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A two-term separable approximation to the two-particle t matrix is developed which preserves exact be-
havior at each bound-state or resonance pole. While introducing no additional singularities, the approxima-
tion also produces the exact right-hand cut. This separable approximation is applied to the three-particle
scattering problem with local potentials, and numerical results are obtained for the three-body binding energy
jn the case of the Vukawa and exponential potentials. A prescription is given for increasing the accuracy of
this approach by systematically increasing the number of separable terms. This procedure is tested nu-
merically, as is a method for estimating the error in such calculations. Binding-energy results are also pre-
sented for a modihed pole approximation, and a simple explanation is given for the infjnite-binding-energy
phenomenon observed by Osborn for separable potentials.

L INTRODUCTION

1

�~QUANTITATIVE
results have never come easily~ in the three-body problem, and this remains true

today despite significant advances in the mathematical
theory. Although an exact and rigorous treatment of
three-particle scattering has been formulated by
Faddeev' it is well known that formidable mathe-
matical difficulties arise when one attempts to solve the
Faddeev equations for an arbitrary potential. As a

. result, almost all of the calculations which have been
based on the Faddeev formalism have relied on the use

of separable potentials. From a phenomenological point
of view, this approach has been reasonably successful.
However, while they lead to enormous simpli6cations
in the mathematics, we have considerable reason to
believe that such nonlocal potentials are physically
unrealistic.

In order to solve the Faddeev equations with more
realistic potentials, it is necessary to develop new com-

putational techniques. For this purpose, two possible

approaches seem promising. The most direct method
is to improve numerical quadrature techniques to such

a degree that multidimensional integrals can be ac-
curately evaluated with a minimum of integration
points. This approach was recently employed by Osborn'

to calculate three-particle binding energies in the case
of a Yukawa or exponential potential. While of high

accuracy, thi's method. requires the manipulation of
very large matrices (S~& 100) and is suitable only for
the largest of current computers. It is thus rather cum-

bersome for use in the type of model calculations
currently performed with separable potentials. Con-

sequently, it seems desirable to have an alternative
method of somewhat less accuracy, but which is com-

parable in simplicity to a separable potential calcula-
tion and can be handled on a small computer.

For this purpose, several authors have suggested
variations on an alternative approach to such calcula-
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~L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 89, 1459 (1960)

LEnglish transl. : Soviet Phys. —JETP 12, 1014 (1961lg.
~ T. A. Osborn, Stanford Linear Accelerator Center Report No.

SLAC 79, 1967 (unpublished).

tions. This approach involves approximating the two-
particle t matrix by a sum of separable terms. The
simplification which results is equivalent to that pro-
duced by separable potentials. Depending on how the
separable approximation is chosen, the resulting
separable f matrix may or may not be derivable from a
separable potential. One means of doing this was sug-
gested by I.ovelace' for the case where the two-body
subsystems are dominated by a bound-state or reso-
nance pole. Recently, a more general and systematic
procedure has been proposed by Ball and Kong. '

In the following sections we consider the separable
t-matrix approach in some detail. We begin in Sec. II
by describing the reduction of the Faddeev equations
to a set of one-dimensional integral equations under the
approximations to be introduced. In Sec. III we give a
brief review of separable approximations, and in the
process develop a set of criteria to be applied to such
approximations. These considerations lead us to the
definition of a new separable approximation in Sec. IV.
Using this approximation as a starting point, we define
a procedure for calculating correction terms to succes-
sively improve its accuracy. The effectiveness of this
approximation is tested numerically in Sec. V, where
binding-energy results for the exponential and Yukawa
potentials are compared with those obtained by Osborn.
In addition, numerical results are obtained for a method
introduced to estimate the error in such calculations.
Section VI is devoted to a discussion of the general aims
of our approach and analysis of the results obtained.
Here we also present a, simple explanation for a phe-
nomenon observed by Osborn.

11. REDUCTION OP THE PADDEEV EQUATIONS
%'e choose to work with a modification of the Faddeev

equations which is obtained by expressing the three-
particle scattering operator TPV) in the form

T(5') = Q T PV)+ Q T (VV)X p{$')TpPV). (1)

' C. Lovelace, Phys. Rev. 135, 81225 (1964).
4 J.S. Ball and D. Y. Wong, Phys. Rev. 169, 1362 (1968).
5 A more detailed discussion of the theory and our notation is

given in D. D. Brayshaw, Phys. Rev. 176, 1855 (1968).
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Here T (W) describes the two-body scattering of
particles P and y when /r is undeflected (/rPy cyclic), and
the operator X o(w) describes the propagation of the
system between an initial scattering of 'particles n and y
and a final scattering of P and y. One finds that X s(w)
satisfies the equation

X o(w) =3 pGO(w)+ P t'/ &Go(W) 2"&(W)xvs(w) (2)

tion to be negligible in calculating the three-pa, rticle
binding energy and the free-particle —bound-state scat-
tering amplitude. In the general case, we may not ex-
pect to be this fortunate, but it is reasonable to expect
good accuracy with just a few partial waves included.

The second step is to assume that each ti(p', p;s)
can be accurately approximated by a sum of terms
separable in the initial and final momentum (p' and p)
variables, i.e.,

where
~-s= (~-s-1) t(p', P; )= 2 A '(P';)C. '()A. '(P, ) (4)

l"=0 2 4

p//2dp// d //Kr P&

x(p'q'I p''q", w)x"(p' q"
I pq; w). (3)

Here the l indices label the relative angular momentum
of any pair of particles, and the kernel is proportional
to o6-shell matrix elements of the two-body partial-
wave scattering operator ti(s). The energy available to
a two-particle subsystem is the total energy lV less the
energy 4q'" of the third particle; hence s= W —4q"' in
Eq. (3). (Here we choose units such that the mass of
each particle is unity. )

The solution of Eq. (3), which is exact, completely
determines the J=O three-particle scattering ampli-
tude through Eq. (1).However, the problems involved.
in obtaining this solution are far from trivial, as one
must cope with an infinite set of coupled equations in
two variables. We therefore consider two simplifying
approximations which are commonly employed to
reduce Eq. (3) to a form suitable for numerical solution.
The first step is to restrict the index l to a finite set of
values, say, 0&l&L. In most cases, this is probably
well justified, the reason being that the partial-wave
amplitudes ti(p', p;s) tend to decrease quite rapidly
with increasing l. For example, in the case of scattering
from an exponential or a Yukawa potential, the l=2
amplitude is typically less than i%%uo of the l=0 ampli-
tude. One would then expect that the error involved in
taking I.=O would be quite small for such potentials.
This has been checked in the case of the Vukawa poten-
tial by Ball and Wong, 4 who found the l= 2 contribu-

6 A. Ahmadzadeh and J.A. Tjon, Phys. Rev. 139, 81085 (1965).

and Go(W) is the free three-particle propagator. By
taking matrix elements of (2) between the usual three-
body states

I p q ), one obtains a six-dimensional
integral equation of the Faddeev type.

If we specialize to the case of three identical spinless
particles there is only one amplitude, (p'q'lx(w) I pq),
to consider. Making an angular momentum decomposi-
tion along the lines suggested by Ahmadzadeh and
Tjon, ' we find that the J=O amplitude satisfies the
equation

x"(p' qlp qw) =z"(p'q'lpq; w)

From the symmetry of ti(p', p; s) under the exchange
p'+-+ p it follows that Ci,„'(s)=C„i'(s), providing that
we take the functions A&, '(p', s) to be linearly in-
dependent. The approximation stated in Kq. (4), how-
ever, is considerably more dificult to justify than the
neglect of the higher partial waves discussed above. A
straightforward calculation of the o6-shell t matrix for
any simple local potential, and its comparison with the
more obvious types of separable approximations, will
soon convince one of this. However, it is still plausible
that Eq. (4) can be made sufficiently accurate by taking
Iq i large enough and by choosing the A&, '(P, 's) functions
with maximum eKciency. It is this approach that we
will be primarily concerned with in this paper and we
therefore proceed under this assumption.

We define

Xi„"(q',q; W) = P'dP P"dP'A"'(O', W 'q")—

dq"K/ /, "'(q' q";W)X&, "(q"q W). (6)

Here

K/, /, "(q',q; W) =q' Q C/,„'(W ,'q')Z/, „"(q',q; W——). (7)

Equation (6) is of a form that can be readily handled
numerically, providing that L, and the ~V&'s are not too
large. In fact, it is just a slightly generalized version of
many similar equations obtained by substituting
separable t matrices into Eq. (2) directly. The path
followed above, however, will be of some assistance when
we consider how to choose our separable approximation
LEq. (4)j with maximum effectiveness. It is worth
pointing out that Eq. (6) is also formally identical with
the equations one obtains by assuming separable (non-
local) potentials. The meaning of the word "formal"
here is that the separable form chosen to approximate
the off-shell t matrix in Eq. (4) need not correspond to

XA„'(p, W 'q')X" (p'q'—
I pq; W), (5)

and similarly for Z/, „"(q',q; W). It follows from Kq. (3)
that the Xi„"(q',q; W) satisfy the coupled equations

X/, „"(q',q; W) =Zi, „".(q', q; W)
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any separable t matrix one can derive from a separable
potential. Our primary consideration is to fit the values
of the function ti(p', p;s) over some domain of its
variables, emphasizing the regions where accuracy is
most important. The criteria used in employing sepa-
rable potentials, which typically involve fitting some of
the on-shell two-body data, may not be compatible
with this objective. As an example, we observe that
requiring the right side of Eq. (4) to satisfy off-shell

unitarity is unnecessarily restrictive for calculations in
which s&0.

One reason for working with Eq. (2) is that some of
the amplitudes X2„"(q',q; W) can themselves take on

physical significance in certain cases. The most common
example is when the two-body system has a bound
state or resonance of energy so occurring in partial
wave /. For s in the neighborhood of so, we have

g(p')g(p)
ti(p', p; s) = +R(p', p'; s),

s —$0

then (9)
il(Ei 2 El/2' IV) =.cy2ro(E)

where ro(E) is the quasi-two-particle amplitude for
scattering of the third particle off the bound state, and

E= 2PV sp) . — —

III. SEPARABLE APPROXIMATIONS

In performing three-body calculations via the
Faddeev equations, the usefulness of separable t

matrices has been emphasized by many authors, in-

cluding Mitra, Amado, ' and Lovelace. ' Consequently,
a great deal of effort has been devoted to the study of
approximations which lead to separable off-shell

amplitudes. In this section we briefly review some of the
progress which has been made in this area. In the pro-
cess, we will formulate a number of the conditions which
we would like to impose on such approximations.

The simplest approximation is of the type proposed

by Lovelace'; we shall refer to this as the "pole approxi-
mation, " since it is applicable when the partial-wave
amplitude has a single pole of energy s=so, and takes
the form

g(p')g(p)
t, (p',p; s)

s—$0
(10)

This formula is based on the well-known factorization

7 A. N. Mitra, Nucl. Phys. 32, 529 (1962); Phys. Rev. 131, 832
(j.963).

8 R. D. Amado, Phys. Rev. 132, 485 (1963).

where E(P',P; s) is regular at s2. Here the function g(P)
has significance as the form factor for formation of the
bound or resonant state. It is easy to show that if one
of the Ay'(p, s) functions defined in Eq. (4) has the
property that

Ai '(P, s2) = ci g(P),

of the residue in terms of the form factor g(p), and the
expectation that the singular term should dominate for
values of s not too far from so. Since the maximum
value of s which occurs in the Faddeev equation is 8',
the total energy, one would expect the pole approxima-
tion to produce its most reliable results when 8'&so.
In this case the error would come almost entirely from
the region where s is large and negative, and this region
is suppressed by a p"+ 22 @—I~V denominator in Kq. (3),
as well as by the decline in the values of ti(p', p; s) itself
as s moves away from the pole. Thus, if s2(0, Eq. (10)
should be suitable for calculating the low-energy scatter-
ing of the third particle from the two-body bound state.
To a lesser extent, it might also produce reasonable
accuracy in a three-body binding-energy calculation.

On the other hand, Kq. (10) will not produce the
imaginary part of the amplitude for s) 0, as it does not
have the right-hand cut. In order to do three-body
scattering or bound-state breakup calculations, one
introduces more complicated formulas which reproduce
the pole while satisfying unitarity. The prescriptions for
doing this are essentially equivalent to working with a
separable potential, and the imaginary part thus
generated need not correspond to that of the actual
amplitude. The approximation will also fail if the
partial wave admits more than one bound or resonant
state, as is the case in many interesting problems in
nuclear physics. However, turning the argument for this
approximation around, it is clear that we should exclude
any approximation which does not correctly reproduce
the behavior of the amplitude at its poles.

The ideas which led up to Eq. (10) ca,n be generalized
in a way which leaves us with more freedom with which
to remedy its defects. What we are looking for is a
separation of ti(p', p; s) into two parts,

t, (p', p; s) =xi(p', p; s)gati'(p, p; s),

where ti'(p', p; s) consists of a small number of separable
terms and contains all poles of the amplitude. Thus
Ri(p', p; s) is a smooth function of s. A straightforward
and systematic way of doing this has been investigated
by Hall and Kong. 4 Their method is based on the ob-
servation that, for s(0, the eigenfunctions p„(p; s) of
the Lippmann-Schwinger (LS) equation form a com-
plete set. Hence, for negative s, ti(p', p; s) has the ex-
pansloIl

X„(s)
t&(p', p; s) = p —4„(p', s)p„,(p; s) . (12)

a=i 1 X„(s)

In this representation a pole of ti(p', p; s) corresponds to
an eigenvalue X (s) passing through unity. If we keep
only those terms in Eq. (12) for which this occurs, the
resulting expression will be a suitable candidate for t~'.

The number of separable terms is thus determined by
the number of bound states supported by the potential.
This number is small for simple short-range potentials
of the Yukawa or exponential type, and one would
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therefore expect this procedure to be particularly useful
for these potentials. Furthermore, the accuracy of the
approximation a,t values of s away from the poles can be
successively improved by taking additional terms of the
series. In principle, this provides a means of performing
a three-body calculation for W&0 to any desired degree
of accuracy; In practice, of course, this will only be
feasible if the terms fall OH quite rapidly with increasing
n.

It is clear that the disadvantages of this approach lie
in the number of separable terms required, which is
critical in many applications. For systems in which
there are a large number of bound states, or potentials
for which the convergence of the series expansion is slow,
the number of terms can be prohibitive. Also, the ap-
proach as it stands is not suitable for calculations in
which 8'&0.

These considerations suggest that we impose more
stringent requirements on t&'. Namely, we might require
that the number of separable terms contained in II,

' be
small and fixed, independent of the number of poles
(bound-state or resonance) in the amplitude. We might
also require that t~' contain the right-hand cut of the
amplitude, so that the approximation t~=f~' gives the
exact imaginary part of t~(p', p; s) for s)0. Although
this seems at 6rst glance to be quite a large order, there
are actually several ways of obtaining such a Il,'. One
can see this most directly by noting a simple property of
the LS equation, which we write in the form

t~(p' p s) = V«P' p)

dg g
Vi(p', q)A(q, p; s) (13)—s—$6

Alternatively, in operator notation,

t((s) = V)—V)GO(s) t)(s),
with

~(p' p)p'-
(l'I Go($) I p) =

—S—fC

If we dehne a new potential" V~(p', p;s) by the
cqu ation

V(p', p; )=V (p', p) AV (p', p; ), -
and require t~(s) to satisfy the I S equation with this
potential, the solution t~(s) of Eq. (14) can be written

tg($) = ti(s)+At((s),

At)($) = L1+V)(s)GD(s) j-'A Vi(s) I 1+Go(s) Vi] '
=

I 1+V(G,(s)g-'A V)(s)L1+G,(s) V((s)]-'. (16)

Therefore, if A V~(p', p; s) is chosen to be separable, i.e.,

AV «p', p; s) =A i(p'; s)Bg(p; s), (17)

it is clear from Eq. (16) that At~(p', p; s) will be separable

t, '(p', p; s) = At, (p', p; $),
«(p', p; )=t(p, p; ). (18)

where k=s'" for s)0. Thus, for s)0, V((p', q;s)
vanishes linearly as q

—+ s'I', and hence the kernel of the
LS equation for t~(p', p; s) has no singularity for positive
s. As a result, t~(s) is continuous across the positive
$ axis, and At(($) possesses the exact right-:hand cu't. I't
remains to be shown that for this choice of AV~(p', p; s)
all the poles of t~(s) occur in At~(s). This is actually quite
simple, since At&(p', p; s) takes the explicit form

At«p', p; s) =pi(p', $)ti(k, k; s)p~(p, s),

p((p, s) = t)(p, k; )s/t)( ,kk;s) .

(20)

If t, (p', p;s) has a pole at s=so, comparison with Kq.
(10) shows that At«p', p; s) has both the pole and the
exact residue. Defining tt'(p', p; s) by Eq. (18), we ob-
tain the approximation suggested by Noyes' and by
Kowalski. "

The Noyes-Kowalski approximation thus represents
one possible solution for t~', satisfying the conditions
stated prior to Kq. (13).In many respects it constitutes
a considerable improvement over the approximations
considered earlier. On the other hand, it has some
additional undesirable features which may be trouble-
some in certain applications. These arise from the
presence of t~(k, k; s) in the denominator of Eq. (20).
Here we note that the definition k=s'f' for s&0 sug-
gests two possible definitions of k for s(0. The choice
made in 5-matrix theory is that k=s'" for all s and
this leads to the familiar simple analytic properties of
the amplitude as a function of s. In particular, t~(p', p; s)
for $(0 is the analytic continuation of t~(p', p;s) for
s&0, and this amplitude is analytic in s except for the
right-hand cut. However, for this choice k is pure
imaginary for s(0 and tg(k, k; s) will possess the usual
left-hand singularities of the (analytically continued)
on-shell amplitude. In addition, t~' may possess un-

'S. WeiIIberg, Phys. Rev. 130, 776 (1963); ljl, 440 (1963).
0 H P Noyes, Phys. Rev. Letters 15, 538 (1965)."K.I . Kovralski, Phys. Rev. Letters 15, 798 (1965).

Furthermore, AV~(p', p; s) can be chosen in such a
way that the Born series for t~(p', p; s) converges for all
s; this has bccn emphasized by Wcinbcrg ln a scllcs of
papers on the "quasiparticle method. " If this is done,
the function At«p', p; s) will clearly possess all. the poles
of t)(p, p; $). The trick, of course) ls to guess a plopel
form for AV~(p', p; s).

If we now impose the requirement that t~(p', p; s)
does not have the right-hand cut, the possible choices
of AV~(P', P; s) are severely restricted. One possibility
is that

V)(p', k) Vg(k, p)
AVg(p', p; s) =

V((k,k)
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physical poles due to the possible vanishing of t&(k, k; s).
In fact, such zeros of ti(k, k; s) are known to occur for
suKciently large potential strengths in many potentials.
Thus, although t&'(P', P; s) will reproduce the exact
amplitude at each bound-state or resonance pole, it
will also possess a number of additional singularities
which do not appear in the actual amplitude. This
forces us to rule out the choice k=s'~' in many cases.

As shown by Osborn, ' the left-hand singularities of
ti(k, k; s) can be eliminated if we take instead k=

~
s~ '".

This prescription preserves the correct behavior of the
approximation at the poles of tg, and also along the
right-hand cut. However, the amplitude for s(0 is no
longer the analytic continuation of t&'(P', P; s) to nega-
tive s, although the approximation is continuous at
s=0. Furthermore, nonphysical poles can still arise due
to zeros of t&(k, k; s). The former difhculty is probably
not serious, but the latter appears to restrict the use-
fulness of the Osborn modification to values of the
potential strength somewhat less than that required to
create a second (two-body) bound state.

In passing, we note that the Noyes-Kowalski
approximation possesses the interesting property that,
for s&0, it gives the exact half-on-shell amplitude
t&(P', s'~'; s) when either P' or P is equal to s'i' (on-shell).
This property does not appear to have useful con-
sequences in calculations for which W(0, but for
8')0 this point is favored by the vanishing of the
P"+xsq"—IV denominator in Eq. (3).

Finally, in attempting to compare the relative ac-
curacy of each of the above approximations over a
range of values of s, it is important to note the following
point. Our expectation that these approximations will

reliably reproduce the behavior of the exact amplitude
is based primarily on the pole-dominance argument, i.e.,
that a function which correctly reproduces the poles
will be a good approximation elsewhere. However, there
is an essential ambiguity inherent in this argument. This
is due to the fact that we may replace the function g(P)
which occurs in Eq. (10) by

G(p, s) =g(P)+ (s—so)h(p, s), (21)

where h(p, s) is any function which is regular at s=sp.
The behavior at the pole will thus be preserved, but the
behavior of the approximation in neighboring regions
will depend on the choice of h(p, s). Each of the above
approximations gives rise to a different h(p, s), and thus
their relative effectiveness at some distance away from
the pole is difficult to, assess without actual computation.

From this point of view, a critical test of a separable
approximation is provided by a three-body binding-

energy calculation. If we choose a potential which sup-

ports a single two-body bound state of energy sp, these
calculations typically involve values of s which are
considerably less than sp. Thus we only need to evaluate
fi(P', P; s) at some distance from the pole. Numerical
results for the Vukawa potential by Ball and Wong, by
Osborn, and by the author are compared in Sec. V for

this purpose. The effectiveness of the Noyes-Kowalski
approximation has also been investigated for the square-
mell potential by Reiner, "who explicitly calculated the
off-shell matrix elements and compared them with the
exact result and several other separable approxima-
tions. " In this case the Noyes-Kowalski formula was
found to be orders of magnitude more accurate than the
other separable forms considered.

IV. SEPARABLE APPROACH

In Sec. II we reviewed the well-known simplifications
which occur in the Faddeev equations when a separable
approximation is introduced for the off-shell two-body
amplitude. Our purpose is to take advantage of these
simplifications in performing three-body calculations
with local potentials. To do so, we need a systematic and
rapidly convergent procedure for generating accurate
separable approximations. In this section we consider a
particular approach to this problem.

The approximation we have in mind corresponds to
the following explicit choice for the function A Vi(P, P; s)
introduced in Eq. (15). We define

g dg
fi(P») = . Vi(v P)

P q
—S—Ze

(22)
fi(P'»)

A Vl(p', p; ~) =- — Vi("",P) .
fi(s' '») —1

Although f&(s'i'») and V&(s"',p) are, properly speaking,
only defined for s real and positive, we will allow s also
to be negative, in which case these functions are to be
regarded as their respective analytic continuations. We
may now define two functions i&(p', p; s) and At&(p', P; s)
as in Eq. (16). From the argument of Sec. III and Eq.
(22), we see that Ati(P', P; s) is separable in the variables
P' and P. In fact,

At i(P', P; s) =Gi(P', s) ti(s'",P; s),
where (23)

Gi(P', s) = —L1 —f~(s'"»)] '

dP(P'IL1+ U(~)Go(~) j 'IP)f (P,~).

In other words, Gi(P', s) satisfies the integral equation

Gi(P', s) = —[1—fi(s' '») j-'f, (P',~)

oo
P2dp —U, (P',P; s)G, (P») . (24)

P —s —ze

The above formulas thus provide a means of dividing
t~ into a separable term At~ and a remainder term E~.

"A. S. Reiner, Nuovo Cimento 51A, 1 (I967).
"See, for example, J. Y. Guennegue's, Nuovo Cimento 42A,

549 (~966).
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We now observe that ht~ contains the entire right-han. d
cut of t~, i.e., t~ is continuous across the positive s axis.
A proof of this is given in the Appendix. , As a con-
sequence, t~ is real for real s, and At~ has the exact
imaginary part of t& for positive s.

Furthermore, if our potential is such that it can be
written as a superposition of Vukawa and exponential
potentials, it can be shown that the "Born series" for
t&-converges absolutely for all real s, i.e., the infinite
series

follows from Eq. (26) that

Di(s)
—'=1— (29)

If Eq. (29) can be established independently for a
given local potential, it will follow that At~ gives the
correct behavior at each pole of t~, and that t~ has no
poles of its own. This can be accomplished if we consider
the function

ti(s) = Vi(s) —Ui(s)Gp(s) V~(s)

+V (s)G (s) V (s)G (s) V (s) (25)
F,(s) —= (30)

converges. The proof of this is given in [Aj, '4 where the
off-shell amplitudes t&(p', p; s) generated by such poten-
tials are expressed in terms of functions r~(p', p; s)
defined by a convergent iterative procedure. Employing
the notation of [A], the functions deined above have
the following representations:

t~(s'I', p; s) = [r~(s'",p; s)+r~(s' ', p; s)]/Di(s)—,

D,(s) = 1+its'~'( —1)'rg(s'", —s'I'; s),
G,(p', s) = ( 1) 'i7rs'—"r&—(p', s'" s), —

ti(p', p; s) = r~(p', p; s)+( 1)'r~(p—', —p; s) .

(26)

and
G (s'" s) = 1-D (s)

t, (s' ',p; s) = D&(s) t&(s' ',p; s).
(27)

From the convergence of the rg functions we im-
mediately obtain the convergence of Eq. (25). It follows
that At~ contains all the bound-state or virtual-state
poles of t&, and hence that the separable term correctly
gives the residue at each such pole. From Eq. (27) we
infer that this is also true if t~ has complex poles cor-
responding to resonances. We therefore conclude that
for potentials of this class, the separable term ht~(p', p; s)
correctly gives the behavior at each bound-state or
resonance pole, and gives the exact imaginary part of
tq(p', p; s) for positive s.

We have not proved the former result for other local
potentials, but that it is at least plausible can be seen
from the following argument. From Eqs. (16) and (22)
it is straightforward to show that

tE(s'~', p; s) = 1— g dg
tg(s'", q; s) tg

0 g
—s —zc

&((s'i' p s). (28)

Thus, for potentials of the class considered above, it

"D. D. Brayshaw, Phys. Rev. 167, 1505 (1968), hereafter
referred to as I A$.

Here D~(s) is the usual "D function" in partial wave t,
and the above relations imply that

with
ti(p', p; s) = t('(p', p; s)+RI(p', p; s),

R((p,p; s) =v[t((p', p; s)+t((p, p', s)j.
(32)

The first approximation to our three-body calculation
is then obtained by employing the two-term separable
approximation t~'(p', p;s) in the Faddeev equations.
Greater accuracy can be obtained by approximating
R&(p', p; s) by a separable form, say,

Ni
R)(p',p; s) Q Ag'(p', s)Cg„'(s)A„'(p,s). (33)

X,p=3

and show that it is analytic in s except for a right-hand
cut, and vanishes as s~~. This is plausible because
t&(p, q; s) has only the right-hand cut in s, and the
singularities in the p variable all depend on q for local
potentials. The latter singularities will typically be
washed out in the q integration. To show this for a
given potential, it is easy to see that one may work. with
V&(s'",q) instead of t&(s'12, q; s) in Eq. (30). Once this
is established, the analytic properties in s of the right
side of Eq. (29) uniquely determine it to be D&(s) '. An
example of a local potential not of the Yukawa or ex-
potential type, but for which Eq. (29) is nevertheless
valid, is the spherical "square well. "

We wish to make use of the separable term ht~ as a
first approximation to t& in performing three-body cal-
culations. As noted above, it has most of the desired
characteristics discussed in Sec. III. In particular, it
exactly reproduces the behavior of t& in the neighbor-
hood of each bound-state or resonance pole. However,
since 4(p', p; s) is symmetric under the interchange of
p' and p and ht~(p', p; s) is not, one would expect the
approximation to fail except in the immediate vicinity
of such a pole. This difficulty is avoided by symmetriz-
ing in the p' and p variables, resulting in the separable
approximation

t('(p', p; s) = -', [G)(p', s) t((s'",p; s)
+G~(p s)t~(s'" p'; s)1 (31)

This is clearly of the form of Eq. (4) with Q, =z. The
approximate amplitude t~'(p', p; s) is related to t~(p', p; s)
by the equation
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FIG. 1. Binding energies for the exponential potential as calculated
from two- and more-term separable approximations.

Since the above-mentioned properties of t& imply that
Ri(p', p; s) is a smooth function of s, it is reasonable to
expect that R&(p', p; s) will be considerably simpler to
approximate than ti(p', p; s) itself. Furthermore, if the
partial-wave amplitude has one or more bound-state or
resonance poles, Ri(p', p; s) should be small compared to
ti'(p', p; s) over a wide range of its variables, and hence
even a crude approximation to R2(P', P; s) can improve
the accuracy of the result. For example, in the case of a
single Vukawa or exponential potential, numerical cal-
culations by the author found R&(p', p; s) to be less than
10%%uo of the total amplitude over a broad range of p', p,
and s (the calculations were performed with unit range
and couplings large enough to generate at least one
bound state). In this case an approximation to Ri(p', p; s)
good to within 10% results in an over-all error of 1%
or less.

Several methods of approximating Ri(P', P;s) were
tested by the author for these potentials, both by direct
computati. on and by the three-body binding-energy cal-
culations described in Sec. V. The main idea in all
of these was to approximate Vi(p', p) Land hence
V&(p', p; s)] by a separable form, and then to obtain a
separable approximation to t&(p', p; s) by solving the LS
equation with this separable potential. In approximating
Vi(p', p), the damping produced by the p"+xoq" —W —io
denominator in Eq. (3) for large p' suggests that it is
most important to reproduce ti(P', P;s) exactly for
small values of p'. Since we symmetrize in p' and p, we
should also require accuracy for small P. This can be
accomplished by choosing a separable form for V&(p', p)

which is exact when either p' or p are small. To lowest
order, this suggests the approximation

Uo(p', 0) Vo(p, 0)
Vo(p', p) (34)

Vo(0,0)

for the 1=0 case, and corresponding expressions for the
higher partial waves.

Although the approximation to Ri(p', p;s) which
results from using Eq. (34) can certainly be improved, it
nevertheless should suffice for our purposes under the
circumstances stated above, i.e., when the ti'(p', p; s)
term dominates. If necessary, one can add additional
terms to Eq. (34) to reproduce Vo(p', p) to higher orders
in p" or p'. Given this approximation, one can proceed
to calculate t2(p', p; s) in several different ways. The
simplest is to take just the "Born approximation"
ti(p', p; s)—V&(p', p; s). Secondly, one can solve for
ti(P', P; s) as in an ordinary separable potential problem.
The most accurate approach, however, is to just make
the separable approximation to V&(p', p; s) in the in-
homogeneous term of the LS equation, leaving the
kernel exact.

At this point one can reduce the number of separable
terms in the over-all approximation by making a slight
modification in the way in which we define tI,' and 5&.

With the present definitions the approximation of
Eq. (34) to Vi(p', p) results in a three-term separable
approxima, tion to Ri(p', p; s) or five terms over-all.
This number can be reduced to four by replacing
t&(s'",p; s) in Eq. (23) by t&(s'~', p; s) —V&(s'~2, p). The
corresponding change in t2(p', p; s) requires it to be the
solution of the equation

t2(s) = Vi —Vi(s)oo(s)ti(s) . (35)

Of course, if one is willing to make use of separable
approximations of four or more terms, there are al-
ternative methods to choose from, such as the method of
Ball and Wong discussed in Sec. III. However, our
main interest here is to provide a simple means of cal-
culating corrections to the results produced by the two-
term formula given in Eq. (31).The numerical calcula-
tions to be discussed in Sec. V indicate that our two-
term formula is highly accurate, and that even the
crudest of the methods used to approximate the
Ri(p', p; s) correction term is sufhcient to reduce the
error significantly. The simplicity of these methods
enables one to keep computer time to a minimum.

Finally, we note the explicit formulas for fo(p, s) in the
two cases studied numerically. For the exponential
potential with s-wave momentum-space representation
Vo(p', p), we have

4pG
Vo(p'p) =

~ (p' —p)'+t '(p'+p)'+t '

G
J.(p, )=

P2+ (p 2$1 t2) 2
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For the Vukawa potential,

(p+p')'+t '
Ve(p', p) = —— ln

2 t p'p (p -p'"—+t"
G p i—s'"+ip

fo(p, s) = ln
2i pp ts is'"—ip—

(37) -0.5—

V. NUMERICAL CALCULATIONS

In order to check the effectiveness of the two-term
separable approximation introduced in the last section,
a number of numerical calculations were performed.
Two typical local potentials (exponential and Yukawa)
were considered. These potentials were parametrized by
the coupling strength G and the inverse range p, , such
that

Irexp(r) —Ga rr—
(38)

VY'uk (r) Ga pr/~ r— —

As an initial check, off-shell t-matrix elements generated
by the approximation were compared directly to the
exact values. %hen p and G were chosen so as to produce
a two-particle bound state, the relative error was found
to be on the order of 10% for p', p& p and 100so&s& so,
so being the energy of the bound state. These calcula-
tions were also performed with four- and six-term
separable approximations obtained by approximating
E~(p', p; s) in the manner described in Sec. IV; the rela-
tive error was then cut to 1%.The approximations were
all considerably more accurate for the smaller values
of p', p, and ~s~ where the off-shell amplitude is largest
numerically.

The separable approximations were then used to
calculate the J=O ground-state energy for a system of
three identical spinless particles. In doing the calcula-
tion it was assumed that only the 1=0 contribution is
important in Eq. (3), and hence the results are directly
comparable to those published recently by Humberston,
Hall, and Osborn. '5 The calculation by Osborn, which
corresponds to the direct inversion of Eq. (3) by a
special numerical technique, provides the most direct
test of the present work. The results for the exponential
potential are plotted in Fig. 1, and those for the Yukawa
potential in Fig. 2. The parameters e and g are defined
by e= (ME /p')'"—

(39)
g= MG/p',

where E& is the three-body binding energy and M is the
common mass. Here we note that for the choice of p and
G defined in Eq. (38),

E~(G,M p)= (p'/M)Ea(MG/p', 1, 1). (40)

It is evident that the value of Ez predicted by the
two-term approximation is in excellent agreement with
Osborn's value for both potentials, except for very

'~ J. Humberston, R. Hall, and T. Osborn, Phys. Letters 278,
&9s (&9s8).
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Fro. 2. Binding energies for the Yukawa potential as calculated
from two- and more-term separable approximations.

small couplings. Secondly, the four- and six-term
results, which are generally indistinguishable from each
other on the scale plotted, quite successfully reduce the
error in the exponential case to a few percent. On the
other hand, they significantly increase the discrepancy
with Osborn's value for the Yukawa potential. The
existence of this discrepancy is somewhat puzzling in
view of the success of these approximations in actually
reproducing the off-shell t-matrix elements. Although
one would expect the method chosen to approximate
Jt~(p', p; s) to be less effective for the Yukawa potential
than the exponential potential Lbecause of the less
rapid falloff of t~(p', p; s) for large p' or p], it neverthe-
less seems good enough to give the sign of the correction
to the two-term result. Hopefully, a calculation based on
a more sophisticated way of approximating R&(p', p; s)
will resolve this contradiction.

In any case, the results seem to support the general
practicality of the approach, and the two-term approxi-
mation appears suitable as a starting point for numerical
calculations. It is important to point out that the
numerical work required to obtain the two-term values
quoted involved matrices of dimension 20 (allotting 10
points to the q integration), as compared to the matrices
of dimension 105 employed by Osborn (allotting 7
points to the q integration). With respect to other cal-
culations using separable approximations (such as those
described in Sec. III) the use of Eq. (26) and the itera-
tive formulas developed in $A] are particularly advan-
tageous in reducing the amount of time required to
compute each matrix element.

In order to use a computational procedure of the
above type with confidence in performing physically
interesting calculations, it is necessary to have some
means of estimating the error introduced in the result
by the separable approximation. With this end in mind,
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I'IG. 3. Binding energies for the exponential potential as obtained
from a simple pole approximation.

a particular type of error estimate was checked. numeri-
cally against the binding-energy results described above.
The method is applicable whenever the difference be-
tween ti(p', p; s) and ti'(p', p; s) is small enough to be
considered a perturbation, and is based on some results
published by maes. " Assuming that the separable
approximation produces a three-body bound state of
energy 8'0, we know that

G"'(q')G. '(q)
Xi "(q' q W)

W —S'0

which defines the functions Gq'(q). The change TWO in
the bound-state energy due to a small perturbation of
t&'(p', p; s) is then given by

dq'q'2 dq q'Gz'(q)C&, „'

x (w —4q') &tiql I
z»z

I
ti'q't'&C„. &,

"
X(W—4q")R '(q') (42)

~"(p'q'I pq w) =&P'q'1'I~l pqt&,

8(q'-q)
&P'q't'I »I Pqt& =

(f2

)Clti(p p W '4q ) ti'(p p' W 4q') j (44)

The numerical results obtained through the use of
Eq. (42) are given in Table I. The method is clearly
successful in providing an order-of-magnitude estimate
of the error, and thus should be a useful accessory to
our calculational procedure.

Finally, some additional binding-energy calculations
were performed to check the accuracy of a slightly
modiied pole approximation for these potentials. For
values of p, and G such that the t matrix had a single
bound-state pole at so, the approximation chosen was

g«p')gi(p)
tp(p', p; s) =-

Di(s)

where Di(s) is the exact "D function" in partial wave t,
and gi(p) is defined such that Eq. (45) gives the exact
behavior of ti(p', p; s) as s~ so. For potentials which
are superpositions of Yukawa a,nd exponential poten-
tials, we have the explicit formula

gi(p) = L~'»&i(») j'"«(p, —so'", so), (46)

where Xi(s) is the usual "1V function" and can be
evaluated from the relation

1V~(s) = ri(s't' s'I' s)+ (—1)'ri(s'~' —s'~' s) . (47)

The numerical results for the exponential and Yukawa
potentials are plotted in Figs. 3 a,nd 4, respectively,
where Osborn's curve is again reproduced for compari-
son. The agreement is reasonably good for small values
of G, but the curves diverge as G increases.

The results plotted in Fig. 4 provide an interesting
illustration of the ambiguity in pole approximations
discussed at the end of Sec. III. These results can be
directly compared with the results obtained for the
same problem by Ball and Wong. 4 Their lowest-order
approximation also involves one separable term giving

TABLE I. Error estimates for the exponential (exp) and Yukawa
(V'uk) potentials based on Eq. (42). The calculations were per-
formed with M=p=1.

Here the states
I pqt& are defined in terms of the states

I pqt& appropriate to the J=0 three-body system by the
equation

dP P'-4. '(p W —lq') I pqt&

with
h(p' —P) ~(q' —q)

&P'q't
I Pqt& = ~l'l ~

p2 q2

' R. J. Yaes, Phys. Rev. 170, 1236 (1968).

exp
exp
exp
exp
Yuk
Yuk
Vuk
Vuk

—1.9—19
2&I—2.1
2.2
2 $2—3.0—3.0

Potential G
No. of
terms

—0.137-0.163—0.230—0.233—0.776—0.554
2031—1.75

—6.04X10 '
—5.41XIO ~

—9.88XIO '
—9.98XIO ~

—3.97XIO '
—358XIO 4

—9.37X10 '
—1.75X10 '

Rel. error

4.45
0.033
4.30
0.043
5.12
0.065
4.06
0.100
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exact behavior at the bound-state pole. However, the
relative error of their results to Osborn's value is more
than twice the error produced by the pole approximation
above.

VI. DISCUSSION

In the previous sections we considered a particular
two-term separable approximation and applied it to
the calculation of three-particle binding energies. The
approximation was so chosen as to produce the exact
right-hand cut of the off-shell t matrix, to give exact
behavior at each pole, and to introduce no additional
singularities. It thus satisfies the general criteria
developed in Sec. III for use in the Faddeev equation.
In particular, its failure to possess any particular on-
shell properties does not limit it for this purpose. With
respect to numerical accuracy, it was pointed out
earlier that binding-energy calculations of the type
performed provide a severe test of such an approxima-
tion's effectiveness. For the potentials chosen, the
numerical results indicate that the approximation is
capable of reproducing some 90% of the exact ampli-
tude. As compared to the simple pole approximation
also investigated, the binding energy produced by the
two-term formula remains close to the exact result over
a much larger range of coupling strengths. The two-
term approximation thus appears suitable for perform-
ing, with local potentials, the type of model calculation
which is at present the province of separable potentials
alone.

In addition, we also considered a procedure for im-
proving on our approximation by successively adding
more separable terms. By choosing these terms in the
manner described in Sec. IV, it was possible, in the
case of the exponential potential, to reduce the error
in the binding energy to a few percent. To obtain
this accuracy, two additional separable terms were
sufhcient, although calculations were also performed
with four additional terms as a check on the conver-
gence. On the other hand, the method employed pro-
duced results for the Yukawa potential in convict
with Osborn's values. It is worth pointing out that other
methods, such as the approach of Ball and Wong, might
well be applied to approximate R~(p', p; s) (which is
always real and well behaved as a function of s) for
this purpose. The important point is that even six- or
eight-term approximations offer advantages in computa-
tion compared to two-dimensional numerical integra-
tion. The number of terms should be compared, for
example, with the 15 points required by Osborn for the
p integration. The advantage in fewer terms will be
obviated, of course, if the functions required in the
separable approximation are excessively complicated.
In this respect the iterative formulas described earlier
greatly simplify the computation required for potentials
of the exponential or Yukawa type.

The philosophy expressed in this paper has clearly
been that it is worthwhile going to some trouble to

-05—

—1.0—

-15—

-2.0
—1.2

I

-2.0
I

-2A
I

-2.8

FIG. 4. Binding energies for the Yukawa potential as obtained
from a simple pole approximation.

employ local potentials in three-body calculations,
despite the obvious computational advantages of
separable potentials. Aside from our fundamental
reasons for believing that local potentials are the more
"phvsical, " the avoidance of local potentials in three-
body calculations tends to negate one of the main
reasons for doing these calculations, i.e., the ability to
probe the off-shell matrix elements and hence dis-
criminate between potentials which are equivalent in
producing two-body behavior. It would indeed be un-
fortunate if local and separable potentials, with parame-
ters chosen to Qt the two-body data, were to produce
identical three-body behavior. Hopefully, accurate
separable approximations which are not equivalent to
separable potentials will enable us to produce such a
confrontation on a scale suitable to our present
computers.

In this respect, the only evidence which is in to date
concerns the comparison of binding-energy results for
the Yamaguchi'~ and Bander" potentials with the
local potential results of Osborn, of Ball and Wong, and
of the present author. As shown by Osborn, the sepa-
rable potentials, with parameters chosen to give the
same (two-body) bound-state energy and scattering
length as the local potential, produce a binding energy
which is about 10% too large for couplings just slightly
larger than the minimum required to support a two-
body bound state. However, as the coupling is increased
the separable potential result becomes rapidly much
larger, and in fact goes to infinity at a coupling con-
siderably smaller than that required to produce a second
two-body bound state. This is certainly a dramatic
contrast, but it is unfortunately not a three-body effect.
Actually, the separable approximations can no longer

"Y.Yamaguchi, Phys. Rev. 95, 1635 (1954).
"M. Bander, Phys. Rev. 138, 3322 (1965).
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li = (ti/n') Q i(M—sp)
' IP]',

(X—1)U'+-,'(X—4) V—1=0,
(So)

satisfy the I@0-body data for couplings greater than this
critical value. This is easily seen by considering the
particular case of the Vamaguchi potential,

V(p', P) = —(~/~)g(p')g(p),
(48)

g(p)=(p'+t ') '

Here the scattering is purely s-wave, and we have

4s V(y', p)
tp(P P'$)=

D(s)

D(s) =1—(Air'/ti)t p —i(cVs)'~'] '

Requiring that D(sp)=0 for sp(0, and that

tp(s'i', s't' s) (,=p —Tp,

we obtain two equations from which to determine the
two parameters X and p. They are equivalent to the
relations

value of the local coupling constant for which X&1
@aust occur in the region observed since To is known to
change sign before a second bound state is produced.
This, of course, is a general property and not restricted
to the particular local potentials under consideration.

ACKNOWLEDGMENTS

The author wishes to express his appreciation to
Srookhaven National Laboratory for the use of its
excellent computer facilities, and to Dr. R. F. Peierls
for his help in performing the calculations.

APPENDIX: PROOF THAT t) HAS NO
RIGHT-HAND CUT

In this Appendix we prove the result quoted in Sec.
IV to the effect that ti(s) does not have the right-hand
cut of the partial-wave amplitudes. We begin with the
defining equation for ti(s)

ti(s) = Ui(s) —Vi(s)Gp(s)ti(s)
01

where
p/3Isp)—

X—=—,'MprTp [esp/ 'iP. (S1)

ti(s) = L1+Ui($)Go($)] 'Ui($).

Letting s be real and positive, defining

tati(s) = ti(s+ip) —ti(s —ip), (A2)

and similarly for AU&(s) and KGp(s), it is straight-
forward to obtain

Dti($) = L1+ Vi($+ pp)Gp($+pp)5 Ui($)Gp($ —pp)

XL1+ Vi($ 1p)Gp($ —pp)—] Gp ($—pp),4—X+L(4—X)'+16(X—1)]'"
V=

4(X—1)
(S2) witl

'Ui(s)—:6Vi(s) —Vi(s+i p) AGp($) Vi(s i p) . (—A3)

Physically, y is required to be positive since p is an
inverse range. It is easy to verify that the quadratic
equation for F LEq. (SO)] permits a positive solution
for F only when X&1.We then get

If we now determine X for the exponential or Yukawa
potential, we find that for small couplings X is indeed
larger than unity. Thus reasonable values for p and )
result for small local couplings. However, as the local
coupling strengths increase, X decreases, becoming
smaller than unity and eventually negative. Clearly, as
X~ 1, ti —+ pp and X/ti' —+ pr '. From the relation

E~(~ t )=t '~~(&lt ', 1), (53)

for the three-particle binding energy E&, it follows that
E~~~ as X—+1. Thus, as observed, the binding
energy becomes infinite at the critical value of the local
coupling constant where X= 1. For larger values of the
coupling, the separable potential is completely meaning-
less since p and ) both become negative. The discussion
for Bander's potential is analogous and the critical
value of the coupling is the same.

It is clear that the phenomenon is caused by the in-
ability of the separable potential to produce simulta-
neously a finite binding energy and an arbitrarily small
To in the two-body problem. It is also apparent that a

Thus hei($) will vanish providing that (P ~'Ui(s) ~P)
vanishes.

To show that this is the case, we make use of the
formulas

&p'I ~U ( )lp)

fi(p', $+ip) fi(p', s —Zp)= Ui(s'i', p)
1—fi(s"',s+ip) 1 fi(s"',s —ip)—

(p')AGp(s)~p)=vis'"8(p' —s' ')h(p —s'') (A4)

f,(p,s+i p) fi(p, s i p) =—~is'~'U—i(p,s'")

From these it follows that

(P'~ AVi(s)
~ P) =iprs'"Ui((s —ip)'IP, P; s i p) Ui—

X(P', (s+ip)'t'; s+ip)
= (p'

~
Ui(s+ip) t$.Gp($) Vi(s i p)

~ p) . (AS—)

From Eq. (A3) we see that (p'~'Ui(s)
~ p) vanishes and

hence ti(s) is continuous across the positive s axis.


