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understood for a given collision. amplitude, or set of
amplitudes, one. can begin to approximate (as in the
narrow-resonance approximation, or in our unitarity
hypothesis) in order to study special features of the
amplitude. In particular, one may obtain constraints
on the input assumptions such as the high-energy be-
havior or the masses of the resonances.
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A general method for the construction of wave functions and wave equations for higher spins is proposed.
This method is based on the full use of projection operators, without any use of boosting and without explicit
use of auxiliary 6elds. The wave equations are always expressed in the form of single matrix equations, so
that their Lagrangians follow immediately. Then the entire program of quantization of the free fields can
follow straightforwardly by using the so-called d(8)-operator technique which was developed previously.
The present method is made up of two steps: The erst step is to derive wave equations when the maximun
spin is speci6ed; the second step is to derive equations when the spin itself is specified. The techniqu
employed in the erst step, when it is applied to many-spinor representations, can be used to put
the Bargmann-Wigner equations into the form of a single matrix equation. The same technique enables us to
write explicitly the Harish-Chandra P matrices in terms of Dirac matrices. General arguments explain why
the relativistic wave equations in general contain a certain number of arbitrary parameters, such as have
been observed by several authors. The method is illustrated by several examples of relativistic wave
equations.

l. INTRODUCTION

&[ERIVATION of relativistic wave functions and
wave equations for particles of arbitrary spin is

now a classic problem of quantum Geld theory. In the
past three decades a variety of wave equations have
been proposed, and the method employed in their
derivation and quantization has been successively
revised and generalized. ' ' The problem has acquired
realistic importance by the discovery of many reso-
nances of high spins.

In the approach due to Dirac, Pauli, and Fierz~'
the relativistic wave equations of high spin were
expressed by a set of differential equations, among
which there were a certain number of subsidiary con-
ditions. Such an expression made it diS.cult to con-
struct the Lagrangian, which requires a compact,
single matrix equation. Introduction of interactions

'A detailed bibliography on classical works can be found, for
example, in Refs. 2 and 3.

E. M. Corson, Introduction to Tensors, Spinors and Relativistic
Wave Equations (Blackie 8z Son, Glasgow, Scotland, 1953).

I H. Umezawa, Quantum Field Theory (North-Holland Publish-
ing Co., Amsterdam, 1956).

4 P. A. M. Dirac, Proc. Roy. Soc. (London) AISS, 447 (1936).' M. Fierz, Helv. Phys. Acta 12, 3 (1939).
M. Fierz and W. Pauli, Proc. Roy. Soc. (London) A178, 211

(1939).

was also dificult, because the interactions frequently
contradicted subsidiary conditions.

Harish-Chandra~ and Bhabha studied in detail the
algebraic aspects of wave equations of the special form

(p„a„+m)g =o. (la)

Although this equation has such a compact expression,
it has a drawback: Its solutions correspond, not to
unique spin, but to several spins. Furthermore, though
we know that P matrices are the ones satisfying the
condition

(p p)"--'L(p p)' —p'j=o (lb)

(where s, is the maximum spin of P and p is a four-
dimensional vector), it has been an extremely dificult
task to find an explicit expression for p„.

Derivation of various wave equations of high spin
and their quantization (i.e., derivation of commutation
relations, of Green's functions, of normalization con-
ditions for wave functions, etc.) were put together in
a simple formulation~" by means of a differential

' Harish-Chandra, Phys. Rev. 71, 793 (1947); Proc. Roy. Soc.
(London) A192, 195 (1947).

8 H. J.Bhabha, Rev. Mod. Phys. 17, 200 (1945);21, 451 (1949).
9 Y.Takahashi and H. Umezawa, Progr. Theoret. Phys. (Kyoto)

9, 1 (1953); Nucl. Phys. Sl, 193 (1964).
"H. Umezawa and A. Visconti, Nucl. Phys. 1, 348 {1956).
~'D. Lurie, Y. Takahashi, and H. Umezawa, J. Math. Phys.

7, 1478 (1966}.
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operator )usually written as d(8) and called the d
operator), existence of which is due to the IGein-Gordon
equation: When a wave equation

leads to the Klein-Gordon equation, there exists an
operator d(8) which satisfies the relation

d(8)A(8) =A(8)d(8) = (g—m'). (2)

It has been shown' that the Harish-Chandra condition
(1b) is a simple result of the combination of (1a) and
(2). The general formulation based on the use of the
d operator has frequently been used in modern articles
on high-spin particles. " '~

The d(8) operator is known to be intimately related
to the projection operators which have been extensively
used in the current literature. ""To be more specific,
the d operator acts as a projection operator for energy
momentum on the mass shell. This property of the
d operator has been emphasized in the second article
of Ref. 9 and also in Ref. 22. As was shown by Fronsdal, '
when the energy momentum is not restricted by the
mass-shell condition, the projection operators in general
contain certain singular terms. Since one of the roles
of wave equations is to confine the energy momentum
to the mass shell, the construction of wave equations
requires a knowledge of projection operators for arbi-
trary values of energy momentum, leading us to the
appearance of singular terms in the expression of the
wave equations themselves.

These singular terms have been eliminated by the
introduction of auxiliary fields of the kind discussed by
Fierz and Pauli in their early articles. This method has
been revised and fully developed by Chang. " In this
approach there naturally appears a certain number of
arbitrary parameters in the expressions of wave equa-
tions. In this paper we follow a different approach, in
which the singular terms are eliminated without any
explicit use of auxiliary fields. As will be discussed
later, we meet again some arbitrary parameters.

A complication in problems of relativistic wave
equations of high spins is due to a huge variety of
choice for expressions of field equations. Such a variety
is due, first, to freedom in choosing the representation
for the wave function P. For example, the spin-sr wave
function can be realized in the spinor representation, the

~ A. Kawakami and S. Kamefuchi, Nuovo Cimento 48A, 239
(1967)."S. Kamefuchi, H. Shimoidara, and H. Watanabe, Nucl. Phys.
82, 360 (1967)."S. C. Bhargavra and H. WVatanabe, Nucl. Phys. 8?, 273 (1966)."L.M. Nath, Nucl. Phys. 68, 660 (1965)."S. Kamefuchi and Y. Takahashi, Nuovo Cimento 44, 1

(1966)."R.J. Rivers, Nuovo Cimento 34, 386 (1966}.' C. Fronsdal, Nuovo Cimento Suppl. 9, 416 (1958).
'9 W. K. Tung, Phys. Rev. 156, 1385 (1967).
~ S. J. Chang, Phys. Rev. 161, 1308 (1967); ibid. 161, 1316

(1967).
2' D L Pursey, Ann. Phys. (N. Y.) 32, 157 (1965).
» A. Auriiia anIi H. l7mezawa, Nuovo Cimento 51A, 14 (1967).

three-spinor representation, the vector-spinor repre-
sentation, and so on. There is a further variety even
when we stick to a special choice of representation of f.
As a matter of fact, it has been showni3, i8,23 4 that the
general form of the Lagrangian for spin +~ in the vector-
spinor representation contains one arbitrary parameter,
even when we restrict the order of derivatives in the
Lagrangian to be the lowest one (i.e., of the first order),
and therefore that the Rarita-Schwinger equation"
corresponds to a special value of such a parameter. In
fact, there is no simple criterion in preferring one reali-
zation to any other. Although these two ambiguities,
which are the price we pay in order to obtain simple
covariant properties of wave functions, are irrelevant
in the case of free fields because of the equivalence of
the various theories, it is no longer trivial when an
attempt is made to construct a quantum theory of
interacting fields. Green s functions, in fact, will

depend, in general, upon the choice of the representa-
tions, and in a given representation, they will depend
upon a certain number of the arbitrary parameters
mentioned above. The relevance of the choice of repre-
sentations can be seen in studying the electromagnetic
properties of a field of spin &. It has been shown, '
for example, that a system of spin ~ described by a
third-rank spinor is not equivalent to the Dirac fieM

in the presence of minimal electromagnetic interactions.
This observation could be of interest in the physics of
strong interactions, particularly in connection with
the problem of nuclear magnetic moments. "In regard
to the presence of parameters in the equations, it
should be noted that they appear, as will be shown later,
only in the off-shell part of the operator d(8) and reflect
the existence of fields of several spins, which manifest
themselves, not in. the form of free particles, but by
their dynamical effects due to interactions. For example,
it is for this reason that the spinless pion can decay
through the intermediate vector meson without violat-
ing the law of conservation of angular momentum. An

interesting question is how far the S matrix can be
independent of the choice of parameters. It has been
stated by several authors'2 '4 that, as far as the
minimal electromagnetic interaction is concerned, the
S matrix does not depend upon the values of these
parameters (equivalence theorem).

Interactions have usually been introduced through
the Lagrangian in order to avoid contradiction between
interactions and subsidiary conditions, because in such
a formulation the subsidiary conditions themselves
come out of the Lagrangian. Although such a method
might well work in nonquantized theories, the question
of internal consistency arises once commutation

2~ P. A. MoM.auer and K. M. Case, Phys. Rev. 102, 279 (1956).
~ K. Johnson and E. C. G. Sudarshan, Ann. Phys. (¹Y.) 13,

126 (1961)."W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
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relations are introduced 5 ~9 2 ~ In the presen. t
paper we are not concerned with the latter question.
Since the main difhculties of the higher-spin theories
are caused by the existence of redundant components
of the wave functions, there have been other ap-
proaches' "which are formulated in terms of only the
independent components satisfying the Klein-Gordon
equation. In such a formulation the wave function
possesses only the 25+ 1 components which are
necessary to describe an object of spin s. Weinberg in
particular derived Feynman rules for particles of any
spin by means of the boosting techniques. In this
approach the explicit construction of the Lagrangian
is not required at all. In the present paper we propose
a manifestly covariant formulation in which the wave
functions are classified in terms of irreducible representa-
tions of the inhomogeneous Lorentz group.

As was shown by Wigner and Bargmann, ' " the
irreducible representations of the inhomogeneous
Lorentz group are specified by two quantities (mass and
spin). Therefore, wave functions of any spin can be
explicitly written down when one knows the projection
operator which sorts out corresponding irreducible
representations. The projection operators and wave
functions are constructed usually by the booster
operator which transforms the wave function in the
rest system into the one in the moving system. However,
the construction of the projection operators and wave
functions becomes much simpler when use is made of
the Pauli-Lubanski matrix, "which makes it unneces-
sary to refer to the rest system and which therefore
avoids use of the booster operator. We have shown in
a previous paper" how to construct the projection-
operator by means of the Pauli-Lubanski matrix.

Since an essential role of the relativistic wave equa
tion is to pick out a wave unction of a gi~ren spin, it is
natural to expect that the knowledge of projection
operators should be heIpful to construct the wave equa-
tions. This paper is aimed at presenting a systematic
method for derivation of relativistic wave equations
(of unique spin) by means of the projection operators
with no explicit use of auxiliary fields.

In Sec. 2 we shall present the general structure of the
method. The method is made up of two steps. The first
step is to derive a compact expression for relativistic
equations of several spins. In pa,rticular, when this
method is applied to a many-spinor representation, it
enables us to rewrite the Bargmann-Wigner equations

"P. Federbush, Nuovo Cimento 19, 572 (1961)."' J. Schwinger, Phys. Rev. 130, 800 (1963)."S. Weinberg, Phys. Rev. 133, 81318 (1964); 134, 3882
(1964}."D.L. Weaver, C. L. Hammer, and R. H. Good, Jr., Phys. Rev.
135, 3241 (1964).

go E. P. Wigner, Ann. Math. 40, 149 (1939).
"W. Sargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U. S.

34, 211 (1948).
32 J. K. Lubanski, 'Physica 9, 310 (1942).

in a compact, single matrix equation. "'4 This method
helps us also to find an explicit expression of the
Harish-Chandra P matrices, because no auxiliary fields

appear in wave equations. The second step is to derive
wave equations of a specific spin, from the wave equa-
tions obtained by the first step, by means of the spin-
projection operators. It should be noted that the method
can be applied not only to the maximum spin fields, but
also to every kind of spin field in the representation
concerned (e.g., to two kinds of spin- —', fields in the
representation of S,„=—',). This method explains also
why the general form of the Lagrangian for high spin
contains the arbitrary parameters which have been
discovered by many authors" " '~*' "' in the case of
spin 2, 2, and ~. In Sec. 3 we illustrate our method by
several examples. In Sec. 4 we summarize the main
results of our argument. In Sec. 4 we also show how to
extend our method to cover the case of spin-dependent
mass spectra.

2. GENERAL METHOD

A. Classification of Wave Functions

Let us begin with a covariant description of a wave
function of given spin (say, s) in terms of two quantities
which are invariant under the inhomogeneous I-orentz
transformation:

The two quantities are

(«)

2~&"~p"p ~Appall &ppp& ' (4b)

Here p„ is the energy-momentum vector and w„ is
the Pauli-Lubanski matrix" defined as

"In Refs. 16 and 34 are found detailed considerations of the
Bargmann-Wigner equations of spin $. A more systematic and
simpler version, based on the use of auxiliary 6elds, has been
presented by S. J. Chang (Ref. 20).

34 G. S. Guralnik and T. W. 3. Kibble, Phys. Rev. 1398, 712
(1965).

1~g= 2 &pv~p+v~pp )

where ~„„„is the antisymmetric Ricci tensor. These
two quantities commute with the ten generators of
the inhomogeneous Lorentz transformation and, con-
sequently, are multiples of the identity operator for
each irreducible representation of the inhomogeneous
I.orentz group. The eigenvalues of 8' have a form

(—p')s(s+1), where s is either an integer or half-
integer and is called spin. The eigenvalues of P are
usually written as —m', and m thus defined is called
mass. Each irreducible representation of the inhomo-
geneous I.orentz group is specified by two numbers
(es,s). Wave functions for m, s are the eigenfunctions
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of I' and 8":
(p'+~')0(p) =o,

~~(p) = (-+1)p'~(p) {D;(s), s=(s. . . s„; ), i=1, , ««(s)),

each selecting respective irreducible representations.

B. Construction of Projection Operators

Equation (4) is the Klein-Gordon equation. " There
are two sets of such g(p) which are distinguished by
the sign (e=+) of the energy po. Each set has 2s+1
linearly independent components which are distin-
guished from each other by eigenvalues of the polariza-
tion operator de6ned by

Our next task is to construct the projection operators
D;(s). To do this we employ algebraic induction.

I et us begin with the basic representation of a single
spinor (i.e., the Dirac space). Obviously,S 'p =zÃ4,

%e have thus introduced the following projection

(6) operators:

where S is the spin vector ( iS—», «S—», —F12).Thus,
the relativistic wave functions are specified by four
quantities: m, s, s„, and e. Here s denotes the polariza-
tion eigenvalue.

Let the wave functions &t (p) be realized in tensor
representations, in spinor representations, or in their
mixtures. Let us call such representations for p(p) the
basic representations. As is well known, pure tensor
representations can be used only for particles of integer
spins. The matrix 5„„is 6xed when the basic representa-
tion is speci6ed. Each basic representation contains
several spin spaces: s=s, s, —1, , s;„+1,
smi««) Here

s; =0 for integer s,
for half-odd-integer s,„.

To obtain the wave function with a specific spin s, one
needs a projection operator to select the representation
of spin s. Such a projection operator can be easily
constructed by means of (7). The result is

l~max=~min= g p

and the basic representation itself is irreducible:

D(«) =~(«)=I. (13)

Here I is the unit matrix.
%e shall now choose the vector representation as the

basic one. Then we find that s,„=1and s; =0, and
that each spin space is irreducible:

D(1)=&(1)= —(1/2P'P',
D(0) =P(0)= 1+(1/2P«)W.

Here use was made of relation (10).
I et us now consider two basic representations E.(')

and E&«& and denote the projection operators D;(s) in
R&'& and R&«& by D;&'&(s) and D;&'&(s), respectively.
Then construct a new basic representation E, by the
direct product of these two representations: E=E("
SR& &. The projection operators P(s) in the new repre-
sentation E can be obtained by means of (10).Construct
now all the products of the form

W+s'(s'+1) p'
~()= II—

«'» —s (s+1)p'+s'(s'+1) p'

Here s' runs over the numbers (s,„, s, —1,
s „),avoiding s. It is obvious that

Z &(~) =1

(10)
with a 6xed s and varying i, j, s', and s". Each non-
vanishing product of such a kind is the member of the
set {D,(s)) (for the specified s) in the basic representa-
tion R.

Let us 6nally note that the method presented here
does not require any use of the booster operator.

~(~) =Z D'(~) (12)

"Equations of the form (6) and (7) were considered by D. L.
Pursey Ref. (21). Several methods of handling subsidiary con-
ditions pan be found in the game referen|;e,

Since the representation of the maximum spin (i.e.,
s =s, ) appears only once, this representation is
irreducible. In other words, I'(s„„„)selects an irreduc-
ible representation. This is the projection operator
derived in our previous article. " On the other hand,
the representations of s(s,„, are not irreducible. I.et
us denote their multiplicities by n(s). Each irreducible
representation of spin s can be selected by certain pro-
jection operators which will be denoted by D;(s)
[i=1, , ««(s)]. Obviously,

C. Construction of Wave Functions

Suppose now that a basic representation is given and
let the symbol f(p) stand for functions which belong
to the basic representation and which satisfy the Klein-
Gordon equation:

(P'+~')f(p) =o

Then, wave functions of particles of («««,s) are given by
D, (s)f(p), which will be written by f;&'& (p).

However, there is a further complication when the
basic representation is a direct product of a certain
number (say, r) of spinor spaces, possibly together with
a tensor representation. Let us denote the Dirac matrices
in these spinor spaces by y„&«& (J=1, , r). The linear
space of wave function f,'*&(p) is not irreducible, but
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is made up of several spaces (of spin s), which are dis- wave functions can be 6xed by the method presented
tinguished by a diferent choice of signs in the following in Refs. 22 and 9.
condltlons:

{i~ "'P +m)&t "&(P)=o {17)

which is called the Bargmann-%igner equation.
It follows from the Klein-Gordon equation for

q4&'&(p) that general solutions of (17) can be delned by
the following expression:

( ~ iy&—&&p+'m
~"&{p)=I II f"'(P)

EI-I 2m

=(ii
*'"'

")a&)f&P)

Let us rewrite this form by means of thc projection
operator"

X"'(P)= sf1+P 'b"'p)(v"'p)5,
j=2, ",r. (19)

Note that

X"(P) (—iV"'1+m)f'&'

=kf1 ('/ h-"'p5( i~"'—p+m) f"'(p)
iy&n p+m-

(—iv"'P+m)f "(P)
2

(
—$'r ' p+m

f"'(P)=
2m

—iv&'& p+m
-f"'(P),

2

because of the Klein-Gordon equation (16).Using these
relations, we can rewrite (18) in the following form:

{i»"ip.~m)f"&(P) =o

In other words, the linear space spanned by f,&'&(p)

is the direct sum of 2"spaces of spin s. Let us denote the
wave functions belonging to an irreducible representa-
tion of {m,s) by p;&'& (p). Such an irreducible representa-
tion can be selected, for example, by the condition

D. Compact Exyression for the Sargmann-
Wigner Equations

Let us now rewrite the set of equations (17) in a
compact form. To do this, we 6rst note that (20) is the
general expression for solutions of the following set of
equations:

(iy &I& p+. m)@,&'& (p) =0,
f1—x(P)34"I(&)=o.

In otherwords, (17) and (22) are equivalent to each
other. On the other hand, the set of equations in (22)
is equivalent to the following single equation:

i(&,ups)&t*&'&(p)=o, (23)

~(,'»=-('v p+ ) {p)- f1- {p», (24)

where e is an arbitrary parameter. "The equivalence
between (22) and (23) can be proved by multiplying
the projection operators X(p) or 1—X(p) into both sides
of (23). Equation (23) presents the single matrix equa-
tion which is equivalent to the Wigner-Bargmann
equation (17).

Dchning the operator

h(u, ip) = ( iy&I&—p+m)x(p)
+(1/u)(p'+m')f1 —X(P)5, (23)

X{u,ip)h(u, ip)=h(u, ip)X(u,ip)= —(p'+m'). {26a)

Therefore, the Green's function for Eq. (23) is given by
h(u, ip)/(ps+ms).

When r)2, Eqs. (23) and (25) have singular terms
due to the p ' term in (19).These singularities can be
eliminated by multiplying X with a certain nonsingular
matrix q(u, p):

R{u,ip) =q(u, p)X(u, ip) .
Let us further de6ne

—iy&i& p+m
~"i(p) =x(p) f"'(P)2'

iy&I& p+—m
=x(P) D'(~)f(P),

2m

where X is the projection operator dedned by

(2o)

so that
fi(u,ip) =h(u, ip)q '(u,p),

R(u,ip)h(u, ip) = lt(u, ,ip)$ (u,ip) = —(ps+ms) . (26b)

Construction of the matrix q(u, p) will be discussed later.
The operator q(u, p) does not in6uence the x(p) term
eitlier III X(u,p) oi III h{u,p), wlleI1

q(u, p)x(p) =x(p) (28a)

x(p) =II x "&(p). (21)

Equation (18) for (20)5 defines the general expression
for wave functions of (m, s). The normalization of these

"We write A&'&Q&&A&I& simply as A&'&A&&'&.

~' There is a more general expression for X:

&(&I «:~P) = (6 "'P+~)X(P)—Z'-I' + X (P).
Here fg;(p)) are the set of mutually orthogonal projection
operators which are orthogonal also to x.. g;(p)g;(p) =8;;y (p),
g;y(p) =0. For simplicity, we use a special choice of parameters;
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or

&(P)v '(~,P) =x(P) (28b)

D (~,~P)j"—- = (—~v"'P+m)&(P),

and therefore that

(30)

-(1 '- 1
ii(u, lp) = lt(a, 1p) ~

. (31)
(2m „~ ~ 2m

ln other words, (28b) is a sufficient condition for
(1/2m)h(a, ip) (with P~= —m2) to be a projection
operator.

is satisfied.
When (28b) is satisfied, then (25) and (27b) lead to

h(a, iP) = (—iy&'& P+m)x(P)
+(1i)(P+ )Lr (,»- (P)j, (29)

which shows that

Obviously,

G(P)f'(P) = I'(P)G(P) = —(P'+~') (39)

The most general expression for a relativistic wave
equation can be obtained by multiplying the primitive
form &(ip) by all possible nonsingular matrices:

~(&P)=n(P)~(~P). (40)

The corresponding d operator is given by

d(~P)=d(~P)v '(P),
because

d(~P)~(~P) =~(~P)d(~P) = —(P'+~') (42)

due to (36). The form (37) shows where the off-shell
terms Pi.e., the (p'+m') term) in the d operator come
from.

lt is convenient to choose g (P) in such a way that the
D;(s) term either in 4 or d does not change:

P(P)D;(s)4(P) =0,
D( N)P(P) =0 for (j,N) W (i,s) . (32)

Here (j,l)&(i,s) means that either j Wi or NWs. The
operator F(P) is defined by

E. Derivation of Relativistic Wave Equation

The wave functions $;&'&(P) for spin s are the solu-

tions of the following set of equations:

01

~(P)D'( )=D'( )

D'(~)n '(P) =D'(~)

When (43b) is satisfied, we find that

L&(e)3. - =LG(P)D'(~)j.

which further leads to

L(~(~P))'j"—-'= Ld(~P)j *—-'

(43a)

(43b)

(45)

F(p) = —(Ps+@I) for tensor representation,
= $, (u,ip) otherwise.

(33)

The operator t was given in the previous section
Lcf. (24) and (27a)j. Since D, (s) and D;(I) are pro-
jection operators, we see that (29) is equivalent to
the following equation:

with
X(~P)y(P) =0, (34)

~(~P) =~(P)D'(~) — Z ~'"'»(I) (35)
(j,u)g(i, s)

G(p) = 1 for tensor representation,
= h(u, p) otherwise. (38)

'8 A special case of such a form (i.e., s=$, a;("&=no) was once
derived by Fronsdal (cf. Ref. 18) in his consideration of the Pauli-
Fierz equation. There the projection operator D(~&) was con-
structed by means of the booster.

Here the parameters u ") are arbitrary, unless zero.
Equation (34) is a single matrix expression for a rela-
tivistic wave equation of (m, s). This form will be called
the primitive form. "The operator d(ip), which satisfies

d(iP)A(ip) =A(iP)d(ip)= —(P'+m'), (36)

is given by
1

d( P) =G(P)D*( )+ Z (P'+ ') D'( ), (37)
(j,e)Q(f, e) ~.(u)

where

gg;(s,u) =1+DE(s)Ag„(s,N)D, (e) (46)

when (28b) is also satisfied. In other words (43b) and
(28b) form a sufficient condition for Z(ip) (with
p'= —tu') to be a projection operator.

It was proved in the second article of Ref. 9 that
the d operator with P on the mass shell is a projection
operator when the nonderivative term in the wave
equation is a multiple of the unit matrix. Such a form
of the wave equation was called the standard form.
We have just seen that there is a much wider choice of
wave equations, for which the d operator with p on the
mass shell is a projection operator. Thus, generalizing
the meaning of standard form, we say that wave equa-
tions are of the standard form when the corresponding
d operator with P on the mass shell is a projection opera-
tor. We thus see that (43b) and (28b) form a sufficient
condition for A™.to be of the standard form. According
to this generalized definition of the standard form, the
Rarita-Schwinger equation for spin +~, for example, is
of the standard form although its nonderivative term
is not the unit matrix. It is obvious that the primitive
form is a special case Lg (p) = 1j of the standard form.

It happens frequently that h. has singular terms of
the p-s form. To avoid such singular terms restricts the
choice for g(P). Elimination of singular terms is per-
formed by repeated mixing of the terms in (35). This
means that the elimination is performed by repeated
multiplications of the following operators on A(ip):
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In other words, g is a product of operators of this kind.
When (k,v)W(j,u), g»(v, u) in (46) is nonsingular
whatever A ~, (v,u) is; its inverse is given by

with
(51b)

q
—'I„(v,u) = 1—DI, (v)A»(v, u)D, (u)

for (k,v)W (j,u) . (47)

When (k,v) = (j,u), A»(v, u) must. satisfy certain con-
ditions in order to make v»(v, u) nonsingular. In par-
ticular, when A»(v, u) is a c number (say, u), p». (v,u)
with (k,v)= (j,u) takes the form 1+aDI, (v) which is
nonsingular unless u= —1. The elimination of p '
singular terms can be performed in the following way.
First, choose a set of A&;(v,u) in such a way that the
operators DI, (v)A»(v, u)D, (u) and their repeated pro-
ducts produce all the singular terms which appear in
A(ip) in (35). It is wise to begin with the choice
(k,v)W(j,u) and also with

3. EXAMPLES

In this section we shall illustrate the method pre-
sented in the previous section by means of several
examples.

A. Scalar Basic Representation

The wave function has a single component @(P).
Since S„„=Oin this representation, we see that W=O.
The basic representation itself is irreducible and the
relations (35) and (36) read as

A (ip) = —(p2+m2),

d(ip) =1.

oi
(j,u)& (',s)

(k,v) W (i,s) . (48b)
(g—m')P(x) =0.

(48a) Thus the wave equation is

The conditions (48a) and (48b) correspond, respec-
tively, to (43a) and (43b). Instead of presenting a
general but lengthy explanation, we shall illustrate the
method in Sec. 3 D by means of the vector-spinor repre-
sentation for s= ~. The situation is quite similar when
we want to avoid the singularities in X(a,p) (cf. (27))
by means of a suitable choice of q(a, p); we again choose
a product of operators of the form (1+&;Co&,), where
X; and X, are two projection operators chosen from the
set (&«'+') defined by &&&'+'=1&p '(p'"' p)(q ' p).

F. Construction of Lagrangian

The covariant form of A™.is not Hermitian due to the
indefinite nature of the Minkowski metric. To change
A into a Hermitian operator, we nf ed a nonsingular
matrix p of the form

~=(II v4"')(II g'") (4»)
l

where the first bracket is the direct product of y4
matrices associated with the spinor su%xes of the wave
function, and the second bracket is the direct product
of the metric tensors g=—(g„„) due to all the vector
suRixes:

g;;=1 for i=i 2 3;
g f e

g„„=0 otherwise.

(49b)

L, = de @(x)X(a)y(~), (51a)

We shall choose the arbitrary parameters appearing
in A in such a way that pA™.becomes Hermitian:

Xt(ip)p=l i( zp) . —(50)

The Lagrangian can be constructed as

Then (4b) leads to

~"(P)= 2(p'~" P.p—.) -(53)
The projection operators are given by relation (10):

D, (1)=E.,(1)= —W„/2p'
p.p./p' — (54)

D.n(0) =I'"(o)=p.p./p' (55)

The primitive form (35) of the wave equation reads,
in the case of unit spin s= 1, as

A &'~ (iP) = —(P'+ m') D (1)—aD (0),

where a is an arbitrary parameter.
The p

' singular terms do not appear when a=m2.
In this case, we find that

~:"'Bp)= L(P'+m')v-. P-p,j — (56)—
which gives the well-known Proca wave equation":

(g m')y. 8.8pyp 0—. — ——

The d operator is given by (37) as follows:

d.,&'& (ip) =b.,+p,p,/m'

The primitive form (35) for the spinless case is

A&'&( p) i= —(p'+m')D(0) —aD(1).

"A. Proca, Compt. Rend. 202, 1490 (1936}.

(57)

B. Vector Basic Representation

The wave function is a four-dimensional vector
$„(p).This representation contains two representations
(s=1 and s=0), each being irreducible. 3y inspection of
the Lorentz transformation of p„, we see that



The primitive form (35) of the wave equation for the
splI1-1 case rcMl, s as

~()( p)=(1/2p')('~ p+m)lf - (1+~/2p), {6»

Here too, the p ' singularities do not appear when
u=eP. This choice for the parameter u leads to

~"(')(p')= ~&.p.+ '&"]
which leads us to the following equation for spizzless

particle~:
where a is an arbitrary parameter. Because of the
relation

(69)(P p)ll'= 2pI-'(P p),
where I' is the matrix de6ned by

C. Tvw-Syinors Basic Reyresentation

The wave functions in this representation are repre-
sented by P s, where n and P are spinor suKxes. The

111Rti'lees Rssoc1Rtcd wltll tile suKxcs (E Rll(i p Rrc

denoted by y„&'~ and y„&2), respectively. There are
spin states, i.e., s=1 and s=o. The representatio
each spin is irreducible:

D{1)=&(1), D(0)=f'(0).

(70)

As divas sbown in. Ref. 2&, this matrix satisfies the
relations

two LP,P„]=0,
n fol' (71)

We can compute h (') in (68) by means of (69) and find
that A")(zp) does not have any p ' singularity when
a=m; this choice for a leads toThe Lorcntz transformation of (t s shows that

If Ap (t lf ' ( ) (p, p)z pz(p, p)
The corresponding d operator can be derived by means
of (37). The result is" 64 leads to the relation

~.,")(p)={1/ ')t:{p*+ ')~"—P P.]

0)+g„(&)

=fA» ] (61)
with

h(')(zp) = —(zp p+m) P2)

(i) 1L~ (i) ~ (()] (62)

(63)p —1(+ (1)+& (&))

The relation (4b) leads to

~=p(~) ~pp+2{-p)]+49 p)' (64)

The projection operators are obtained from (10) Rs

D(1)= —W/2P&, D(0) =1+8 /2P'. {65)

Let us now construct the operator )(((z,zp) 1nt»duced
by (24). There is o»y onc pos»»»ty f» X'"(p) de-
fined by (19), i.e.,

x(p) =x {p)=lL1+p-'(~"'p)(~'*'»]

wlllch CRQ be I'cwrlttcn Rs

).{m zp)= —Lzg p)+m] (67)

which has the well-known

Dugan-Kemmer-I'etiau

form" ". Since )((m,iP) does not contain any P z

singularity, we can use)((m, p) itself as l((m, p) Lcf. (33)].
4' Equation (58) leads to the K1ein-Gordon equation for g„y„:

(Q—m~)8„@„=0. Denoting 8„$„by f, Eq. (58) shows that
@(r= (j./tlat )8(rp. Thus' @1=@g=fg=01nthe 1'est system.

4' It is interesting to note that
g(0) —

pN d( ) and g(0) — (I///am)g(1&

42 R. J. DufBn, Phys. Rev. 54„114 (1938).
43 N. Keller, Proc. Roy. Soc. (I.ondon) AI73, 91 (I939)."G. Petiau, thesis, Paris, 1936 (unpubIished).

The p-z singularity in )( {(z,p) disappears when we choose
the parameter as a= m. In this case wc Gnd that

&(m, zp) = —{2z(v"'p) L1+p 'h "'p)(~"'p)]+m&

Therefore, the wave equation for P with s= I is

{P„B„+m)(t(x)=0. (74)

This is the equation which has been derived in our
previous paper. 22 The derivation in this paper is more
systcQlatlc RIld simpler thRn t/lc plcvlous onc,

I.et us now compute the d operator. To do this, we
shall f(rst construct h(m, p) by means of (25) and (66):

k(m, zp) =h(m, p)
=-l.'Q p)-(1/ )(@ p)'

—{1/m)(p'+m')] P5)

This agrees with the d operator'" for the Du8in-
Kcnlrller-Petiau equation, solutions of which have
s= i or 0. Yo derive the d operator for the case of unit
spin s=1, we make use of the expression (37):

(f(') (zp) = h(m, zp)D(1)+ (1/(1) (p'+m')D(0) .

Note that we have chosen the parameter c so that
(1=m. Making use of (65), (69), and (71), we obtain

d(')(p)=-E (8 p)-(1/ )(4 p)'
—{1/m)(p'+m')] (&6)

The priinltlvc folT11 (35) for thc spilllcss case reads Rs

A(') (zp) =A (m,p)D(0) —(zD(1) . (7'f)

We shall choose (1=m to avoid the p z singularities.
Then, using (65) and (67), we find that

h(')(zp) = —
I z(p. p)+m] (7g)
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with
P~= (1 f'—)P~ (79)

ls
The d operator can be computed by (37)'. The result

d"'('P) = —L'(P P)—(1/ )(~P.P)'
—(1/m) (p'+m')7. (80)

~(2) =Di(k)+D2(k).

Making use of the relation

(s„,).„=(s.„g„—s„,s..)+Is.,Lv„,v.7,
we can derive W' from (4b). The result is

(82)

~.P = (»/4)p'~. —0+P'v.vP+2P.PP

+(v'P)(v.P, P.v.) (8—4a)

which will be simply written, in the following, as

(15/4)P'+P—'vv+2PP+(v P)(vP Pv) (84b—)

The rule of abbreviation is obvious.
The projection operators 8(—,') and P(—,') are derived

from (10) as

2'(5) =1—svv —(2/3P')PP
(1/3P') (v p) (vP —Pv) (85)—

and

f'8) = 3vv+ (2/3P')PP+ (1/3P')(v P) (vP Pv) (86)—
To compute Di(-,') and D, (-', ), we shall use the pro-

ducts in (15), in which R&'& and R'~& are chosen to be a
vector and a spinor representation, respectively.
Nonvanishing terms of the form (15) with s= 2 are the
following:

Di(2) = LD"'(1)D "&(k)Ã(k), (87)

DR(k) =LD"'(o)D"'(2)3'(k).
Recalling that D& &(i2) is the unit matrix in R&", we find

that

Di(2) = avv —(1/3P')PP+ (1/3P')(v'P)(vP Pv)

D~(k) =P 'PP. (9o)

Here were used the expressions (54) and (55) for D"'(1)
and Do&(0), respectively.

According to (35) and (24) (with X= 1), the primitive

D. Vector-Spinor Basic Representation

In this representation the wave functions are repre-
sented by @„, , where p and o. are the vector and spinor
suQixes, respectively. Such wave functions correspond
to spin ~ and spin —,'. There is only one irreducible repre-
sentation for spin ~~:

DI)=&(2)

There are two irreducible representations for spin ~.
We thus have two projection operators, Di(—', ), and

D2(g)l fol' spill 2 .'

form for spin g 1s

A""'('P) = —(~v P+»i)D(-')
—air&iDi(-,')—aimD2(-,'). (91)

The corresponding d operator is given by (37) as

d""&(ip)= (—iv P+~)D(-')+ L(P'+~')/~7
X((1/,)D, (-,')+(1/, )D, (-;)), (92)

where (25) was taken into account. In the following,
Di(—,') and Di(i2) will be simply denoted by Di and D2.

The operator A&' &&(ip) given by (91) contains four
kinds of singular terms:

P 'PP P '(v P)PP (v P)vP, (v P)pv (93)

The singular terms do not disappear simultaneously for
any choice of the parameters u~ and a2. Therefore, we
shall use the nonsingular matrices of the form (46) to
eliminate the singular terms. For the sake of simplicity
we shall choose the matrices Ai;(e, s) in (46) in such a
way that their derivatives are of the lowest order. %e
shall thus begin with A &,;(u, i&) with no derivatives. The
possible form of such a kind is yg. Then, note the
following relations:

DivvDi=p '(v'P)pv P'PP-
DivvD2=P 'PP P'(v P)v—P

D~vvDivvDi = (3!P')PP,
DgyyDgyyD j =3Dg.

(94a)

~ (P)=1+L(g/ )O'P)+g 7D vvD,
»i(p) =1+6(i fiick)(v p)+ fi7D2vvDi.

(95b)

Not all of the four parameters gi, gq, fi, and fi are
necessary for the purpose of eliminating the singular
terms: Since both (v p)D~vvDivvDi and D2vvDi
X (v p)vvDi can create the singular term of the second
form in (93), all of the four types of singular terms in
(93) can be eliminated even when fi=0 or gi=0. We
shall, however, continue our discussion with the four
parameters in (95b) in order to obtain a wider class of
wave equations. The matrix g&' " satisfies both of the
conditions (43a) and (43b).

4' Note that the projection operators D(g), D1, and D2 commute
with (g p).

Thus, B2yyD~, D~yyD2, and their products create all
the singular terms in (93) except the second one (i.e.,
(v p)pp/p'). Therefore, we shall introduce the first-
order derivative through two matrices, " i.e.,
(v p)D2vvDi and (v p)DivvDi. The second term in
(93) is now created by the following product:

(v P)D2vvDivvD2= (3/P') (v P)PP (94b)

Therefore, all the singular terms of (93) can be elimin-
ated by means of the following nonsingular matrix:

~""(P)=~~(p)vi(p), (95a)
with



It 1s Obvious flolll tile 1'clatlolls Ul (94R) Rlld (94b)
that the product q2gI creates no terms of the form

(v p)vv, because the latter term requires the existence
of the product (V p)D1VVD1VVD1, as is shown by the
last line of (94a). Therefore, certain terms of the form

(V p)VV come out when we multiply q1g1 by a matrix
which contains DI~D2. Since Dj~am is a part4' of
yy, it is much simpler to use yy itself instead of D~yyD~.
Because of the relation

D(4)vs =vvDB) =o

botl1 of thc coIldlt10118 (43R) Rnd (43b) RI'c satisGcd

by the following nonsingular matrix:

gg(P) = 1+kvv, kW —r1,

the inverse matrix of which is

n1 '(p) =1—Lk/(4k+1)&V.

Ke thus see that the number of parameters in the wave
equations of the standard form increase even when-we
take y1(p) into account. Summarizing, we obtain a
wide class of expressions for A&'12' of the nonsingular
standard form as

~&"&('p)=.(P)A&'"&(e),

.(p) =..(p)"(p). (p)

Practical computations are Inuch simpli6cd when
use is made of the relations in (94a) and (94b) and of
the following:

which state that Dg fDj and DqyyD2 anticommute with
(v p)

When the parameters g1, g2, f1, f1, «, and 02 satisfy
thc 1'clRtlons

01=SL4—(1/«) 3
f1= (1/3«) («—1),
r1= (1/3«) («—1)

f1«=g1« 3«&—

(99)

no singular terms appear in X, which then takes the
following form:

A""&(1P)= —((1'v p+~)—."L1—(2«—3g102)kj
X (v p)vv+ sp(« —1)+(4«—1)kjmvv
—s&(1+3g1«)(vP —Pv) —31'«—(3g1«—2«)k jpv—»(2@&~—3)kvP}—(3f1g1«/w1)

XE(1+»)PP k(v p—)vpj . (1OO).

A»s s«n from (99), this form of X depends On three
Parameters, 1C, «, k, and f1. As was anticipated,
clirn1natlorl of singular' tcrxGS ln A. docs not 6x gq and
f1, but gives only a relation among them pi;e. , the last
of Eqs. (99)j.Since the parameter k does not appear in
(99), it has nothing to do with the elimination of sing-
ular terms. Indeed, k was introduced, not for the purpose
of eliIDination of slQgulRI' tclrns, but to xQodify thc
coefficient of the (v p)vv term in (100).

The d operator corresponding to X in (100) is calcu-
lated by the relation

D1vvD1(v P)= (v p)D1vvD—1,

D1vvD1(v p) = —(v.p)D1vvD1,

d""&(&P)=d(~p)~ '(P),
(98)

with d(1p) give»n (92). The result is

(1ol)

2PP (P'+~') -t 1
~""&(~p)=( 1v P+~) —1—svv+ (vP —Pv)+ —+-- —

vv
3ts 3 te1 m («3 4k+1 «gs

g1f1 (P'+~') 3k 3k
p'» PP+(v p)vP ——1— (v p)pv . (1O2)

01 m' 4k+1 4k+1

In this computation use was made of the relations in

(94a), (94b), (98), and (99).
As was shown by the last term in (100), in general,

A contains derivative terms of the second order. The
wave cquatlons of thc erst-order dcr1VRtlvcs arc. ob-

tained when'~

and their forms are given) respectively) by

&""( &)P=-&(' vp+ )--(1-2.k)(, .p)„-
+:L("-1)+(4.,-1)kj v;

3'(1—2k)vP+k&(1 —2«—4«k)pv} (104a)

f1=0 01' g1= 0 ~

«Note that DJ~~DI —-3DI aM D&~yD~ ——D~."RecaO that el' =0 is prohibited.

for go=0, and
(103)

A""'~p)= O'V P+~) s1(—V p)VV+s(0 —1)m VV—
si&1vP —3&(vP—Py)1 (104b)
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for fr=0. Here we used the relations in (99). In
(104b) the parameter a& is defined by

(106)pIIv +4gpv y

up= or+ (4ag —1)k. (105)

We have thus obtained two sets of A of the standard
form with 6rst-order derivatives: X in (104a) contains
two parameters az and k, and X in (104b) contains only
one parameter a~.

Let us note that aq ——0 when aq ——n/(1+4k). There-
fore, a~ ——0 is not prohibited, although aq ——0 is pro-
hibited. The form of A in (104b) with uq=0 givea the
well-known Rarita-Schwinger equation. 2'

When aq ——1 in (104b), A takes the Harish-Chandra
form (1).This is the form given in. our previous paper
[cf. Eq. (4.37) of Ref. 22]. Another expression of the
Harish-Chandra form is given by (104a) with
k= (1—ar)/(4aq —1).This expression still contains one
parameter, i.e., a~.

Let us now construct the Lagrangian. To do this we
need the nonsingular matrix p, which in the present
case is given by

according to (49a). In the case of (104a), pX becomes
Hermitian [cf. the condition (50)]when the parameters
a& and k satisfy the condition

The Lagrangian is
(107)

(108)

we can show that the latter Lagrangian agrees with
(108).Thus the origin of the parameter in the Lagran-
gian is now explained.

The d operator corresponding to X in (104a) with
k = —u~* is obtained from (102):

with P=@~p. This Lagrangian contains one complex
parameter a~. As a matter of fact, a Lagrangian with
one parameter has been presented by several
authors. '3' ' 4 Introducing the symbol

2 =-,'(2k —1)A ——,',

1 2 pp (p'+m') 1 9 2 3~& i
d&'~»(ip) =( iv p—+m) 1—,'vv+ (vp —pv)+ —+-

~
vv+ 1- ~p

3m 3 m' m 12 l(4~&—1)l' 3 4uq —1 m

2 3up* i -2 2+- 1—, Pv+ —— (5I I' — — ') ~(v P)v (109)
3 4ur* —1 m 3

l (4u& —1) l' m

When we use X in (104b), pX becomes Hermitian when

and only when a&= 0, leading us to the Rarita-Schwinger
Lagrangian, which does not contain any parameter.

Let us now turn our attention to the case of spin
(i.e., s= —,') in the vector-spinor representation. In

this case too, we can derive quite a general form of wave
equations which contain certain parameters. However,
for simplicity, we shall fix the parameters from the
beginning. There are two sets of equations correspond. -

ing to two irreducible representations of spin ~~.

According to the method [cf. Eq. (35)]presented in

previous sections, the primitive form is

A, o ' (ip) = —[(zv p)Dg+m]. (1.10)

Here we have chosen the parameters in (35) as
g, &'~»=a&'~'&=m. As is seen from (89)& this form of A

contains only one singular term, i.e., (v P)PP/P .
According to (94a), such a singular term appears in

(v.p)D&vvD2. Thus, the singular term in A, "'" can
be eliminated by means of g&(P) in (95b) with g2 ——0.
The elimination requires, further, that g& ——3. The
result is that

Ar""'(iP) =e(P)Ai""'(ip)
[l (iv p)vv Qpv+—m]—

which gives the following wave equation for the case of

A ""'(p)=~.(p)A. ~ ~ &('p)
= —(ipv+m), (115)

which gives the following wave equation for spin ~:

B„v„g„+m$„=0. (116)

The corresponding d operator is

d~&'~'&(ip) = (i/m)(iv p m)pv+(p'+m')/— m, (117).

spin g .'

s [( v~) v, v,
—~„v.]p.+md„=0. (112)

The corresponding d operator is given by (41)
together with (37) as follows:

d "'"(p)=l(—v p+ )[vv+('/ )pv]
+[(P'+m')/m](1 —le) (113)

Another primitive form of wave equation for spin —',
is given by

A2""'(ip) = —[(iv P)D.+m] (114)

Here too, we have chosen the parameters in (41) as
g&&'f2~ =g &'~2) =m. The operator A~ &'I'~ also has a
singular term of the form (v p)pp/p', which can be
eliminated by g2(p) with f&——0 and f& 1[cf. (95b) and-—
(94a)]. The result is
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Although q& and g2 do not satisfy the condition
(43b) with D, (s)=D1 and D2, respectively, the wave
equations (112) and (116) are still of the standard form:
(1/2m)d1""'(iP) and (1/2m)d ('{"(iP) are projection
operators when p'= m—2 [cf. (45)].This is because any
wave equation of first-order derivatives is of the stand-
ard form when the nonderivative term is the unit
matrix with a constant coefficient.

A detailed analysis of wave equations of spin ~ in
the vector-spinor representation will be presented
elsewhere. Here, Eqs. (112) and (116) are presented to
illustrate the general method given in previous sections.
These equations may be generalized by means of
different choices of parameters.

$,(o,a)y(~)=0. (118)

Such an operator is needed also in the derivation of wave
equations of unique spin and mass [cf. (32) and (33)].
Already in Sec. 3A, we have illustrated the construction
of ) by using the two-spinor representation. This
example, however, was too simple to illustrate the
general technique. Here we will construct ) in the
three-spinor representation. The result presents a
matrix equation which is equivalent to the Bargmann-
Wigner equations (17) with r=3.

The wave function now has three-spinor suffixes
The Dirac matrices concerning the suQix 0.;

will be denoted by y(') (i= 1, 2, and 3). The Bargmann-
Wigner equations are

(i~„'p(„+))pm=0, i=1, 2, 3. (119)

To rewrite (119) in the compact form (118), we
need the projection operator X(P) in (21):

(p) = l[1+p '(v"'p)(v"'p)]
&&[1+P 'h"'P)(~"'P)] (12O)

According to (24), the primitive form X takes the form

X(m,ip) = —('y(" p)x(p) —m, (121)

where, for simplicity, we took the parameter a as
c=m. It may well be that a more general choice for a
will lead us to a wider class of 'A with certain parameters.

The operator X in (121) contains only one singular
term of the form p-'(~ '& p) (q ' p) (p(2 p). To
eliminate this singular term by means of the nonsingular
matrix I7(m, p) in (27), we shall introduce the following
projection operators:

x22+= 2 [1~ (v"'P) (v"' p)/p'], (122)

I

E. Three-Syinor Basic Reyresentation

The operator )((a,p) defined by (27) together with
(24) is the one which enables us to put the Bargmann-
Wigner equations into one matrix equation as

and note the relations

x„-x(p)=0, x(p)x„+=x(p), (123a)

+~ {1)7 (2) (~(2) .p)X
— 1 (~(1).p)

+-'(~."'v "')[(v"'P)- (v"'p)]
—(1/2p') (p(') .p) (p(') p) (p(». p) . (123b)

Since the latter product contains also the singular
term of the form p-2(q(') p)(q(') p)(p(2) p), the singu-
lar term in X can be eliminated by the following choice
for q(m, p):

(f(m, p)=1+(ic/m)x22+y„(')y„(2)(y&'& p)x„—. (124)

The elimination of the singular term requires that
c=-', . The result is

X(m,ip) =g(m, p)X(m, ip)
= —(-'i(v"'P)+4[(v"' p)+ (v"'p)]

+-.(~.()~.(&)[(7& & P)-(.(& P)]+m&
z m )

with

P = 27 "'+4(7 "'+7 "')
+1(7 (1)y (2))(p (2) ~ (2)) (126)

We have thus succeeded in rewriting the Bargmann-
Wigner equations of s, =2 in the form of one matrix
equation. The matrices P„ in (126) present an explicit
form of the Harish-Chandra p matrices (for s,„=-22)
written in terms of the Dirac matrices. The P matrices
in (126) satisfy the Harish-Chandra relation

0 P)'=P'(~ P), (127)
as they should [cf. (1b)].

The operator I2(m, iP) satisfying

I2(m, ip) X(m,ip) = X(m, ip) I2(m, ip) = —(p2+m2)

can be obtained by (28) together with (25) and (124).
The result is

h(m, ip) =m i(p p) (1/m—)[m'+(—p p)']
+ (i/m')[m2+ (p p)2](p p)
+[(p'+m2)/m][1 —i(p.p)/m]. (128)

It can be shown that

&~ P)'= lP'+l (~"'P)(7"'P)+'(v"'p)-
&&(7"'p)+-'(v"'P) h ('& p)+-'p'(~( & &( &)

y 1
(y (1) .y (2)) (y (1) .p) (y (2) .p)

—8(v"'7"')(7"'p)(v(' p)
1 (~ (1) .+(2)) (7 (2) .p) (+ &2& .p)

(4 P)'= 'P'h "'P)+ '.P'(v('-) p)+ 'p'(y(»-p)-
+ 1

(p (1) .p) (p (2) .p) (~ (2) .p)
(y(1) .7(2)) (y(1) p)p2 2 (~.(1) (2))

X(&(') P)P'+-'(q(') q())h & & p)p2
+ 1 (+(1).7(2))(+(1).p)(7(2).p)(+(2) p)

(p (1).Ir (2))2 (~ (1) .p)p2

+—'.(7"'7"')'b"'p)(7(') p)( & & p)



].M

where (p&» p&») meang (y.o~y„'2&). The matrix q(m, P)
satisfies the condition (28a). Although the condition

(28b) is not satisfied, still the wave equations (118)
with (125) are of standard form, because (1/2m) h(m, ip)
is a projection operator Lcf. (31)].This can be seen
from the fact that the nonderivative term in $.(t@,8) ig

the unit matrix with the coefFicient ns.

To select out the wave equations for spin ~3 and

spin ~ separately, we need to follow further the steps
which were discussed in Sec. 3. Such equations will be
discussed elsewhere.

4. CONCLUSIONS

In this paper we presented a general method for
deriving relativistic wave functions and wave equations
for arbitrary spins. According to this method, relativistic
equations appear in the compact form of single matrix
equations, thus leading immediately to the Lagrangian.

The method consists of two steps. The 6rst step is to
derive wave equations for several spins (s, s —1,

~ ~, s;,).These equations are written in the form of a
single matrix equation X&&=0 Pcf. (27)]. When the
basic representation is a many-spinor representation,
this method enables us to rewrite the Bargmann-signer
equations in the form of a single matrix equation. This
method also presents a way of deriving the Harish-

Chandra P matrices. An exphcit expression for P„was
given in Sec. 3 E.

The second step is to derive the wave equation of

unique spin. This step is essentially based on use of the
spin-projection operators D;(s). It should be noted that
these operators are constructed not by the booster

operator, but by means of the Pauli-Lubanski matrices.
Since the general form of d operators is also given, the
quantization of the wave equation is immediate. The
wave equations thus obtained in general contain a
certain number of arbitrary parameters. This explains

why certain parameters had appeared in thc equations

for spin ~ introduced previously by several authors.

According to our method, the wave equations arc
erst written in the primitive form which contains

certain p
' singular terms. Since the existence of such

terms is unpleasant, wc presented a general method for
elimination of these singular terms by means of a
certain nonsingular matrix ll(P) rathei than by means
of the usual technique of using auxiliary fields. In the
examples in Sec. 3, we took, for the sake of simplicity,
g(p) in such a way that the matrices A»(v, u) in equa-
tion (46) do not contain any power of p higher than the
erst order. In general, we can introduce any higher-
order derivatives in the wave equations by introducing
higher powers of p in g(p) D.e., in A»(v, u) in (46)].
It may be that elimination of the P s singular terms in
the wave equation may be unnecessary because the
effects of p g singular terms in the wave equations
(i.e., in A.) and those in the Green s functions (i.e., in d)
are expected to compensate each other in each Feynman
diagram. However, these p

' singular terms may cause
much trouble when we want to introduce the minimal
electromagnetic interactions (p ~ p —eA).

It has been known through many examples that the
d operator in general contains terms proportional to
(p'+uP), which contribute to the Green's function by
the so-called off-shell term. The expression (37)
explicitly explains why such terms exist. Furthermore,
we see from (37) that the off-shell terms carry a variety
of spins Lexpressed by u in (37)]. This is the reason,
for example, why the spinless pion can decay through
the intermediate vector meson without violating the
conservation law of angular momentum.

Let us close our consideration by showing how to
extend our method to cover more general cases where
there exist multimasses, the values of which depend on
spins: When the masses depend on (i,s) as m(i, s), the
equation of the primitive form Lcf. (35)] is given by

(129)
4 ~ S

Eliillillation of p
2 singlllar termg cgn be performed in

the same way as in the single-mass case.


