption which has been invoked several

- times in earlier work on the quark model" is that the
Pomeranchuk limit has been reached for the strange-
quark interactions. It should be noted that the effects
of this assumption on our model can be observed only
as small changes in the energy variations of the double-
scattering terms, and therefore are inconsequential.
We therefore neglect the contribution oi a& to tv and

fr» so that the scattering of quark and antiquark is
identical:

f"(~,q') =f~.(~,q') =F~'(~,q')

CJ (—s/iso) P«'& . (3.4e)

In terms of these Regge poles the contributions of
single scattering to the six meson-nucleon amplitudes
are given by
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unity throughout the region in which there are impor-
tant contributions to the amplitudes. Speci6cally, we
write

f(q) =f~e "*, (4.4a)

(4.4b)g(q) =g&e "' .
We have taken the same slope y for both spin-Qip and
spin-nonQip terms for the sake of simplicity; the results
are not crucially dependent upon this equality. The
integrations in the double-scattering term can be
performed, yielding

be large, it would preclude the possibility of neglecting
spin in considering forward scattering, as we did in
Secs. II and III. We shall 6nd, reassuringly, that the
contributions to the total cross sections of such terms
are very small.

The polarization resulting from (4.10) can be calcu-
lated using scalar amplitudes, which are conveniently
defined by writing

Fto(s,q') F(s,qo)+kXq toG(s, q') . (4.11)

The polarization parameter I' is then determined by

FD(q) =2fNe '"+ fN'+gnroko &q-
2ky 27-

do'
F =2 R—e[F*(s,qo) G(s,qo) Jli(s,qo),

dQ
(4.12)

with the kinematical factor Ii(s,qo) given by

2k'
I~(s,qo) =kk' sin8

=([(k+k')' —q'Xq' —(k —k')'j}'" (4 13)We relate this result to the Regge model used in
Sec. III in the obvious way. As before, we write for
the nonQip amplitude

k' and 8 being the 6nal momentum of the incident par-
ticle and the scattering angle. We note that the asymp-
totic behavior of Ii(s,q') for nonzero qo is given byfNe 7o'=C(s/isp)' ~o',

fN= C(s/—isp),

p ln(s/isp) .

(4.6)
1.e.)

X(s,qo) o 2kq as s —&~

Ii(s,0)=0.

(4.14)(4.7a)
and that

(4.15)(4.7b)

For the spin-flip amplitude we define a simplified
version of the usual Regge formula 1s ) eo Mso

F(s,q') = —2C —
~ +

isp) p ln(s/sp)1+re itttt(t)—
Gt(s, t) =ptRt(t) s"&t&-'

sins n(t)
(4.g)

I ~- /sq »ip'
C2 D2

2p ln(s/sp)) (iso)
by writing

kgtie &"=iD(s/isp)' ~" (4 9)

Then in the high-energy limit, using the approximation
s= 2Mk and ln(s/isp) =ln(s/sp), we obtain for the Regge-
ized amplitude corresponding to Fn(q)

(4.16)

/2M — /s -«' MsoCD /s
& so (iso p ln(s/sp) (iso

s ) i-pop

F„(s,q') = —2C—
iSO]

The single-scattering terms in F(s,q') and G(s,q') are
90' out of phase, so that they produce, as expected,
no polarization. The same is true o'f the two double-
scattering terms. Contributions to the polarization thus
come only from interference between the single-scatter-
ing amplitude in F(s,q ) and the double-scattering in
G(s,qo), and vice versa. Equation (4.12) then yields

Ms. — 1 y- s q'-»"
Co Do iqo

P ln(s/sp) 2P ln(s/sp)) iso)

'"'(';.) "(;:.'-,::",. (;:.
)"

do DMsp
(4.10) &—=&q

dQ P ln(s/so)
2C2 D2 & ~2

2pln s sp

do/dQ=
) F(stqo) (

'+
) X(s,q')G(stqo) )

' (4.18)

(/)
It should be noted here that the spin-Qip term in the
single-scattering amplitude can contribute via double
scattering to the forward nonQip amplitude, and there- (so
fore to the total cross section. The simple physical
meaning of this fact is that two consecutive spin-fhp The differential cross section dp/dQ is given in this case
processes with opposite momentum transfers will by
produce forward nonQip scattering. Should this eBect
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~+(s) = (4m/k) ImFp+($, 0) . (5.3)
dO' 3IIsp

2

C2 D2 &q2

4G 8h(/, ) 2PI (s/s))

s
+4q2+2D2

sp

The phases of the forward nonRip elastic amp1itudes
also are known and are usually specified by giving the
ratio of the real to the imaginary part, which we shall

(4.19) denote by
ReFp+($,0)

g+(s) =I~,+($,0)
(5 4)

It follows from (4.17) and (4.19) that for q')0 the
asymptotic behavior with s of the polarization parame-
ter is given by At nonzero momentum transfer, the differential cross

sections and the polarizations are measured for all three
processes. The former are given in the laboratory frame
by

F~ (s/sp) &«' in(s/sp). (4.2o)

The polarization thus goes to zero, but only extremely
slowly. As an example, we take typical values of the
parameters to be pPq'=0. 2, sp=0.002; when s increases
from 2 to 2000, the polarization decreases only by a
factor -,'.

Ke see, therefore, that a nonvanishing polarization
will result from multiple-scattering effects even if the
single-scattering process involved permits the exchange
of only one Regge pole, and that this polarization will

decrease asymptotically toward zero at high energy so
slowly as to appear almost constant. These observations
are fully consistent with the experimental facts regard-

ing the reaction ir p ~m'ii. We, therefore, turn now to a
detailed calculation of pion-nucleon interactions in

terms of the Reggeized quark model with multiple

scattering.

dr
(s q') = IFo(s q') I'+ I&(;q')Fi(s, q') I' (5.5)

dQL,

where F;(s,q') refers to any of the three amplitudes
defined in (5.2) and P (s,qP) is the kinematical factor
defined in (4.13). This quantity is converted to an
invariant distribution

der do—(s,q') =C(s,q') (s,q'),
dQL

(5.6a)

with

C(s,q') = I:(&'+~')(&"+~')j"'
kk"

est
2

—p2 1—,56b
2M2

and at high energy the dominant contribution for qp)0 mentally. The total cross section for (n+p) scattering
comes, as before, from the multiple-scattering terms. is given through the optical theorem,
Asymptotically, then, we have

V. APPLICATION TO PION-NUCLEON
SCATTERING

The general pion-nucleon scattering amplitude with

full spin and isospin complexity included can be written
conveniently in the form

F ~(s,q') =Fpp(s, q')+2Fpi(s, q')T Tip.

+lrXii &ipI Fip(s, q')+2Fii(s, q')T, TNj, (5.1)

where T„Tip, and ei/ denote, respectively, the isospin

operators of the pion and of the nucleon and the spin
operator of the nucleon. In the scalar functions F;;(s,q')
it is clear that i and j correspond to the spin and isospin

exchanged. The actual amplitudes for the pertinent
physical scattering processes are obtained in the ob-
vious way, by taking the (matrix) from (5.1) between

the appropriate spin-isospin states; for spin exchange i,

F.+($ q ) =F'p($ q )&Fsti($ q ) (5.2a)

describes elastic x+E interactions, while

Fi (s,q') =v2F;i(s, q') (5.2b)

describes the charge-exchange reaction.
We shall review briefly here the connection between

these amplitudes @ad the quantities measured experi-

in terms of the previously de6ned quantities, p(M) being
the pion (nucleon) mass. The polarization, finally, is
calculated as in (4.12),

F(s,q') =2 ReLFp*(s,q')Fi(s, q') j&(s,q') . (5.7)
dQL,

The first step in applying the multiple-scattering
formalism in the pion-nucleon system is to decompose
the nucleon into its quark structure, which we assume
to be given by the SV(6) spin-isospin wave functions

p, =(18)- / L~2(6,6,X,+6,m, a,+~,6,6,)
W ((P~(PpKp+(Pp(PyKy+6'gKy0'p+5'pX~5'~

+X~(P~(Pp+ Xp(Pp(P~) g, (5.8a)

=(18) '/'L%2(K/Xy(Pp+Xy(P Xy+|P Xymy)
&(KgKpPg+KpKg(Pg+K~(PgX~+Xp(P~Ãg

y6,X,m~+6, X,X,)]. (5.8b)

In Eq. (5.8), p+ (p ) denotes a proton with spin up
(down), and N~, (P~, and X+ analogously represent the
spin states of the neutron and the nonstrange quarks.
The total pion-nucleon scattering amplitude F,~(s,q')
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then consists of. three terms, &-+P, IZ (T. To,)(T. To,) I:P,)=-1, (5.12d)

F ~(s,q') =g F.~'(s,q'), (5 9) &~+p+IZ [kX(kq —«') ~o;7[kx(4»+»') ~o,7

corresponding to single, double, and triple scattering of
the pion by the three quarks of the nucleon. If we denote
the pion-quark scattering amplitude by F o(s,q)', which
is a matrix in the spin-isospin space of the pion-quark
system, then in the strong-binding approximation the
F ~'(s, q2) are given by

X(T- To+T- To,) l~+P+&=6k'('-q' —q") (5»')
&~+pglp [kx(-', q —q') ~o,7[kx(-,'q+q') ~o,7

X(T. Tq„)(T. Tq, ) lir+pp&=5k'Pq' —q")/12, (5.12f)

while spin-Piip terms result from

F.~'(s,q') =Q F.q, (s,q'), (5.10a)
( P, IZ(kxq .;)I 'p. )=—'kq, (5.13a)

F ~'(s,q') =
4xk

d'q' P F.q,.( s(-', q—q')')

XF q,.(s, (-,'q+q')'), (5.10b)

( +p, IZ (T. To,.)(kxq ~o,.) l~+p~&

= —(5/12) kq, (5.13b)

( P, IZ (T. T.,)(kxq .,)I p, &=-'.kq,
2

F~~ (s,q ) =— d q cPq
6 2~k

X Z F-o;(s,(2« —«')')

XF-;(s,(l» —«")')F- .(s,(«'+«")') (5 «c)

The summations over Q, , etc., in (5.10) refer to the three
quarks, and have been so taken that symmetry under
the interchange of quark labels is guaranteed.

The pion-quark amplitude can be expressed by scalar
functions precisely as was the pion-nucleon amplitude
itself,

F,,(s,q ) =f„(s,q )+2f„(s,q )T. T,
kX« eq[fio(s, q')+2fii(s, q')T To7. (5.11)

&~'I+ I 2 1o;I ~'P+) =3,

& 'P+IZ T- To;I~'P&=l,

(5.12a)

(5.12b)

( +P, IZ [kx(-', »—«') ~o„7[kx(-',q+q') «,7I~+p, &

= —kk'(lq' —q"), (5»c)

The contributions to the F;,(s,q') of single, double, and
triple scattering, denoted hereafter by F~p(s, q'), n= 1,
2, 3, are then calculated in terms of the f;;(s,q') by
inserting (5.11) into the expression (5.10). To valuate
the matrix elements of the spin and isospin operators,
using the SU(6) wave functions (5.8), is then a matter
of a large amount of tedious but straightforward arith-
metic. In fact, we shall neglect entirely the triple-
scattering e6ects, which we expect to be small, and thus
we summarize below the contributions of only those
matrix elements necessary for considering single and
double scattering. Using the (n.+p) states, we find that
spin-nonAip terms arise only from the matrix elements

&~+p~IZ (T- To;)(T- '4;)kx». (~o,+~o;) l~+p~&

= —-', kq. (5.13d)

[For simplicity in (5.13) we have defined q to be in the

y direction. 1o, is the unit operator in the Q; space. 7
It is easily verified that isosymmetry is maintained

for the double-scattering terms. Consequently it
suKces to calculate the (m+P) amplitudes; those for
(ir p) are obtained by changing the sign of T, and the
amplitudes for the charge exchange are related to the
elastic amplitudes by the familiar equation

v2cV(ir-p -+ m'I) =M(ir+p -+ ir+p) 3E(~ p~ ir
—p),— —

where M denotes any of the above matrix elements.
This result is tantamount to f;0 (f;i) being even (odd)
under charge conjugation.

To carry out the integrations necessary in the double-
scattering terms now requires a parametrization of the
pion-quark amplitude. As we have pointed out in Sec.
IV, the most basic premise would be the use of a simple
representation for the quark-quark interactions; the
pion-quark amplitude would then be obtained by apply-
ing the multiple-scattering formalism again, this time
decomposing the pion into quark and antiquark.
KGectively, however, this procedure leads only to an
extremely complicated parametrization of the pion-
quark interactions. The quark-quark scattering process
has 6ve helicity amplitudes, each of which involves at
least four Regge poles. As a result, both the complexity
of the algebra and the number of parameters are vastly
larger than would result from simply Reggeizing the
pion-quark amplitudes. In order that our parametri-
zation be amenable to computerized 6tting programs,
we choose this less complicated technqiue.

For the pion-quark amplitude, analogously to the
usual pion-nucleon Regge theory, only trajectories
with positive G parity, namely, the vacuum and the
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Ft»(s) s

2P, ln(s/isp) isp
(5.18c)

Fr (s) =RpR&(s/isp),

Ft"(s)= ppppt(sl—isp)' " '

Ft &(s)z

F P(s qx)—
2k (Pp+P, )' ln(s/isp)

s —ePe~&'&(O&+X—( (5.18d)
esp

Ft"'(s) = E(5/3)iP—~I t~ p piP.~pF t—j(s/is p)"

The amplitudes for the relevant physical processes
are obtained by inserting these forms into (5.2). Our
Reggeized quark model can then be tested by perform-
ing a least-X' fit to the experimental data using the
amplitudes calculated in (5.17) and (5.18). For this
purpose we choose from the extensive literature a
selection of 230 data points describing all the physical
quantities listed above at various energies and momen-
tum transfers. The total cross sections and phase
measurements are taken from the high-precision data
recently obtained by Foley et a/. ,

"which cover a range
in laboratory momentum from 7 GeV/c to 22
GeV/c for (x.+p), and to 28 GeV/c for (x. p), with
errors of the order of only 0.3% in p and of 15% in ri

The differential cross sections are taken from the mea-
surements by Foley et a/. "for the elastic scattering and
from those by Stirling et a/. " for the charge-exchange
process; the polarization data are due to Sorghini
et a/. "for elastic scattering and to Bonamy et a/. " for
charge exchange. The range of laboratory momentum
in these measurements is from -6 to 18 GeV/c for

'7 K. J. Foley et al. , Phys. Rev. Letters 19, 193 (1967); 19, 330
(1967)."K.J. Foley et al. , Phys. Rev. Letters 11, 425 (1963).

"A. V. Stirling et al., Phys. Rev. Letters 14, 763 (1965).
'0 M. Sorghini et al. , Phys. Letters 248, 77 (1967}."P. Bonamy et al. , Phys. Letters 23, 501 (1966).
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FrG. 17. Extension of the fit obtained for the total cross sections
to the superhigh-energy region.

FrG. 16. Contributions to the total cross sections of double
scattering and of double spin-Rip terms.

da/dt, and to 12 GeV/c for the polarization. The range
in momentum transfer has been arbitrarily limited; in
order to reduce the importance of the strong-binding
assumption, we used only points for which the invariant
four-momentum transfer was such that —t&0.30 GeV'.
All of the parameters defined in Kqs. (5.14)—(5.16) were
taken to be free, The best 6t obtained to the data pro-
duces a &' value of 510.2 for 219 degrees of freedom, with
the parameters given by

ng =0.1628&0.0002,

O.p =0.5242&0.0001,

Pa (=Pp) =0.4876&0.0005 GeV ',
P, =0./839&0.0008 GeV ',
Pp =4.668&0.026 mb MeV,

Ps ——0.07830~0.00092 mb'~',

Pp =0.6339&0.0013 mb GeV

P~' =6.818&0.081 mb'~',

pp =0.03009&0.00043 mb GeV

pi =3.937&0.042 mb I

sp =0.01285~0.00007 GeV'.

40 & =12.8 GeV/c 100 GeV/c 1000Ge V/c 10000
GyV/c
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Only in the case of q (s), where the measured values are
generally larger than the model predicts, is there any
consistent disparity between 6t and data. The total and
differential cross sections are very well Gtted, including
particularly the structure in the charge-exchange pro-
cess at near-forward angles. To reproduce this dip by
means of exponential amplitudes requires that spin-Qip
terms, negligible in the elastic reaction, must be quite
important here (Fig. 15).

In general, the effects of double scattering are fairly
significant in these results. Their contribution to the
total cross sections are shown in Fig. 16, along with that
resulting particularly from the double spin-Rip terms.

Except for the rather low value of the P' intercept, the
parameters of the Regge trajectories are in accord with
the results of earlier Regge models. It is also interesting
to note that the best-6t value of the normalization
constant sp is roughly the pion mass squared.

The ratio of X' to the number of degrees of freedom is
2.33, which is somewhat high to be considered a good fit.
Qualitatively, however, the results are in reasonably
good agreement with the experimental situation; dif-
ferences of systematic errors between various experi-
ments may have increased the value of X'. A detailed
comparison of the model with the fitted data is given in
Figs. 8—14.

The agreement with the data is quite satisfactory for
the elastic and charge-exchange polarizations, and, in
fact, for almost a11 of the other experimental quantities.

0.4

der
dt
single scattering
interference term
double scattering

0.2

O. I

0 .1 .2 .3 .4 0 .I ,2 .3 0 .I .2 0 , I 2
GeV

FIG. 18. Contributions of single scattering, double scattering,
and the interference between them to the differential cross section
at superhigh energies.
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The smallness of the latter is reassuring evidence that
the neglect of spin eA'ects in earlier sections was not
unreasonable. As noted in Sec. II, the disappearance of
the double-scattering effects at higher energies will
cause the total cross sections to increase slightly toward
an asymptotically constant value; from the parameters
of this model we deduce that this limit is

o„(s.Ã) =25.66&0.28 mh.

The leading multiple-scattering contributions decrease
only logarithmically, however, so that the increasing
behavior becomes apparent only at superhigh energies.
In order to see how rapidly o„(trlV) is approached, we

give in Fig. 17 an extension of the model up to k =10 000
GeV/c. It is again evident that the advent of the asymp-
totic region is still rather distant.

The importance of double scattering can also be seen
in the differential cross sections. Interference between
double and single scattering leads to a subtractive term
with magnitude about «~ of that resulting purely from
the single-scattering term. The evolution with energy of
the contributions of single and double scattering, and
of their interference, to the (s.+p) curves can be seen in
Fig. 18. The situation for the other reactions is very
similar. In all three cases the range of t we are studying is
still dominated by the single-scattering term.

It appears, then, that the quark model with multiple
scattering is capable of reproducing, qualitatively and, .

to a reasonable extent, quantitatively, the pion-
nucleon scattering amplitude. "In view of the approxi-

"F.Henyey et al tPhys. R.ev. Letters 21, 946 {1968lg obtain
on the basis of a Reggeized absorption model results which are

mations made, the results must be considered encourag-
ing; in particular, we would hope that a proper treat-
ment of the form factor and the use of a completely
free P' trajectory wouM lead to a more comprehensive
fit of the data, including even the dips observed at
larger angles. A further extension of the model would be
the calculation and comparison with experiment of the
amplitudes for the production of nucleon resonances.
Since the form factor in this case involves the overlap
of the octet and decuplet spatial wave functions, the
strong-binding assumption we have used may not be
valid. We expect that future research eRorts may
clarify both of these possibilities.
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very similar to ours in their treatment of spin and isospin and in
the appearance of the Regge-cut term. They attempt to 6t the
"dip" structure of pion-nucleon charge exchange as a double
diffraction minimum, estimating the parameters of the elastic
amplitude from experiment and including only the helicity Qip
amplitude in their calculations. As in Ref. 2, they concentrate on a
region of larger momentum transfer, where the validity of the
strong-binding approximation is less certain. Our results di8er
quantitatively from theirs for these reasons as well as the fact that
they have not attempted to Gt elastic scattering or polarization
data; qualitatively, however, their approach is quite similar to
ours.


