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Compton Scattering Sum Rules and Their Saturation*
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Theoretical features of the many 6xed-momentum-transfer dispersive sum rules which can be written for
the 26 possible generalized nucleon Compton scattering amplitudes (retarded products of vector currents) are
surveyed, and the sum rules are put to experimental test. Theoretical attention is focused on the occurrence
of right-signature Axed poles in the angular momentum plane, such as the j= 1 axed poles whose couplings
are related to electromagnetic form factors by current algebra. Unitarity is used to estimate the sum-rule
integrands in terms of data for the photoproduction processes y37 ~ vrX and yE —+ ~A. Limitations of the
data require that the sum rules be cut oG at photon lab energy El,b

——1.12 GeV. The main results are as
follows: (a) Reasonable evidence is presented that two-time-component current-algebra sum rules involving
the electric and magnetic isovector form factors G~~(t) and G~~(t) are correct for small spacelike —t. If
they are also to be correct for —t& —0.6 (GeV/c)', then the p Regge pole must choose nonsense at n=0,
and the associated wrong-signature 6xed pole there must be multiplicative. A time-space current-algebra
sum rule probably fails. (b) The separate isotopic components of the Drell-Hearn sum rule are investigated.
Those with I=0 exchange in the t channel seem very successful, whereas the I= 1 exchange sum rule clearly
fails. The failure indicates an important contribution of a hitherto unsuspected J"(I~) =1+(1 ) fixed pole.
(c) Detailed results on wrong-signature antialgebra sum rules, on Regge-pole sum rules (FESR's), and on
sum rules testing conspiracy are presented.

r. mvRODUnlom

'ANY fixed-momentum-transfer dispersive sum
- rules can be written for nucleon Compton ampli-

tudes. These sum rules test various assumptions about
high-energy behavior and about the equal-time algebra
of vector current components. In this paper, we survey
theoretical aspects of these sum rules and report on a
systematic attempt to saturate them, at several t' values,

using presently available experimental data. Within
the limits set by the extent and accuracy of this data,
our goal is to milk from the sum rules all the theoretically
interesting information they contain.

Since there is very little data on the Compton scatter-
ing process itself, we use the unitarity condition to ex-

press the integrands of the sum rules in terms of ampli-

tudes for the photoproduction of hadronic states. We
include the contributions of the xÃ and, in cruder

form, the ~~X intermediate states. Specihcally, we use

the multipole analyses of pÃ —+ mE by Berends, Don-

nachie, and Weaver' and by Walker, ' and a modified

Stichel-Scholz' model for the process yE ~ ~A. This
gives us a description of the sum-rule integrands which

seems reasonably accurate up to the laboratory energy

Eq,b= 1.12 GeV (c.m. energy Qs=1.73 GeV), and we

cut off our sum rules at this value.
Because of spin and isospin complexity there are 26

independent amplitudes for the generalized Compton

*This work was supported in part by the U. S. Atomic Energy
Commission.

' F. A. Berends, A. Donnachie, and D. L. Weaver, Nucl. Phys.
B4, 1 (1968).We will refer to this work as BDW.

' R. L. Walker, Phys. Rev. (to be published).
' P. Stichel and M. Scholz, Nuovo Cimento 34, 1381 (1964);

D. Luke, M. Scheunert, and P. Stichel, ibid. 58, 234 (1968).
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scattering process, and the use of photoproduction
data decomposed into definite angular momentum and
isospin components allows us to study sum rules for
all of them. We study the sum rules derived from current
algebra, 4 as well as superconvergence relations5 and
Rnite-energy sum rules' which give information on
Regge-pole parameters and on the question of con-
spiracy. %e are mainly interested in theoretical ques-
tions involving the presence of fixed j-plane poles.

Finite-energy sum rules have been much used recently
to study meson-baryon scattering, ' ~ where there are
two important advantages. First, good partial-wave
analyses exist, ' at least for ~E scattering, up to the
c.m. energy gs=2. 19 GeV; and second there is con-
siderable high-energy data with which to compare
Regge-pole predictions. In our case, the low-energy data
are unfortunately crude, and there are no high-energy
experiments. However, because we study photon
amplitudes with the possibility of double helicity Rip,
many of our sum rules are more convergent than their
analogs in meson-baryon scattering. Further, we re-

4 For a survey of these sum rules, see S. L. Adler and R. F.
Dashen, Current Algebras and App/ications to Particle Physics
(W. A. Benjamin, Inc. , New York, 1968).' V. de Alfaro, S. Fubini, G. Rossetti, and G. Furlan, Phys.
Letters 21, 576 (1966).

'A. Logunov, L. D. Soloviev, and A. N. Tavkhelidze, Phys.
Letters 248, 181 (1967}; K. Igi and S. Matsuda, Phys. Rev.
Letters 18, 625 (1967); R. Dolen, D. Horn, and C. Schmid, ibid.
19, 402 (1967);Phys. Rev. 166, 1768 (1968).

7 V. Barger and R. J.N. Phillips, Phys. Letters 268, 730 (1968);
F. J. Gilman, H. Harari, and Y. Zarmi, Phys. Rev. Letters 21,
323 (1968); M. G. Olsson and G. B. Yodh, ibid. 21, 1022 (1968);
G. V. Dass and C. Michael, ibid. 20, 1066 (1968};C. Ferro Fontin,
R. Odorico, and L. Masperi, Nuovo Cimento 58, 534 (1968).

8 A. Donnachie, R. G. Kirsopp, and C. Lovelace, Phys. Letters
'

26$, 161 (1968).
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mark that the analysis of Dalen, Horn, and Schmid' at
cutoff gs=1.73, identical to ours, gave reasonable
results for the couplings of the p trajectory, and we
therefore have reason to hope for good results at this
cutoG in the Compton case. '

The plan of the paper is the following. For the
benefit of readers primarily interested in the results, a
summary of the most important results is given in Sec.
II together with references to that part of the text where
specific sum rules are discussed. The kinematics of
Compton scattering is presented in Sec. III. Theoretical
questions pertaining to the sum rules are discussed in
Sec. IV. In Sec. V, we explain our treatment of the ex-
perimental data, and in Sec. VI, we present and discuss
the results of our attempt to saturate the sum rules.
Section VII is reserved for some final methodological
comments, while some necessary technical questions
are treated in Appendices.

II. MAIN RESULTS

Our main results are summarized here, although we
would caution that a wrong impression of the strength
of our conclusions could well be gained without some
study of the quantitative behavior of the sum rules.
The quickest way to proceed would be via Sec. VI A, in
which the graphical format of the results is given, to the
part of Sec. VI where the specific questions are dis-
cussed and the appropriate graphs presented.

Eegge Pole sum rules -(VI 3) From sum rules for
amplitudes in which the I', I', and A2 trajectories
couple to photons with helicity Qip 2, we find the
following results. There is no particular evidence for
important contributions to the sum rule from right
signature fixed poles at j=O.' Factorization tests give
values of the ratio of the nucleon Qip and nucleon
nonQip couplings of the trajectories which agree with
the values deduced from meson-nucleon scattering,
although there is an uncertainty of about a factor of 2
in this comparison. Our results are consistent with the
nonsense-choosing mechanism for the A2 at o.g, (t) =0.

Current algebro, sure rul-es. (VI C) Two well-known
sum rules" can be obtained by studying the equal-time
commutators of time components of the isovector cur-
rent, taken between states with nucleon helicity nonQip
and flip (measured in the f-channel c.m. system). The

We are grateful to R. J. N. Phillips (private communication)
for confirming that one does not get ridiculous results for the
amplitude 8&+) in ~E scattering with a cutoG similar to that used
here in our work on Compton scattering. The comparison with
this amplitude is particularly relevant because it has similar con-
vergence properties to our sum rules that test j=0 6xed poles.' D. J. Gross and H. Pagels )Phys. Rev. 172, 1381 (1968)g
have suggested that an I= 1, j=0 6xed pole couples to Compton
amplitudes. See Sec. VI B for a further discussion of this point.

"We reserve the description "current algebra" for those sum
rules carrying the same isospin and (G parity) in the t channel as
the p meson. In fact, current algebra would appear to predict the
axed poles at j=0 and 1 in the other isospin states. These 6xed
poles are predicted to be zero for the quark algebra but they will
be sensitive to Schwinger terms and technical assumptions (Ref. 4)
that are perhaps less well studied than those in the p segment.

DonQip sum rule, whose right-hand, side involves the
electric form factor G~(t), coincides at 1=0 with the
sum rule of Cabibbo and Radicati. "The Qip sum rule
similarly tests the magnetic form factor Gu(t), and
seems to have been first written down by Muzinich. "

Our results indicate good agreement with current-
algebra predictions near t=O. At large momentum
transfer (t= —0.6), there is some evidence for a possible
violation of current algebra, although we prefer an
interpretation in which current algebra is valid. In
this interpretation, the p trajectory chooses nonsense at
n, (f)=0 and has a singular coupling to the currents
there. Because of the singular coupling, the nonsense
dips' associated with p exchange in hadronic processes
are not present in the Compton amplitude.

Both these sum rules receive important contributions
at low energies from nonresonating multipoles, a fact
which suggests that theoretical models" in which
saturation occurs purely with resonances may be un-
realistic. Ke give some idea of the relative magnitude
of resonant and nonresonant contributions to the sum
rules in Sec. VI I.

A sum rule involving the commutator of the time and
space components of the isovector current has been
written down by Beg" and further studied by Adler
and Dashen. 4 This sum rule has some peculiar features, 4

and it is perhaps not surprising that our numerical
results show that it is probably violated.

Antialgebra sum rules. (VI D) We use this name (see
Sec. IV Ii) for sum rules'r sensitive to wrong-signature
fixed poles. We find evidence for wrong-signature fixed
poles (at j= 1) which couple strongly to Pomeranchuk
and A2 exchange amplitudes. The theoretical significance
of such fixed poles has been recently studied. "

Drel/ Hearn sum r-ules. (VI E) Here we refer to sum
rules for three different isospin symmetric amplitudes
with t-channel photon helicity Qip, antisymmetrized in.

the nucleon helicity indices. The sum rules are super-
convergence relations (SCR's) which follow from the
assumption that j=1 fixed poles are absent in these
amplitudes. At 3=0, the sum of our three SCR's
coincides with the original sum rule written by Drell
and Hearn" for the anomalous magnetic moment of
the proton.

Our results indicate that the two sum rules involving
isoscalar exchange are very well satisfied, but that the
sum rule involving isovector exchange is badly violated.

(. '~ N. Cabibbo and L. A. Radicati, Phys. Letters 19, 697 (1966)."I.J. Muzinich, Phys. Rev. 151, 1206 (1966).
G. Hohler, J. Baacke, H. Schlaile, and P. Sonderegger, Phys.

Letters 20, 79 (1966); P. Arbab and C. B. Chiu, Phys. Rev. 147,
1045 (1966); G. Hohler and N. Zovko, Z. Physik 181, 293 (1964).

'5R. Dashen and M. Gell-Mann, Phys. Rev. Letters 17, 340
(1966}.

"M. A. B.Beg, Phys. Rev. Letters 17, 333 (1966).
D J. H. Schwarz, Phys. Rev. 159, 1269 (1967).

H. D. I. Abarbanel, F. E. Low, I. J. Muzinich, S. Nussinov,
and J. H. Schwarz, Phys. Rev. 160, 1329 (1967).

» S. D. Drell and A. C. Hearn, Phys. Rev. Letters 16, 908
(1966).
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This last result was a surprise to us, and seems to in-
dicate an important contribution from a J~~=-1+
fixed pole,

One negative result which may be of some interest
is that neither of two sum rules sensitive to A~ exchange
showed any evidence for this Regge pole with an
intercept near zero. (See also Sec. VI G).

Conspiracy sztm rules (VI. F) By using a sum rule
of Pagels' which relates the x lifetime to an integral
involving a Compton amplitude we infer that the
effective zr conspirator trajectory residue function P,.(t)
in Compton scattering is a smooth function of mo-
mentum transfer near t= 0. Unlike the photoproduction
case we cannot write a sum rule sensitive to the t de-

pendence of the pion residue function itself. However,
comparison of the t=0 value obtained from the con-
spiracy condition with the value at the zr pole (known
from the zro lifetime) suggests a zero in J3 near t= —m '.
The behavior of both the pion and its conspirator is
consistent with that found in strong interactions.

(pzkoiSipiki)=(p, koipiki)+z(2zr) '8'

X(p2+k2 pl kl)T(p2)koj plykl) ~ (2)

Differential cross sections are given by, ignoring the
spin summation,

d /dQ=
i f(E,0)i',

f=( ' pf/p)'"T (3)

where s= (pi+ki)' and p; and pt are the c.m. momenta
of the initial and final states.

Compton scattering amplitudes are related to re-
tarded products of currents by the formula

T(pz, ko., pi, ki) = (2zr)'e'( o)z* oii

X d'ze'"*(p hatt(zo)LJ. ' (z),J.' (0)]lpi) (4)

where e'/4zr= 1/137. We do not write explicitly the
polynomial terms which may be required on the right-
hand side of (4) to ensure covariance.

The electromagn. etic current operator J„' (z) can be
decomposed into isotopic singlet and triplet parts

J em(z) —J I 0(z)+J I , isor( ) z(5)
In general, we are led to consider covariant amplitudes
formed as in Eq. (4) from the individual pieces J„and

"H. Pagels, Phys. Rev. 158, 1566 (1967).

III. KINEMATICS

Using covariantly normalized states

(Po I Pi) = 2&&'(Pz —P ),
we define transition amplitudes for all two-body
reactions

T = 2Tito(0, 0),
T'=

o CTito(»1)+2Toto(» 1)]
T' =—,'43LTit z(0, 1)+Tito(1)0)] )

T'= oLTotz(»1) —Titz(1~1)] ~

T'"= o&3LTito(0)1) —Titz(1,0)].

(7)

Amplitudes 1 and 2 carry isospin 0 in the t channel
while amplitudes 3, 4, and 5 carry isospin 1. The
Compton scattering amplitudes of physical photons are
related to ours by the equations

T(yp ~ yp)+ T(yn ~ yn) = T'+ T',
T(yp yp) T(yn pn)—= T'.

To relate our amplitude T4 to that of the current-
algebra literature4 we observe that T4 is given by
Eq. (4) with the commutator replacement

Physical Compton scattering data cannot be used
to resolve the individual contributions of T' and T' in
Eq. (8), or to determine the amplitudes in isospin
segments 4 and 5. The real part of T' can conceivably
be measured only in neutrino processes. However, the
imaginary parts of all amplitudes are related un-
ambiguously by unitarity to experimentally measurable
photoproduction processes. Isospin segment 5 has very
peculiar kinematics, discussed below, and does not seem
to have been mentioned in the literature.

We always express our sum rules in terms of regu-
larized t-channel parity-conserving helicity amplitudes, "
which are advantageous for us because they have simple
analyticity and crossing properties and definite t-channel
quantum numbers. Direct-channel helicity amplitudes
3E&,z, i,z, can be defined from Eq. (4) by choosing
nucleon states and photon polarization vectors accord-
ing to standard conventions. "We take the nucleon as

"L.L. Wang, Phys. Rev. 142, 1187 (1966}."M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).

J„'~ with Jttf =& j., 0 and construct these amplitudes
according to the following isospin conventions.

First, we construct amplitudes Tz(I,', I~) describing
the transition between normalized states of total
s-channel isospin I built up from nucleons and isoscalar
(I~=0) or isovector (I~=1) photons. There are five
independent amplitudes. Each Tr(I~', IY) gives rise to a
scattering

Tz(I~',I,)C(,',I~',I; Ir-I~', JV~')C(,',I~,I; I-rIzr, ItI7) (6)

in states specified by third component of isospin for the
nucleon (iV~) and photon (M~). The C's are standard
Clebsch-Gordan coefficients. Our sum rules are written
for the following combinations of the Tr(IY', I~) formed
by symmetrizing or antisymmetrizing in the (t-channel)
photon isospin labels '.
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where
XA i, '(x)~i —x,;x, x~', (10)

(s+m')
cosX=

( —m') 4m' —&)

2m -(s —m')'+st '"
sinX =

)
(s —m') 4m' t—

and the superscript i indicates a definite isospin ampli-
tude formed according to Eq. (7).

For physical photons, the kinematic singularities
of the amplitudes A)„),„z,)„have recently been ob-
tained. "'4 The analysis of Ref. 23 depended on a
simplification of the crossing relation (9) using the time-
reversal constraint

~%a'h4;xyx2= ( 1) ~) x .) (12)

where A,;,.=) i —'A, . An identical condition holds for our
isospin amplitudes 1—4, and for these amplitudes the
results of Ref. 23 apply completely with the single ex-
ception that the s—I crossing properties of isospin 4
amplitudes are opposite to those of isospin 1—3 because
of photon antisymmetry.

We give here the exact definition of the amplitudes
for which our sum rules are written in isospin segments
1—4. In terms of reduced t-channel helicity amplitudes,

A), i, )„)„'=(cos-',«) '"+""'(s'n20~) '" ""A» x i '

we take the following combinations which are kinematic
singularity free in both s and t.

g i

82—
83—
84

it-'(4m' —t)-'t'A;;', -,',
—t-'(t —4m') '(A,*,i i' —A;; i i')

( t) 'i'(4m—' —
t) 'i'(A-—-;—;;yA-;;..-. )

—,'i( —t)
—'i'(A;;, ii' —A .;;,,i'),

it-'(4m' —t)'t'(A, ;,„'+A *, ;,„')
—2t-'A;; 11'.

(14)

The 8,'(s, t) are independent except for the constraint
condition at t= 0,

lim $84'(s, t)+(8m) '(s —u)86'(s, t)j=0, (15)

2'D. Z. Freedman, Phys. Rev. 168, 1822 (1968). There is a
minus sign error in the definition of sing in this reference. Except
for the choice of the Jacob-Wick phase (Ref. 22) for "particle two"
helicities, our phase conventions and crossing path coincide with
those of G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann.
Phys. (N. Y.) 46, 239 (1968).

.
'4 See also J. P. Ader, M. CapdevilIe, and H. Navelet, C,E.N.-

Saclay Report (to be published).

"particle 1." We deere t-channel helicity amplitudes
through the crossing relations"

Aig„;",)„'=—i(—1)" "' P d" i'"(~—&)

and other constraints at k=4m' which are not relevant
for our analysis. In Appendix A, we express the 8,' (s,t)'
in terms of s-channel helicity amplitudes and Hearn-
Leader" invariant amplitudes.

In isospin segment 5, the situation is different. Be-
cause of antisymmetry, an extra minus sign must be
inserted in the time-reversal condition (12), and this
means that there are only two independent nonvanish-
ing s-channel helicity amplitudes which we take to be
M;l. ~1' and Mg 1,.~1'. There is an analogous restric-
tion, due to charge conjugation invariance, to two non-
vanishing t-channel amplitudes A;~, 1 1' and A~;, 11'.
The crossing relations simplify to

~ ~~ ~~; I—1 &~$1;—~s1
5—' 5

A$—&']1 ZIvx1 1 ~ xl
(16)

8'(v t) =C''(t)
V —V~ V+V~

1
dv'im8 (v', t)~

— —+ . (18)
v s u v

Ke have separated out the nucleon Born term, singular
at v~=-,'t, from the continuum threshold beginning at
vo ——2mu+u'+-', t Possibl. e subtraction terms in (18)
will be discussed later. The crossing phase g, '=+

The nucleon pole residues have been calculated using
Eq. (A2) and modifying the Hearn-Leader" residues to
agree with our isospin conventions in segments 1-4.
In isospin segment 5, the residues were calculated using
unitarity to obtain the single-nucleon contribution to
the imaginary part of the amplitudes.

The Born-pole residues and other important prop-
erties of our amplitudes are collected in Table I. The
s—I crossing phases g arid the t-channel quantum num-
bers carried by the amplitudes can be deduced by ex-
amining the t-channel partial-wave expansions and
using parity and charge conjugation invariance prop-
erties and generalized statistics.

The leading asymptotic contribution to our ampli-
tudes of a Regge pole of signature r and position
j=n(t) is

8'(v t) = —G'(t)L(e '"&'&jr)/sin~n(t) jp~&'&=" (19)

where A=max((A~i),
~
X42~). In spin segments 2 and 3

there are additional nonleading contributions from

"A. C. Hearn and E. I.eader, Phys. Rev. 126' 789 (1962).

The kinematic singularities are easily obtained and we
choose the following singularity-free amplitudes:

8/=i( —t) 't'(m4 —us) 'A;i, i P,
8g' it'(m' —u——s)-'t'A-—x ,i'-. .

The amplitudes 8 satisfy dispersion relations in the
variable v= —,'(s —u) which we write in the form
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Tsar, E I. The amplitudes 8 p). The meaning of the various quantities in the table is as follows. 8 (E) are dined in Eqs. (14) and
(1j).q;s and C {tf) are de6ned by Eq. {18).In the C (/) column rc„, and ~ are the anomalous magnetic moments of the proton and neutron
respectively. X is de6ned after Eq. (19). n~&& is the lowest value of e in Eq. (23) for the latter to be a right-signature sum rule. v, I',
and G ere the signature, parity, and G parity of the allowed Regge-pole exchanges. Plausible candidates for the latter are listed in the
next column; here we have taken the meson quantum numbers from the customary bible {Ref. 52). Further in this column c~
denotes the vI'=+ partner of an m=1 conspiracy {Ref, 75) whose vE= —1 partner is the trajectory X,. {X=q,~, 8). X by itself
denotes a nonconspiring y, ~, or 8 trajectory.

AmPlltude 2b» X Ãrrtirt

8' + 2 1 + + +

812 + 2 1 + + +

81 + 2 1 + +
4

2 0 +
+ 0 1 +
+ 0 1 +

84' + .0 1 +
844 — 0 0 — +

+ 0 1 + +
8 + 0 1 + +
BP + 0 1 + +
BS4 — 0 0

0 + +
88' — 1 0 + +

P, I"
c„(~t)
I', I"
e„{~])
A2

c,(~t)
p
e~(~])
D, Z(P) ( s' ')
I", 2", c„(~Is" ')
D, E(P) ( s~2)
I', I'", c,( Is~8)
A1( S" ')
A2, c (~Is~8)

p

p, cIf( ts 8)

I', I", c„( s~2)
D, EP)( s" ')
E, I",c„( s
&, J-"P)(-s" ')
A2, c { s~2)
A1( S -')
p eg {~sc 2)

~(-&}~,
~(-&}~,
m(~I)x,
8( t}B,
PpE» C~

A2, C

ps CQ

I', E'( t},e„
P, P'( t), e„

Amplitude

Amplitude

1

82
81
814
821
822
828
824

1

882
838

4

84
84
84
844
851
852

8.-8
854

86
868

875
885

Regge pole

A2(~E) p Csr

p(-~), &~

A1

(b)

Born residue C (t}

—2me2/t+ {e2/4m) L1—(1+~„+~}'j
2me'/t+(e'—/4m) P (1+e —e )—'j

—4me'/t+ (e'/2m}P —(1+e,)'+e 'j
2me'/t —(e'/4m) [1 (1+ee—e) 'j-
—(e2/4m2) (I(:„+a„)2
—(e2/4m2) (fthm,

—~ )'
—(e'/2m') (a„2—~ ')
(e2/4m2) {a„—~„)'
—(2e2/t} {1+f(:~+a)—(e'/4m') (f(y+~~}2
—{2e2//) (1+~ —I(: )—{e'/4m2) (~ —~ )'
—{4e2/t) (1+tt„)—(e'/2m') (I~:„2—~ ')
(2e'/t) (1+a„e)+(e'/—4m. '}(ep e„)'—
Jme2(1+a~+a )
—,'me'(1+sr„—1~„)

me'(1+It„)
——',me2(1+x„—~„)
4m'e'/t ',me'$1+(1+e—,—+e}'j
4m8e2/t —-'me2j 1+{1+~—ft: )'j
Sm'e'/t —

mLe( +1)e'—e '+1j
4m'e'/t+rme'p—1+(1+ „)'j-

—,'e'I (1+fan:~+a„}2—1j
—,'e2L(1+~„—~„)2 —1j
e'D1+ee)' —1—z„'j
——,'e'P(1+e„e„)'—1)—
—e2m, /(mt)
—e2~„/t

Regge poles n'(t) of signature r' opposite to that of the

leading poles, which take the form

—Ht'(t)L(e-' '"~+ ')/sin '(t)j "'&'&-" '. (20)

In Appendices 3 and C, the detailed structure of the

G,' (t) and H,''(t) is 'given in terms of the factorized

couplings of Regge poles. Appendix D contains some

further details of the Reggeization of spin segments

2 and 3.

IV. THEORETICAL MATTERS

A. Analyticity andI Asymytotic Behavior

The sum rules which we study test both the ana-

lyticity properties and the high-energy behavior of

Qolnpfog. /can tel. lng aplplltudcs. Although thc necessary

analyticity —that underlying the dispersion relations

(18)—can be proved rigorously from the axioms of
quantum field theory, there is very little rigorous in-
formation on the asymptotic behavior. %e review

brieQy here the types of asymptotic behavior which

our present incomplete theoretical knowledge suggests.
For purely hadronic processes there are some rigorous

asymptotic bounds on scattering amplitudes, such as
the Froissart bound" which can be derived using
analyticity and (s-channel) unitarity. For most applica-
tions this information is insufhcient, and it is customary
to assume that asymptotic behavior is determined by
the singularities in the angular momentum variable of
analytically continued t-channel partial-wave ampli-
tudes. This hypothesis, called "analyticity of the

se M. Froissart, Phys, Rev. 123& 1053 (1961).
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second kind" by Chew, " eRectively means an asymp-
totic structure of moving Regge poles and cuts.

In theories with analyticity of the second kind,
t-channel unitarity plays an important role in deter-
mining asymptotic behavior. Its role is reviewed in the
discussion of this subsection and references to the
original literature are given. Further details, important
in understanding our results, are presented in Sec.
IV C.

Fixed poles in'hadronic amplitudes are severely re-
stricted by the t-channel unitarity condition, they are
allowed only at angular momentum values for which the
unitarity cut is shielded by Regge cuts. Our present
knowledge of this shielding mechanism" indicates
that fixed poles occur because of the third double
spectral function present in relativistic amplitudes and
occur at wrong-signature nonsense values of angular
momentum. These fixed poles do not contribute directly
to asymptotic behavior, although they may modify the
behavior of Regge-pole residues in an observable way.
Schwarz sum rules' can be used to test for the presence
of these 6xed poles.

Compton scattering amplitudes are an example of the
general class of "weak" amplitudes —those which never
appear bilinearly in a unitarity relation. Because of the
absence of bilinear unitarity in the s channel, the
Froissart bound cannot be proved in the usual way, and
there is at present no rigorous information on high-
energy behavior. Further, the loss of bilinear unitarity
in the t channel means that fixed poles in the angular
momentum plane are no longer restricted.

Nevertheless, it is intuitively attractive to assume
Regge asymptotic behavior for weak processes, and
this was done in most early work on Compton scatter-
ing'0 and on more general weak amplitudes. " This
Regge-pole picture led to puzzling features in the
Pomeranchuk contribution to physical Compton scat-
tering' and in the interpretation of current-algebra
sum rules. "Fixed poles (and Kronecker delta terms")
provided the solution to these puzzles.

The known mechanisms for Gxed poles in doubly weak
amplitudes are discussed in Refs. 1.8 and 32, and we
summarize them here. By doubly weak, we mean four-

"M. Jacob and G. F. Chew, Strong Interaction Physics (%. A.
Benjamin, Inc. , New York, 1964)."See the lectures of R. Oehme as reported in Strong Interactions
and High Energy Physics, edited by R. G. Moorhouse (Plenum
Press, Inc. , New York, 1964).

"C.E. Jones and V. L. Teplitz, Phys. Rev. 159, 1271 (1967);
S. Mandelstam and L. L. Wang, ibid. 160, 1490 (1967);R. Oehme,
Phys. Letters 288, 122 (1968).

"V. D. Mur, Zh. Eksperim. i Teor. I'iz. 44, 2173 (1963); 45,
1051 (1963) )English transls. : Soviet Phys. —JETP 17, 1458
(1963); 18, 727 (1964}g; H. D. I. Abarbanei and S. Nussinov,
Phys. Rev. 158, 1462 (1967);H. K. Shepard, ibid. 159, 1331 (1967)."S. Fubini and G. Segrh, Nuovo Cimento 45, 641 (1966)."J.B. Bronzan, I. S. Gerstein, B. W. Lee, and F. E. Low,
Phys. Rev. Letters 18, 32 (1967); Phys. Rev. 157, 1448 (1967);
V. Singh, Phys. Rev. Letters 18, 36 (1967); see also K. Bardakci,
M. B.Halpern, and G. Segre, Phys. Rev. 158, 1544 (1967)."D. J. Gross and H, Pagels, Phys. Rev. Letters 20, 961 (1968).

point amplitudes with two hadrons and two currents on
external'lines. In general, such amplitudes will have the
j-plane behavior of their Born terms because this be-
havior is not smoothed by the weak unitarity condition.
In particular, doubly weak amplitudes will have axed
poles at nonsense integers of both signatures. Usually
the strong interactions —i.e., higher-order graphs—
modify the residues of the 6xed poles so that they
diRer from their Born values. Modification can be
expected for both right- and wrong-signature 6xed
poles even if the third double spectral function (dsf)
vanishes, although the third dsf mechanism will also
contribute to wrong-signature fixed poles of weak
amplitudes.

In general, therefore, the theory tells us the locations
of Axed poles but is not powerful enough at present to
predict their residues which depend on the details of
strong interactions. Sum rules, as we will see, can be
used to evaluate the fixed-. pole residues directly from the
experimental data.

There are two exceptions in which the general theory
does give information about the fixed-pole residues. The
6rst occurs in Compton scattering' where, because of
photon masslessness, the Born terms of some amplitudes
have a singular coeScient of t '. This may be observed
in Table I for amplitudes B~ 83, 85, 87, and 88. Since
other contributions to the amplitude are regular at
t=0, the residue of the fixed pole at the highest non-
sense point is also singular at t=0 and is determined
there by the Born term. This mechanism works in
other kinematical configurations also. '4 Unfortunately,
the corresponding sum rules reduce to simple identities
at t=0, to which orily the Born terms contribute, and
are thus devoid of interest.

The second exception in which theory actually pre-
dicts the fixed-pole residue as a function of t concerns
current algebra. It has been shown" that the well-
known (and variously credited) Adler —Dashen-Fubini-
Gell-Mann sum rules imply that the sum-rule ampli-
tudes have 6xed poles at j= 1 and that the residues are
given in terms of vector and axial-vector hadronic form
factors. An observed failure of the sum rules would
imply either (1) that the underlying algebra of currents
must be modified, or (2) that the assumptions necessary
to derive the sum rule from the algebra are incorrect, 4

or (3) both (1) and (2) are true. It may also be possible
to relate the residues of fixed poles at j=0 and j= —1
to properties of the current algebra. """

We have stressed that the basic mechanism which
permits 6xed poles in weak amplitudes is the breakdown
of bilinear unitarity. Linear or weak unitarity still
requires factorization for Regge-pole couplings to wea':
amplitudes as we show in Sec. IV C. One ef'(.ect of
6xed poles is usually to make Regge-pole residues morc

"See J.B.Bronzan et al., Phys. Rev. 157, 1448 (1967), Sec. III."J.D. Bjoriten Phys. Rev. 148, 1467 (1966};I.T. Drummond,
Nuovo Cimento 8, 577 (1968).
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C0$ FIG. 1. The contour C of
Eq. (22).

singular at nonsense integers than they would other-
wise be. This effect will be seen clearly through our
sum rules.

B(v,t) —g G„(t)(e ' '~"+r,)t'sinirn, (/)] 'v "'" "

—P Fi(/)v-"L1+g( —1)']
k=1

+ Q D (t)v"Ll+q( —1)"'j, (21)

corresponding to Regge poles Lof leading signature
r —q (—)"7, right-signature fixed poles (at j=X —k),
a,nd Kronecker deltas (at j=X+m). Wrong-signature
fixed poles manifest themselves in (21) only in their
effect on the G„(t). We ignore possible Regge cuts be-
cause our sum rules are not accurate enough to dis-
tinguish between poles and cuts. Nonleading Regge-
pole terms (20) can easily be included in spin types
2 and 3.

The sum rules we use can now be derived very easily.
The functions v"B(v, t) are analytic in the cut v plane
and therefore satisfy

dv v "B(v,t) =0,
2' L

(-'2)

where C is the contour of Fig. 1. We evaluate the
integral over the semicircular portions approximately
by using the asymptotic form (21) and taking v, as the
radius of the semicircle. We collaspe the contour to the
cut, separate out the Born contribution, and obtain
the resulting sum rule

VC

ve"C(t)+ dv—v" ImB(v, t)—

1 Pcg5 a, (~)+n—&+I

=-Z G.(~) —+F.+ (~) (23)
n„(/)+n —X+1

for n satisfying (—)" i= r, and a trivial identity for-
(—)" "=+r. We remind the reader of our notation
v=-,'(s I)) va=-,'—t, and vo=2mV+v, '+-,'t

B. Sum Rules and Fixed Poles

The preceding arguments motivate us to assume that
the typical asymptotic behavior of the B(v,t) ampli-
tudes is (with g denoting the crossing phase),

Notice that the nth moment sum rule is sensitive
only to the fixed pole at j=X—n —1, and totally in-
sensitive to possible Kronecker delta terms. The
latter, as we shall see, can be tested using the dispersion
relations (18) in which experimental values of the real
part of the amplitude can be inserted.

Wrong-signature sum rules'~ can be similarly derived
by considering an artificial amplitude B(v,t) with the
same right-hand cut and the negative left-hand cut of
the corresponding B(v,t). Wrong-signature fixed poles
manifest themselves in the asymptotic behavior of
B(v,t). The sum rule is derived by considering the
integral of v"B(v,t) over the contour C. For n satisfying

(—)" i= r the —result is a trivial identity, and for
(—)" i=+r we obtain a sum rule identical in form to
(23) with F„+i(t) as the asymptotic coefficient of the
wrong-signature fixed-pole term at j= P —n —1. There-
force, we can understand Eq. (23) as valid for all
integer n and testing right- (wrong-) signature fixed
poles for (—)"—"=Wr.

Using an intermediate-state expansion of the retarded
product (4), it is easy to see that only the second term
of the commutator contributes to the left-hand cut of
the amplitudes B(v,i). It is therefore amusing to note
that the corresponding signatured amplitude B(v,f) is
formally given by an anticommutator expression, and
its fixed pole residues are formally determined by equal-
time anticommutators. We refer to this situation as
antialgebra.

The operation of the fixed-pole mechanisms dis-
cussed in Sec. IV A can be clearly seen in Eq. (23). For
amplitudes with singular Born term C(t), the left side
of the n= 0 sum rule is singular at t= 0. This singularity
must be matched on the right side either by the 6xed-
pole residue Fi(t) or by the contribution of a Regge
pole satisfying n(0) =X—1. In nonvacuum channels,
there is no indication of the existence of Regge tra-
jectories with the necessary properties, " and we must
expect a Gxed pole at the highest nonsense point
j=P —1 with residue singular at t=0. In vacuum
channels, the Pomeranchuk trajectory has the required
intercept and the Born singularity can be matched
either by the singular Pomeranchuk term on the right
side of (23) or by a wrong-signature fixed pole at j= 1.
The sum rules can be used to distinguish between these
alternatives.

We also observe that if a Regge trajectory passes
through the nonsense integer ii(/p) =X—n —1 for some
fo and if G(to) &0, the Regge-pole term in nth moment
sum rule has a pole at t= to. This pole is not present on
the left side of Eq. (23), because we are dealing with a
nonsense or unphysical point, and it must therefore be
cancelled by a similar pole in the fixed-pole residue
F,~i(t). Current-algebra amplitudes, where Fi(t) is a

"It is instructive to contrast the doubly weak case with the
singly weak process p2V —+ ~N. There the nucleon Born term is
singular at t=m ' and the singularity can be matched in the sum
rule by the contribution of the x-meson trajectory.
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form factor with the p-meson pole, are an example of
this mechanism.

Curiously enough the fixed-pole residue functifn~s ran
have poles at; spacelike 'I values. If Gp(IO)+0 (ol'

Gz, (ti)40) at the negative I value to (or ti) where
n~(4)=0 (or nz, (ti)=0), the j=0 wrong- (or right-)
signature fixed-pole residue develops a pole at to (or
ti) corresponding to the nonsense ghost state on the
trajectory. In the wrong-signature case, this is clearly a
triumph of antialgebra.

C. Unitarity, Factorization, and Fixed Poles

We discuss the implications of the t-channel unitarity
condition for the factorization of Regge poles and occur-
rence of fixed poles iri weak amplitudes. The two
principal results are essentially known. If the Regge-
pole couplings to hadronic channels are factorable, '~

then they are factorable in weak amplitudes as well.
Further, unlike the hadronic case, there is no restriction
on the occurrence of fixed j-plane singularities in weak
amplitudes. These facts are necessary to understand our
results for the current-algebra sum rules.

Let Latin subscripts j, k= 1, 2, , Ã denote some
finite set of two-body hadronic channels which may or
may not have degenerate thresholds. Define definite
parity and signature partial-wave amplitudes by a, &(t,J),
symmetric in the channel indices. Let the usual phase-
space factors be absorbed in the a, I, so that they are
related to unitarity S-matrix elements by S,I, (t,J)
= b, l+2ia, I,(t,J) If these d.efinitions are summarized in
matrix form S(t,J)=1+2iA(t,J), the strong unitarity
condition can be written as

(24)

where sheet II is the sheet reached by continuing down-
ward from the physical sheet just above the highest
threshold in our set. For each factorable Regge pole
there is a trajectory function n(t) and an E-component
vector function ~v(/)) in channel space, such that near
the pole

S"(&,J)= I~(~))1/LJ —(t)l(~(t) I (25)

Let us choose a particular weak channel such as
two photons with definite isospin and helicity. Ke
denote the partial-wave transition amplitude between
this channel and the strong channel k by b&(t,J) and
join these amplitudes into the vector ~b(t,J)) The.
transition amplitude for the totally weak process
(y+y —+y+y) is denoted by c(t,J). Unitarity for the
weak amplitudes, which takes into account the inter-
mediate hadronic states k = 1, 2, ~ ~, E, can be written
as

~

f (t&J))—
~

0"(&,J))= 2iA (i,J)
~

b"(t J)), (26a)

"For discussions of Regge-pole factorization in strong inter-
actions, see M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962);
V. N. Gribov and I. Ya. Pomeranchuk, ibid. 8, 343 (1962); Ref.
28, pp. 175-177.

~

b" (I J))=S"(&J)
~
b(& f)),

c"(I,J)= c(t,J)—2i(b(I,J) I
S"(t,J) I b(t,J)).

(27a)

(27b)

It is obvious from Eqs. (24) and (27a) that the
Regge-pole residues in doubly weak amplitudes factor
in such a way that the quotient of the residues to two
dilferent strong channels (e.g., lVX helicity nonflip
and flip) is equal to a quotient of purely hadronic
couplings. 'This is the basis of the factorization tests
)see Eq. (45)] used in the study of the sum rules.

It is clear that Eq. (27a) permits the presence of
fixed poles in doubly weak amplitudes, ' and we have
reviewed in Secs. IV A and IV 8 several arguments
showing that fixed poles actually are present at nonsense
integers. Equation (27a) suggests that such fixed poles
are "multiplicative" and, therefore, make Regge-pole
residues singular at the nonsense intersections. This
behavior is not at all inconsistent with the unitarity
requirement for the fully weak amplitude, and Eq. (27b)
indeed indicates that this amplitude will have fixed
double poles at nonsense integers and doubly singular
Regge residues.

Our interest in this last point arises from our study
of the current-algebra sum rules (Sec. VI C) which
indicates that the p-meson Regge-pole couplings are
smooth and nonvanishing near t= —0.6 (GeV/c)'
whereas hadronic amplitudes generally exhibit the well-
known nonsense zero (dip) there. " This situation is
consistent with factorization only because singular pp
couplings, corresponding to a fixed double pole at j=0
in the yy —+ yy amplitude, are allowed.

D. Conspiracy

We turn our attention now to the conspiracy condi-
tion Eq. (15) which relates at 3=0 the amplitude 84
containing 7.I'= —1 trajectories in the t channel to the
amplitude 86 containing vI"=+1. We suppress the
isospin superscripts in this discussion. Since Eq. (15)
holds identically in s, it imposes constraints on the
residues at t=0 of these trajectories. Either the cou-
plings G4(f) and G6(t) vanish at t=0 (evasion) or there
exist pairs ot(t) and n+(t) of negative and positive TP
trajectories satisfying the conditions (of conspiracy)

~-(0)=~(0)
G4(0) = —(1/4m) G6(0) .

(28)

Sum rules for amplitudes 84 and 86 can, in principle,
be used to investigate possible conspiracies for the m-

(isospin segment 3) and q (isospin segments 1 and 2).

"Fixed poles are normally prohibited in purely hadronic
amplitudes because the unitarity condition, Eq. (24), could not
be satisfied near them. See Ref. 28, pp. 161-162.

c(t,J)—c"(~,J)= 2i(&(~,J) I
&"(f,J)) (26b)

Solving for the second sheet quantities, we get. , using
(24),
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One would simply explore the sum rules as functions of
t for several moments to obtain a parametrization of
the trajectories and residues. Although this technique
has recently been used to investigate m conspiracy in
the process yE~ zN, 39 it does not seem possible to
use it for Compton scattering, at least with presently
available data. First, the 84' sum rule has X=O and
n, ;„=1; it diverges badly asymptotically, emphasizing
the most inaccurately known part of the data. Second,
the 86' sum rule, although more accurate, is useful
only near t=0 for determining the parameters of con-
spirator trajectories because important contributions
from nonconspiring trajectories (such as A2) mix in
away from that point.

Hence, the only number which can be determined
from the 84 and 86 sum rules and associated with the
parameters of a single Regge trajectory with relative
con6dence is the value of the 86 sum rule at t= 0. How-
ever, even this number provides an interesting test of
conspiracy, through a sum rule of Pagels, "which we
rederive here to incorporate recent clarification of the
questions of conspiracy and of the relation between
asymptotic behavior and subtractions.

We start with the n = 0 sum rule for 8()'(v, t) assuming
domination by a single Regge pole and a right-signature
6xed pole at j=0:

vo

—C6'(),') +- (p )a(t).
dp Im86'(p, () =G(t)- —+P(t) . (29)

)rn(t)

Now set t= 0, evaluate the Born term using Table I, and
reexpress the continuum contribution using the con-
spiracy condition (15):

e2(2)( +(( 2
K 2)

4m "' dp—Im84'(v, 0)
o V

a (0}
C

=G(0) +F(0) . (30)
urn(0)

We proceed with the derivation under two different
assumptions.

1. PNre Eegge Approach

We assume that the x meson lies on a Regge tra-
trajectory n (t) which couples to the 84' amplitude with
strength G (f) If G (0).NO then there is a conspirator
n, (t) which couples to 86' with strength G,(t), and these
functions may be identified with the Regge functions
in Eq. (30).We set P(t)—=0.

The amplitude 84' has a pole at t = m ' corresponding
to the m. intermediate state in the t channel. The
residue of the pole is closely related to the lifetime of the

Using 84(v, t)=Ai(v, t) where A3 is the Hearn-
Leader amplitude, and comparing the residue of the
pole in the vr' Regge-pole term defined in (21) with

Eqs. (2.8) and (2.12) of Ref. 20, we find

2G—.(m.')/~n. '(m. ') =g.~m. 'F„(m.'),
31

F.'(m. ') = 64 /m. ',
where v is the x lifetime and g ~ is the xAX coupling
constant. We assume that the z Regge-pole coupling
G (f) varies slowly with t so that

G (m ')=G (0).

We use (24) to rewrite (30) [with F(t) =0j as

left-hand side of (30)

= —G.(0) [4m&m. (0)g 'v.

G (m 2)[4m7)-m &n ~(m 2)j—ip ar(o)

Using (31), we then obtain

(32)

(33)

e2 1
(2Kp+K —K~ )+

4m

dp—Im84'(v, 0)

4g~ mm
p ~x(o) (34)

m. ' 1.

which is the form of Pagels's sum rule appropriate for
pure Regge behavior.

—SmF (0)=g.)rP.(m.'),
and the sum rule (30) becomes

1 "'dv
(2K„+)( ' —

(& ')+— —Im84'(v, O)
4m 7f o V

At presently practicable cuto6 energies one cannot
distinguish between (34) and (36), and, therefore, one
cannot directly probe the Regge-pole nature of the pion
in Compton scattering. The sum rule does provide a
check on the over-al1. strength of the asymptotic
structure corresponding to the x meson and on the
assumption of smooth variation of the effective 7r-pole
residue. The sum rule for amplitude 87' in which the m.

Z. Elementary m.

Here we assume that Regge-pole terms are unimpor-
tant on the right side of Eq. (30), and that the sum rules
evaluates the residue of the j=0 right-signature 6xed
pole. If F(0)40, as our numerical result shows, then the
conspiracy condition requires a Kronecker 8;0 term ' in
the amplitude 84' with asymptotic coeKcient Do(0)
= —4mF(0) at t=0. We assume that the Kronecker
8;0 coeKcient has a pole at t= m ' corresponding to the
elementary ~ meson and that this pole term dominates
at t= 0. We then can write
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trajectory can be exchanged (although j= 0 is a,

nonsense point) also provides some information on
conspiracy.

Sum rules similar to (34) and (36) can be written for
the g meson. We refer the reader to Sec. VI for further
discussion of our results on conspiracy.

Im

Btf(i,0) =—
V2

1 " 2v' ImBt'(v, 0)
dp'- +c'+d*v', (37)

pp P V

where we have included contributions of Kronecker
deltas at j=2 and j=4. The nucleon-pole coefficient
is a&——as ———',as=2. Using the crossing relations (10)
at 3=0, we find

v'Bt'(v, p) = m(Mir. , ;i+31; i,.; i) 38= 4m'fr*(r )

where fr(v) is the forward spin-averaged Compton
scattering amplitude of the classical era of dispersion
relations. "A power-series expansion about v=0 gives

f '(~) = —(~*e'i4m)+ &*~'+o(~') (39)

The parameter 6' is related quite simply to the energy
derivative at threshold of the forward unpolarized
Compton scattering differential cross section, 4' " and
to the sum of electric and magnetic polarizabilities of
the nucleon" by 4m'b'=4rr(a'+P'). Combining (37)—
(39) and using the optical theorem, we find for the
polarizability sum

(40)

This sum rule has long been known in the form with
c'=0 (no Kronecker delta) and has been used to con-
strain a two-parameter fit to low-energy Compton

8 A. Bietti, P. Di Vecchia, F. Drago, and M. L. Paciello,
Phys. Letters 268, 457 (1968); 268, 736 (1968); P. Di Vecchia,
F. Drago, C Ferro Fontan, R. Odorico, and M. L. Paciello, Phys.
Letters 278, 296 (1968).

M. Gell-Mann, M. L. Goldherger, and W. K. Thirring, Phys.
Rev. 95, 1612 (1954).

4' M. Cini and R. Stro6olini, Nucl. Phys. 5, 684 (1958).
4~ S. D. Drell, Comments Nucl. Particle Phys. 1, 196 (1967).
43 A. M. Baldin, Nucl. Phys. 18, 310 {1960);U. A. Petrunkin,

Zh. Kksperim. i Teor. Fiz. 40, 1148 (1961) /English transl. :
Soviet Phys. —JETP 13 808 (1961)j; S. R. Choudhury and D. Z.
Freedman, Phys. Rev. 68, 1739 (1968}.

E. Polarizability and Kronecker Deltas

We finally discuss a possible test for the presence of
Kronecker delta terms in physical Compton scattering
amplitudes.

The amplitude Bi'(i,t=0), in isospin segments 1—3,
satisfies the dispersion relation

w N

(e lasting )

Fio.2. Unitarity condition in Compton scattering.

scattering. 44 Drell4' has recently emphasized the im-
portance of using Eq. (40) to test for the presence of the
8,2 term in the asymptotic behavior of proton Compton
scattering. " In this case, the total photoabsorption
cross section is known up to 6 GeV, and the rapidly
convergent integral term can be quite accurately
estimated from the data. Unfortunately, it is the
polarizability sum, which could be determined in low-

energy (20-80 MeV) Compton scattering experiments,
which is unknown. Thus, we have here a situation in
which measurement of a single low-energy parameter
can answer an important question in high-energy phys-
ics, and we join Drell in urging active consideration of
low-energy proton Compton scattering experiments.

Our contribution to the question of the Kronecker
delta term consists of the evaluation of the integral
term in Eq. (40) in isospin segments 1—3.

V. TREATMENT OF EXPERIMENTAL DATA

The most conspicuous feature of the nucleon
Compton process is the lack of direct experimental data.
Since the sum rules (23) involve only the imaginary
parts of Compton amplitudes, we use unitarity to
express the integrands bilinearly in terms of hadronic
photoproduction amplitudes.

The unitarity condition is shown schematically in
Fig. 2. One must sum the contributions from all inter-
mediate states that are energetically allowed. Experi-
mentally the quasielastic (s.X) intermediate state
dominates'" up to photon lab energies (Et,b) of 0.5
GeV, and between O.S and j..1 GeV the inelastic con-
tribution is dominated by the xmE state in the con-
figuration ~h (see Fig. 10).

In studies of sum rules for the processes m.3,' ~ m.X,
KE —+ KE,' and yX —+ mE, 39 4' there are "experimen-

4' V. I. Goldansky, O. A. Karpukhin, A. V. Kutsenko, and V.
V. Pavlovskaya, Nucl. Phys. 18, 473 (1960).

4' J. K. Walker LPhys. Rev. Letters 21, 1618 (1968)j has given
an impressive bound on the size of a possible j=2 Kronecker
delta by using Compton scattering data at 18 GeV.

46 Aachen-Berlin-Bonn-Hamburg-Heidelberg-Miinchen Collab-
oration, Phys. Rev. 175, 1669 (1968). This paper contains refer-
ences to earlier work by the same group. Cambridge Bubble
Chamber Group, Phys. Rev. 155, 1477 (1967).

4' S. Y. Chu and D. P. Roy, Phys. Rev. Letters 20, 958(1968);
21, 57 (1968);K. V. Vasavada and K. Raman, ibid. 21, 577 (1968).
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FIG. 3. The value of (1/~) ImB&' plotted against photon lab
energy. The dashed line is the prediction of BDW (Ref. 1) and
the solid line that of Walker (Ref. 2}.

A. mN Intermediate State

There have been many theoretical and phenomeno-
logical attempts to describe low-energy photoproduc-
tion, ' ' " "p&~ xE. Only two of these are suKciently

tal data" available for both real and imaginary parts
of the amplitudes. This leads to two advantages which
we do not enjoy. First, continuous-moment sum rules,
involving real parts, can be used. Second, inelasticity
is automatically incorporated, and one need not treat
individually the contributions of different intermediate
states.

complete for our purposes, since we require a descrip-
tion of photoproduction amplitudes which is accurate
as to phase, helicity, and isospin dependence. The
multipole analysis of Walker' is a direct fit to the ex-
perimental data, up to photon energies of 1.2 GeV,
using a Born term, Breit-Wigner terms for kno'wn

resonances, plus correction terms. Berends, Donnachie,
and Weaver' (BDW) have given a more theoretical
treatment, based on dispersion relations, which extends
only to E&,b= 0.5 GeV. Their results do not fit the data
as well as Walker but probably contain a better estimate
of the helicity and isospin structure of the background.

In our estimate of the xE contribution to ImB, we

calculate the integral up to 0.5 GeV using both BDW
and Walker and compare the two evaluations. Above
this energy we use Walk. er's analysis. In the low-energy
region there are often serious discrepancies between the
BDW and Walker multipoles, particularly for isoscalar
photons. When one calculates the experimental da/dh

for photoproduction this difference shows up most
clearly in yn~ n. p, where BDW predicts a much
Qatter t distribution than Walker for the energy range
0.4&E&„b&0.5. The data used by Walker would appear
to agree with his own analysis' and not BDW.'

To illustrate the importance of this difference, we

plot in Figs. 3—5 the values of (1/m) ImB at t=0 for
three sum rules of particular interest. One (83'), the
helicity Rip current-algebra amplitude, has a small dis-
continuity at 0.5 GeV between the BDW and Walker
analyses. The Drell-Hearn amplitude involving two
isoscalar photons (82') is badly discontinuous while the
discontinuity of 82, the Drell-Hearn amplitude in
which isoscalar and isovector photons interfere, is
intermediate between these two extremes.
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-O.I—
1

I t
I

l

0.5
EIab GeV

l

I.O I.Z

0.0—

-0.5—

1

l

I
I
I

1

FIG. 4. The value of (1/~) ImB&' plotted against photon lab
energy. The dashed line is the prediction of BOW (Ref. 1) and
the solid line that of Walker (Ref. 2).

"H. Joos, in The Heidelberg International Conference on Elemen-
tary Particles, edited by H. Filthuth (North-Holland Publishing
Company, Amsterdam, 1968). This contains a useful review on
some of the attempts to understand low-energy photoproduction.

4' Y. C. Chau, N. Dombey, and R. G. Moorhouse, Phys. Rev.
163, 1632 {1967)."J.Engels, A. Mullensiefen, and W. Schmidt, SLAC Report
No. SI AC-PUB-415 (unpublished).

"I.O—
l

0.5
Elab GeV

I

I,Q I.P

FIG. 5. The value of {1/m.) Im8~4 plotted against photon lab
energy. The dashed line is the prediction of BDW (Ref. 1) and
the solid line that of Walker (Ref. 2).
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Both the BDW and Walker data are essentially given
directly in terms of multipoles. To calculate ImB for
our sum rules, we use Eq. (A2) expressing the 8,' in
terms of s-channel helicity amplitudes and then de-
compose into partial waves. Then the partial-wave
unitarity equation" ' enables us to express the Comp-
ton scattering partial-wave amplitudes in terms of
photoproduction multipoles.

There is, unfortunately, a technical difFiculty in this
approach in that the box diagram of Fig. 6, leads to a
divergence of the partial-wave series for I,& —0.28.
This was countered by calculating (in a way too in-
elegant to reveal) the divergent part of Fig. 6 and sub-
tracting its partial-wave decomposition from the
divergent series produced by the photoproduction
multipoles.

B. Inelastic Intermediate States

We must now turn to the insertion of inelastic inter-
mediate states in our unitarity sum. In the energy
range of interest mxX is the most important inelastic
state and this is predominantly produced in the quasi-
two-body state xh. ' 4' Thus at 0.7 GeV, xb is essentially
100% of the inelasticity while at E~,b=1.1 GeV it is
more like 50 —+ 70%%uo.

In order to describe A)V —+xA, we use the Stichel-
Scholz' model, which approximates" the amplitude by
the s-channel nucleon Born term and the I channel 6
pole of Fig. 7(a). We chose to calculate these graphs by
fixed t-dispersion relations utilizing the known residues
at the poles. Then by gauge invariance the t-channel onc-
e exchange term LFig. 7(b)] is automatically included.
This model fits the data well near t= 0 both in do/dt and
the density matrix elements p33, p3~, p3 j describing the
decay of the h.

This calculation ignores the magnetic moments of the
N and the 6 which are important away from t= 0. Other
obvious omissions are the higher s-channel resonances,
which can be estimated, and the I-channel resonances,
which cannot, due to the unknown yh —+ N** coupling.
One effect of these omitted terms is to destructively
interfere with the Born terms of Fig. 7, and reduce the
calculated cross section. They also introduce nonzero
values into helicity and isospin states not populated in
the model of Fig. 7. The relative size of these eGects
may be estimated by examining yX~~X at large ~t~

Fxo. 6. A diagram caus-
ing a divergence of the par-
tial-wave series in the (s,t)
region of interest.

"H. Harari, in Proceedings of the 1967 InternationaI Symposium
on Electron and Photon Interactions at High Energy (U. S. Atomic
Energy Commission, vienna, 1967)). This review talk contains
a good criticism of the Stichel-Scholz and other models for
yS —+ 7I.A.

(a) (b)

FIG. 7. (a) The diagrams considered in the Stichel-Scholz
model (Ref. 3) of yE-+ mh. (b) The one-pion-exchange contribu-
tion to 7X—+ mA.

whose value at t= 0 reflects the ambiguity in extracting
the coupling parameters of the unstable 6 resonance.

It may be worth noting that in our modified Stichel-
Scholz model for yX —+ xh, the amplitudes involving
isoscalar photons vanish. We expect the isoscalar photon
contribution to be small (because there is no ~ exchange
pole) and of the same order as many omitted effects
in the isovector part. Such effects are dificult to
estimate.

In order to find the contribution to ImB of the mh

state, we follow the same procedure as for mS. Namely,
we decompose xX~ xA into partial waves and use
partial-wave unitarity. "We note that the diagram of
Fig. 8 does not cause a divergence of the partial-wave
series until t= —1.2 and so we need no special action
like that necessary for Fig. 6.

In order to describe the inelasticity not produced in
the xd intermediate state, we add incoherently the
contributions of higher resonances as in Fig. 9 multiplied

by the factor

(1 inel 1 6)/ tot t

7r
I

I I
IF

I
1 I

FIG. 8. A diagram not causing a divergence of the partial-wave
series in the (s,t} region of interest.

where the mass difference of X and 6 becomes negligible
and we have similar kinematics. However, we contented
ourselves with taking the amplitude of ig. 7 and
multiplying it by a form factor F(t) determined so as
to fit the experimental values of do/dt for ~%~~5.
This simulates the destructive interference at large

~ t~I

of the omitted terms but not the population of new

helicity and isospin states. The helicity structure thus
obtained is essentially the same as that given by an
absorption-model calculation based on the one-pion
exchange graph LFig. 7(b)]. Thus, Fig. 7, with form
factor, already contains the most important effects given

by absorptive corrections. A typical F(I) at Elgb=0. 85
GeV was given by

F'(/) =0.66 exp( —2.9I—12t'),
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I'rG. 9. A diagram representing our treatment of inelasticity not
due to the mh state.

so as to get the fraction not already included in the
~X and mh states.

Since we must use both the yX —+xE multipole
analyses' and the mX —+ mE phase shifts' in order to
extract the pX~ S*~ coupling by factorization, the
incoherent resonance contribution is ambiguous be-
cause of differences in the resonance mass and width
parameters in Refs. 2 and 8. There are further am-

biguities due to our inaccurate knowledge" of the mD

partial widths I' q and because of defects in the treat-
ment of resonances in our model for yS —+~A. These
ambiguities are taken into account in our error analysis.

Finally, we would like to record a possibly more
fundamental objection to the simulation of inelastic
effects in weak amplitudes using a resonance-dominance
model. In hadronic amplitudes, large t-channel contribu-
tions (such as our ~ exchange in yE ~ m.h) violate the
unitarity bound in the s channel and usually lead to an
s-channel resonance which can give an alternate descrip-
tion of the t-channel phenomenon. In weak processes
such as photoproduction and Compton scattering, there
is no unitarity bound and there is less reason to believe
that t-channel exchanges can be reasonably described

by s-channel resonances. We realize that vector domi-
nance relates Compton scattering to strong processes
(e.g., pX —+ pÃ) but this only deepens the mystery. "

C. Errors in Evaluation of Sum Rule

We assigned errors to our sum rules by the following
method. Divide the contribution to the sum rule into
ten pieces. Seven of these coming from the mÃ inter-
mediate state (namely, Walker's 6 resonant partial
waves S~~i +ggl 33) D$3& Dj.5~ Fy5 plus the sum of non-
resonant partial waves) plus one piece each for the mh

and non-xh inelastic contributions. The last contribu-
tion is the nucleon form factor needed for the fixed pole
in the current-albebra sum rules 8~ 34. The error in the
last is estimated from the dispersion in the various fits to
the form factors. '4 The first nine quantities were assigned
preset errors ranging from 10% for well-determined
isovector photon couplings to 100% for some isoscalar
couplings. The size of the discontinuity between BDW
and Walker at 0.5 GeV was a help in judging these
errors. The total error is found by adding the above as

"A.H. Rosenfeld et a/. , Rev. Mod. Phys. 40, 77 {1968).
"We recall the well-known dilemma that pN-+ pN has no

right-signature 6xed poles while Compton scattering certainly
has them.

~4 L. H. Chan, K. W. Chen, J. R. Dunning, Jr., ¹ F. Ramsey,
J. K. %'alker, and R, Wilson, Phys. Rev. 141, j.298 (1966).

uncorrelated errors to an error estimated from assuming
the discontinuity at 0.5 GeV propagated over an s
range chosen as 0.3 GeV'.

Although this arbitrary method cannot be trusted
to give more than a rough indication of the error in any
given sum rule, we might hope that it does give an ac-
curate picture of the relative errors of the sum rules for
different isospins, helicities, and t values.

D. Fit to oi,i,i (apl

Recent measurements of the total hadron photo-
production cross section on protons" permit an in-
dependent test of our treatment of the photoproduction
data. The experimental situation is shown in Fig. 20.
The single-pion (yp —& n+I+. yp —+ mop) photoproduc-
tion cross sections dominate up to lab energies just
below 0.5 GeV, where the two-pion cross section begins
to rise rapidly. The latter is clearly dominated by the
yP —+ ir 6++ process. The shaded band is the "predic-
tion, " errors included, of our model for o„i,i(yp). It is
the sum of single-m. photoproduction multipoles plus
the Stichel-Scholz parametrization of yp -+ n. 6++
plus the incoherent resonance sum. The good fit of the
shaded band to the two directly measured O.i,i,i(yp)
points indicates that the neglected processes, such as
yp —+ imp, give contributions smaller than errors, a fact
which is substantiated by individual cross-section
measurements. "

Both the single-pion and xA photoproduction cross
sections, which are m exchange dominated, begin to
fall rapidly at E&,b= 2.2 GeV, and our model, based on
the sum of these processes, also falls. Photoproduction
processes which can proceed difIractively, such as
yp~ pp, begin to dominate Oi, i,i(yp) above 1.1 GeV.
In the absence of accurate dynamical models for these
processes, we are forced to cut off all sum rules at the
2.2-GeV value.

VI. ANALYSIS OF SUM RULES

A. General Properties

We finally come to a description of our evaluation of
the sum rules (23). We have calculated the left-hand
side of (23) for t varying between 0 and —0.9 and for
all 26 sum rules corresponding to the various spin and
isospin states. Ke have also taken different values of n
in the range 0—3, thus obtaining information about both
right- and wrong-signature fixed poles in (23). We have
selected from these the most interesting sum rules and
present our results graphically in Figs. 22-28. Before
commenting on the significance of these results, we will
describe the meaning of the sundry quantities plotted
in the figures.

"H. G. Hilbert et a/. , Phys. Letters 278, 474 (1968);J. Ballam
et a/. , Phys. Rev. Letters 21, 1544 (1968); J. T. Scale ef a/. , Cal
Tech Report No. CTSL-42 {unpublished).
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The integrals I,' (n') are defined to be the left-hand
side of (23) evaluated in units such that h= c= GeV= 1.
Thus,

vn

Ij(I)= —(t/2) "Cti(t)+— dv v" ImBj(v, t), (41)
I 00—

i i i i i & i i

g& (expt)

A.

~+'+Illlll+ 1
Q.~(ii) — v I—~IIIIIII.~(vi . )

e —x+m+1
(42)

where for n we put the values already known from the
analysis of strong interactions. We include generous
errors in our knowledge of n in the plotted errors of

Q, '(n). If Q, '(e) and I,'(e) differ signiticantly, it may
indicate the presence of a fixed pole.

In spin type 2, we indicate with X an estimate of the
nonasymptotic parts of P, P', p, and A2 exchange cal-
culated from (19), (20) and Appendix C as

(2—n) t (n+ea —1)
IV~*(n) = — —— v,"-"' 'I3'(Na), (43)

2n (n+e —2)

where tt3 is the value of n; for spin type 3 and the
same isospin i.

Finally, in the conspiracy sum rules (spin type 6) we
indicate with a V' symbol an estimate of the noncon-
spiring contribution calculated from factorization as

t n+2—
I.-'(1)I~"(1)/Ii"(1),I6*'(0) =

2v, ' n

where the first term is the Born contribution.
Here the cutoff v, corresponds to a photon lab energy

of 1.12 above which the published data'4 on Oi, i,.i(yp)
shows our model for ImB to be undoubtedly wrong.

In the graphs, Q represents the integrals I,'(n) with
errors estimated as described in Sec. V C. The integrals
are evaluated using the BDW multipole analysis' from
the threshold to 0.5 GeV and Walker's analysis' above
that energy. All the sum rules have also been evaluated
with Walker's multipoles for the whole energy range,
eliminating BDW. Usually, the difference between
these evaluations is smaller than our estimated errors
but where they differ significantly we also graph the
pure Walker evaluation of I,''(n) which we denote by

The Born-term contribution to I,'(e) is represented
by a solid line where in the current-algebra sum rules

Ij,2,3' this also includes the 6xed-pole contribution. In
I2'(1), the dashed line indicates the Born term without
the 6xed pole.

The lowest value rt= n; (0 or 1) such that (23) is a
right-signature sum rule is given in Table I. In theory,
one may use the value of I,''(n;„)/I, '(n;„+2) to
estimate a value for the intercept n of the Regge pole
assumed to saturate both sum rules. However, the
presence of unknown fixed poles in I,'(n; +2) re'nders

this dubious in our case. Instead, for sum rules
I (eon;„) we plot the quantity (denoted by d on
the graph)

IO—

lt

g p ~ p Tf 'tI'

I
lt

tt
tl

I
l

/ rrrrr
yp~m

PI I DI3 SII DI5 FI5

and we restrict to i = 1, 2, 3 as i= 4 has a (known) fixed
pole. For i=3 we have i'=3, while for i=1, 2 we take
i'=2 as being more reliable than i'= 1 (because iso-
vector photon couplings are more accurately determined
than isoscalar).

The main tools in the analysis of our results are the
sum rule graphs just described. Perhaps the most im-

portant thing we are interested in is to discriminate
between Regge-pole and fixed-pole contributions to the
sum rules. For higher-moment sum rules, this can be
done through the quantity Q, *(n) of Eq. (42). For some
lowest-moment (n=n„„„) sum rules, we exploit the
factorization property of Regge residues Lthis has
already been used in obtaining (44)]. For example, the
amplitudes ImB~' and Im83' are dominated at high
energy by, respectively, the nucleon helicity nonAip
and nucleon helicity flip couplings of the same Regge
pole. If there are no fixed-pole contributions to the sum
rules Ii' and I3', then factorization (see Appendices B
and C) requires

Ii'/Ii' =N„/2' = (4m' t)A'/2v. B, —(45)

where A' and 8 are the conventional nonQip and Rip
residues used to describe xS and KX scattering. "If the
sum-rule ratio agrees with the value calculated froin
hadronj. c processes, then we have evidence suggesting
that the fixed-pole contribution to these sum rules is
unimportant.

Another quantity which is sensitive to fixed-pole
contributions to the sum rules is the effective trajectory
n,''(n) (which is also a function of t) defined numerically

W. Rarita, R. J. Riddell, Jr. , C. B. Chiu, and R. J. N.
Phillips, Phys. Rev. 165, 1615 (1968).

I i i I I I I . I i

0.2 0.4 0.6 0.8 I.O l.2~ Elab (GeV)

FIG. 10. Contributions to oto&»(pp) for lab energies E»b(1.2
GeV. The solid line 0,1 is the sum of the single-pion photoproduc-
tion cross sections pp —+ ~+n and pp —& x'p as compiled by Scale
et al. (Ref. 54). The experimerital points with error bars are direct
measurements of the total cross section by the DESV group
(Ref. 54). Also plotted as dashed lines are the experimental
(Ref. 46} yp —+ p~+vr cross section and the part of this due to the
w A~ state. The shaded band is the "prediction" for Of, fal(yp)
of the model described in Sec. V.
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FIG. 1i. Pomeranchuk-exchange nonAip sum rule (isoscalar

photons). See VI A for the graphical notation and VI 3 for
comments. (a) The e= 1 sum rule II'(1). (b) The corresponding
effective a.

~here wc average the numerator over energies EI,b be-
tween 0.88 Rnd 1.12 GCV. This quantity Is thc cGcctivc
trajectory II(t) whose Regge term Las in (21)] both
saturates tile sliIn I'ule Iq ('0) aIid fits tlie 111iagiIiaiy part
data averaged over the upper end of our integration
range. By examining Eqs. (21) and (23), one can see
the following. If n, '(n) comes out reasonably close in
shape to the trajectory known to couple to the ampli-
tude B~'

q
then this Indicates that thc fixed pole ln that

sum rule is weak. However, if n,'(n) turns out closer
to the fixed-pole value (X—n —1) to which the sum
rule I,''(n) is sensitive, then we have evidence for a
strong fixed pole which contributes to the denominator
in (46) but not to the numerator since a fixed-pole
term is purely real.

Graphs of the quantity u, '(n) are used whenever
their accuracy allows useful information to be extracted.
The plotted errors in the graphs include those of I,'(II)
and the dispersion obtained by varying the numerator
in (46) over the energy range 0.88—1.12 GeV. Un-

fortunately, n,'(I) is rather sensitive to errors in the
parametrization of the data near 1 GCV and depends on
the dubious assumption of the vahdity of Regge be-
havior Rt this low energy. For this Icason& cvldcncc
from the effective e graphs must be taken with a grain
of salt.
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I'IG. 12. Pomeranchuk-exchange nonQip sum rule (isovector
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II'(3).
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B. Regge-Pole Sum Rules: Ii,3"'

Although right-signature fixed poles can be present
in the amplitudes 8~,3' ' ', there is no compelling
theoretical reason, such as would follow from the
mechanisms discussed in Sec. IV A, for them to be
present. Therefore, we might expect the right-signature
sum rules (I= 1, 3) for these amplitudes to be dominated
by the P, P', and A2 Regge poles. Further, we should
expect reasonable answers from these sum rules, be-
cause they are at least as convergent as the correspond-
ing low-moment sum rules in xX and XN scattering. '

If there are no j=O fixed poles, then the n= 1 sum
rules I& 8"'(1) should directly measure the photon
(helicity fhp) couplings of the P, P', and Az, and the
quotient Iq'(1)/Iq'(1) should reveal, through Eq. (45),
the same nonfhp/flip nucleon coupling ratio obtained
by analyzing xlV, EN, and NN elastic scattering. The
current models~ "'~ for these amplitudes would lead
us to believe that near t=O

A'/vB for P and P'
A'/vB for p and A2 1/20,

1 g(1)
.OS

0.0

—.OS

0.0

1.0

0.'0

a (f)
-1.0

-2.0

I

.2
I

~ 4
I

.6
I

.e
—T (Gey/c)~

(a)

F IXEO POLE AT 0

1.0

remembering that our definition of v is 2m larger than
the usual (s—I)/4m.

There is also some evidence that the amplitude A'
has an additional zero for P' and A2 near t —0.5 over
and above that needed to erase the ghost. The evidence
for this zero comes from a photoproduction FESR4~ for
the A2 while for P' the zero is indicated by mX FESR's~
and also by the structure in pp elastic scattering near

—0.5."The work of Refs. 47 and 58 was claimed to
be evidence for the so-called no-compensation mecha-
nism for the P' and A 2. This has an extra zero in both the
Rip and nonQip couplings but in fact their analysis was
most sensitive to the nonQip zero and for the A2, at
least, one can rule out the Rip zero from high-energy
data for ~N —+ gN and xN —+ gh. If this zero is a true
effect of the leading Regge trajectory, and not due to
interference with secondary trajectories, our sum rules
should reproduce it.

1. P and P' Exchange Sum rules: I~,g"(I,3)

Here there are two possible isospin states, 1 and 2,
corresponding to isoscalar and isovector photons and
one may expect the latter to be more reliable. Thus, in
general, the amplitudes involving isoscalar photons will
have rather small ImB because the resonance couplings
of Walker are larger for isove ctor than isoscalar
photons and because our model for the inelasticity has
a very small isoscalar part. Thus isospin-1 sum rules

~VR. J. N. Phillips and W. Rarita, Phys. Rev. 139, 31336
(1965); Guy Plaut, Orsay Report (unpublished). The high-energy
data are insufficient to determine the Regge-pole parameters for
K+p elastic scattering. The FESR's of Ref. 7 have clarified the
situation to some extent.

"C. B. Chiu, S. Y. Chu, and L. L. Wang, Phys. Rev. 161,
1563 (1967).
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FIG. 13. Pomeranchuk-exchange flip sum rule (isoscalar
photons). See VI 3 for comments. (a) The e= 1 sum rule I3'(1).
(b) The corresponding effective n.

tend to be dominated by their Born terms which are
not always small. Under such circumstances Eq. (46)
predicts that the effective n will be nearer the fixed-
pole value X—n —1 than the intercept of the hoped for
Regge pole. One should, however, note that BDW and
Walker are not in quantitative agreement (cf. Fig. 3)
and such sum rules have a large discontinuity at
E~,b= 0.5 GeV. In Fig. 11(a),we have plotted the results
of using Walker from threshold rather than BDW and,
as expected, this leads to results showing a smaller devia-
tion of I (n) from its Born value.

The nicest sum rule of this section is I~'(1) shown in
Fig. 12(a). The corresponding n LFig. 12(b)7 estimated
as in (46) is in agreement with an expected average
P+P' intercept while even the higher-moment sum
rule IP(3) /Fig. 12(c)j shows agreement with IP(1).
Both results suggest that there is no important j=0
fixed pole.

The corresponding fhp sum rule IP(1) LFig. 13(a)$
is not so spectacular with both nP(1) LFig. 13(b)g and
IP(3) (not shown) showing less agreement with the
P+P' and preferring a lower intercept.

The isoscalar photon sum rules I&'(1) and I3"(1)
(Figs. 11 and 14) do not provide striking evidence for
or against a fixed pole at j=O.
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Thus the closeness of n~ and nJ. makes it dificult to
disentangle their separate contributions but in any
case there is a good simultaneous fit to the FESR and
the o-~,~,i data. This is in agreement with our rougher
estimates ni2(1), Ii (3) which also indicate there is no
necessity for a large j= 0 right-signature fixed pole.

Our work also agrees with that of Costa et el."
and Creutz et al." The latter authors stress the im-
portance of looking for a j=0 fixed pole but it is
strange that they should use a sum rule Lnamely,
Ii'(3)+Ii2(3)+Ii'(3)], sensitive to j= —2 fixed poles,
as part of their investigation.

0.0 FIXED POLE AT 0

Z. A2 Exchange Sum Rules: Ii,3'(I)

Our results are given in Figs. 15 and 16 and both the
sum rules and the effective n plots appear to be con-
sistent with A2 exchange. At t= —0.5 we expect a zero
in IP(1) and none in I8'(1) which is not inconsistent
with our graphs. At t= 0 we find from (45)

A'/vB= 1/(7—15),
-1.0.

-1.5
0.0

I
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I . I

. , 4 .6
—T (Geyyc)~

.8 1.Q

FIG. 14. Pomeranchuk-exchange Rip sum rule (isovector
photons). See VI 3 for comments. (a) The m= I sum rule I32(1).
(b) The corresponding effective n.

which is not ridiculous compared with (47). (However,
see our comment in VI E.)

On the basis of an argument involving F/D ratios,
factorization and a crude evaluation (Born term only)
of the Ii'(1) sum rule for the nucleon and its SU(3)
partners Z and, Gross and Pagels" have suggested
that there is an important j=0 fixed pole in this sum

From Eq. (45), we find at t = 0

A'/vB for I'+P from isospin 1 0.6,
from isospin 2 0.3,

which agree reasonably with the mÃ result of 0.5. Of
course it is quite possible that the ratio of P and I" is
very different in m.X and Compton scattering (and
again it may differ here in the two isospin states). How-
ever, this does not aGect the above argument too much
as high-energy data on ir+p polarization suggest"
A'/vB is similar for both P and I".

In fact, "' one may attempt to calculate the relative
amount ofI'andI" in our amplitudes byusing at t= 0 the
linear combination —',LIi'(1)+I/(1)+Ii'(1)j sIi2(1)
which only involves o&,&,i data for the pp state, and to
combine it with the O.t t, i data known up to 7.5 GeV. 55

If one fits the latter to Av & '(1+cv &' ~&) subject to
the constraint provided by the finite-energy sum rule,
one finds

I,'!1. )

0.0

~ 1

2 I

0.0

1.0

0.0

a (f)
-1.0

-2. 0

1

.I 1.0
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I 1 . l

.2 .4 .6- T (eaVxeP

(a)

n~= 1, n~ =0.65 gives c= 5.7&5.0,
nI = 1, n~ =0.6 gives c= 2.0&0.9.

-3.0
0.0

I

~ 2 .4 . .6- T' (GeVrc)2

I

.6 1.0

' M. J. Creutz, S. D. Drell, and E. A. Paschos, SLAC Report
No. SLAC-PUB-499 (unpublished).' G. Costa, C. A, Savoy, and 0, Shay, Xuovo Cjmento 57, 890
(jw8),

(b)

Fxc. 15. A2-exchange nonflip sum rule. See VI B for com-
ments. (a) The n=I sqm rule Iq'(I), (b) Tge cort. esponding
etTective A.',
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rule. From our more complete saturation of the nucleon
sum rule and the associated effective n plot LFig. 15(b)7,
we find no evidence for a large fixed pole (particularly
if the BDW isoscalar photon multipoles are correct).
However, our method is not very sensitive to this be-
cause of the closeness of the A~ intercept to zero. If our
6ndings are to be compatible with Gross and Pagels,
then their fixed pole must couple predominantly to the
strange baryons.

2 '

[

0.0

7 ', IOI
~ 2

4

C. Current-Algebra Sum Rules: I~, 2, 34

1. Time-T~me Sum Rules.'I~,3'-

Here we study the sum rules obtained by taking
matrix elements of the equal-time commutator of time
components of the isovector current between nculeon
states with helicity nonflip Ii'(0) and helicity flip
I84(0). Although these sum rules are well known, 4" "
previous evaluations" seem to have been solely con-
cerned with Ii'(0) at t=0, where it coincides with the
Cabibbo-Radicati sum rule. "

These sum rules have Born contributions which are
infinite at t= 0 and require the existence of a j= j. fixed
pole to produce a finite answer. (See Sec. IV B.) Current
algebra, after the usual technical assumptions, 4 predicts
that the fixed-pole residues gas defined in Eq. (23)] are

Fi(t) = —(2me'/I)GE (I) in Ii'(0),
F,(t) = —(2e'/I)G~ "(I) in I84(0),

~ 8

II

—.6
0.0

I

.2
I . l

.4

—T (GeV/c)'

I

.8 1.0

Fio. 17. Nonflip current-algebra sum rule II4(0). See
VI.C 1 for comments.

A' 2 Ii'(0)+(2me'/I)G&v(t)

v,B 4m' —t Ia (0)+(2e /t)Gjev(t)
(50)

where G@v(t) and G~v(t) are the usual electric and
magnetic isovector form factors of the nucleon nor-
malized to G@v(0)=1 and Gia. v(0)=1+Kv —K„.

For our test of these sum rules we 6rst note that the
ratio of couplings of the p Regge pole at t=0 can be
estimated from ~Ar scattering as A'/vB=1/20, a num-
ber which is reduced by a factor of 2 —& 3 from its value
at the p pole t=m, '. If factorization holds, we must
have for all I [see Appendix B and Eqs. (23), (45), and
(49)]

.6.

.2

0.0
.0.0

1.0
I

I

.2
I . I

.4 .6- T (GOV/c)~

(a)

1.0

In Figs. 17 and 18(a), the sum rules Ii4(0) and Ii4(0)
are plotted with the fixed poles of Eq. (49) subtracted
off. If current algebra has supplied us with the correct
value of the fixed poles, then the resulting sum rules are
superconvergent' and for high-energy cutoffs the data
points should lie very near to the zero line of the figures.
Thus, one is somewhat comforted that the data points
lie in between their generalized Born terms and zero.

Since the form factors have been subtracted o6, the
plotted points of Figs. 17 and 18(a) correspond exactly
to the numerator and denominator of the last factor of

&, (i)
0.0

"1.0 I

0.0
I

.2
I . I

.4 .6
—T (Gev/c)~

I

.B 1.0

J FIXEO POLE AT 0

Mechanism Signature N Ny

TAar, E II. a=0 sense-nonsense factors. Dependence on a near
a=0 of Regge-pole vertex functions for various sense-nonsense
mechanisms. The helicity nonflip (n) and Qip {f)vertex functions
N„, Ny for the hadronic NE' vertex and I'„, Py for the weak yy
vertex are defined in Appendix B.The a dependence given assumes
that possible fixed poles are "additive" in hadronic amplitudes
and "multiplicative" in doubly weak amplitudes. The latter cor-
responds to the case of "singular yy couplings" discussed in the
text. "Regular" yy vertex functions would be a factor of a
smoother than those listed here.

FIG. 16. A 2-exchange Qip sum rule. See VI 3 for com-
ments. (a) The m=1 sum ru'. e I3'(1). (b) The corresponding
effective a.

'F. J. Gilman and H. I. Schnitzer, Phys. Rev. 150, 1362
(1966).

Choosing sense
Choosing nonsense
Chew's mechanism
No-compensation

mechanism

1 or-
+
+

1 1
&/v' &/v'
1/ga 1/Qa
1 1
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FIG. 18. Spin-Qip current-algebra sum rule. See VI C 1 for comments. (a) The n=0 sum rule I3'(0). (b) The effective
a corresponding to (a). (c) The n=1 rvrong-signature sum rule I34(1). (d) The effective n corresponding to (c).

Eq. (50) and determine the p couplings through Eq.
(23). We see from the figures that the general character
of the sum rules is given by the Born minus fixed-pole
contributions. At t=o we have for the Gnite part of
these contributions

Born minus fixed pole of Ii4(0)
= —0.0244L2. 11—7.05(d/dt) G@r(0)j,

(51)
Born minus fixed pole of Iq'(0)

= —0.026L13.7—7.05 (d/dt) Gir r (0)].

Since (d/dt)G@+(0) =3.3 and (d/dt)G~+(0) = 13 0,
Ii4(0) exhibits a large cancellation between the finite
part of the Born term and the derivative of the form
factor. In I34(0), this cancellation does not occur.
Therefore, the smallness of the nonfhp/fhp ratio of the

p Regge couplings at t=o is qualitatively realized by
the Born minus fixed-pole contributions to the sum
rules. Note that in the p dominance model for the form
factors the ratio of the fixed-pole contributions at t= 0
is essentially the value A'/vB at the p pole. The ratio

TABLE III. Breakup of I (n) Lde6ned in (41)j, at t=0, into the contributions of
various intermediate states as dined in Sec. VI I.

Total Born Inelastic
71-Ã intermediate state

Dls D15 ~15 Rest

I (1)
I,g(O)

I1 (0)
I2'(0)
I2'(0)
I 4(0)
I.~(0)
I7f(1)

1.25
0.12
0.02
0.06

—0.09
1.2
0.08

—0.04

0.086
0.17
0.044
0.358
0.024
2.04

—0.97
—0.094

0.27
0.008

—0.004
—0.05
—0.005
=0.18
—0.15

0.005

0.39
0.0
0.31

—0.43
0.0
0.45
0.53
0.0

0.1
—0.01
—0.09
=0.09

0.01
—0.32
—0.02

0.02

0.01
0.002

—0.01
—0.006
—0.002
—0.1

0.01
—0.002

0.04
0.02

—0.02
—0.02
—0.01
—0.06
—0.002
—0.002

0.36
—0.07
—0.20

0.31
--0.06
—0.65

0.69
0.02
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of the complete contribution to the sum rules (Born
minus fixed pole plus continuum) at t= 0 is in numerical
agreement, through Eq. (50), with the irlV result if the
correct value of Ii4(0) lies in the upper half of the error
bar in Fig. (17). Of course, one expects factorization to
hold only to the extent that a p' contribution"' is
unimportant.

The agreement at 3=0 extends to nonzero t for 8~ as
Ii4(0) remains small for all t. In this sum rule, we expect
.the Hohler zero'4 at t= —0.2, and this zero is exhibited
in Fig. 17. Indeed, this statement is strengthened by
the fact that factorization requires that Ii'(0) lies in
the upper part of the error bar at t=0. At n, (t) =0, we
expect a zero in the sum rule (for p choosing either sense
or nonsense) if the p —+ yy coupling is regular and no
zero if it is singular (see Sec. IV C, Appendices B and C,
and Table II). In our opinion, the data (slightly) favor
the absence of a zero. Unfortunately, the effective o
calculation LEq. (46)j for this sum rule is of no use,
because the sum rule is so small. We would be dividing
by a small number with large errors in (46). Incidentally,
at &=0, Ii'(0) is in agreement with earlier work" both
as to the value of the sum rule and the relative size of
individual multipole contributions (see Table III).

In Ia (0), the situation is not so good at large t The.
effective trajectory na'(0) LFig. 18(b)j shows little
agreement with the expected p shape and the large
value n& 1 for t& —0.5 would seem to indicate that we
should have subtracted off a form factor of larger
modulus than (—2e'/t)Girv(i). Taken at face value,
this is a violation of current algebra. However, it hinges
on a rather delicate feature of the data. Thus, ImBg'(v, &),

for Ei,b = 1 GeV, changes sign near t= —0.5 because the
dominant resonant contribution L:,'+(1688)] vanishes, "
and this sign change forces n~4(0), calculated from
Eq. (46), above the fixed-pole value. Although the
vanishing of the resonance contribution is perhaps ex-
pected, '4 it does mean that the resultant amplitude de-
pends delicately on the more uncertain parameters of
Walker's analysis, ' as well as our own dubious analysis
of the inelastic contribution. This, together with our
theoretical bias, makes us prefer to ignore this apparent
violation of current algebra.

Therefore, assuming that the current-algebra pre-
diction of the fixed pole is correct, we note the interest-
ing point that I3'(0) has no zero near n, (t) =0. If the p
chooses sense at n= 0 we expect a double zero if p —+ yy

"W. Rarita and B. M. Schwarzschild, Phys. Rev. 162, 1378
(1967};J. Beaupre, R. Logan, and L. Sertorio, Phys. Rev. Letters
18, 259 (T967}.

"To be exact the resonance vanishes at t~—0.3 while inter-
ference with the background moves the zero to t —0.5. Note
that in the mlV scattering the position of such zeros is Axed by the
mass and spin of the resonance. In Compton scattering, the loca-
tion of zeros depends on the relative size of the two possible
couplings of the resonance to the pN system."Thus, it would be natural to associate the zero of Im88' with
a zero of the p residue function as was done in the m-N case (Ref. 6}.
But then this p zero should manifest itself in the sum rule and it
does not.

is nonsingular and a single zero if it is singular. The p
choosing nonsense predicts one less zero than the above.
Thus our sum rule predicts p choosing nonsense with a
singular p —+ yy coupling. If current algebra were
wrong, the larger fixed pole necessary to produce a
better na (0) could also produce a zero in the p coupling
at n, (t) =0.

Finally we show the sum rule I~4(1) and its associated
n~'(1) in Figs. 18(c) and 18(d). The sum rule is sensitive
to a wrong-signature fixed pole at j=0 which is needed,
if our interpretation of the p in I3'(0) is correct, with a
singular residue at n, (t) =0 in order to cancel the pole
of the Regge term. It is evident from Fig. 18(c) that
something, presumably the fixed pole, has nicely can-
celled the singularity in the 6 contribution, Eq. (42),
and has produced a sum rule with a smooth variation in
t. The effective n3'(1) suggests p exchange at small ~&~

and, somewhat dubiously, since the sign change
mentioned in connection with Iq'(0) also occurs here,
suggests the fixed-pole value at large ~t~. Therefore,
Iz (1) is certainly not inconsistent with an interpreta-
tion that current algebra is correct for Iq4(0), but one
must admit Iz'(1) is hardly a stringent test of that
interpretation. We do favor the interpretation that cur-
rent algebra is correct. However, it is rather remarkable,
although hopefully coincidental, that Ii4(1) and ni'(1)
are consistent with no j=0 wrong-signature fixed pole
and a p with a single zero in its residue function. Un-
fortunately, as we have seen, such a p is inconsistent
with the n=O sum rule unless you increase the- j= j.
fixed pole from its current-algebra value (49).

We cannot claim on the basis of this work to have
definitely confirmed or refuted current algebra although
we do favor the former alternative. First, both the sum
rules appear to be converging and second, we obtain
agreement near t= 0 with the hypothesis of p dominance
of the sum rules once the form-factor terms are sub-
tracted o6.

At large t, assuming current algebra is right, we obtain
the interesting prediction that p chooses nonsense with
a singular p —+ yy coupling which eliminates the zeros
found in p couplings to hadronic processes. In this
picture of the p couplings, the wrong-signature fixed
pole at j=0 plays very different roles in weak and
strong processes. In the strong case, this fixed pole
seems to be purely "additive, '"' giving zeros in the
p-Regge term but spoiling the Schwarz'~ sum rules. In
the weak case, it is "multiplicative" and ills in the zeros.

Z. Time Space Sgm Rules: I-2 (f)
Using low-energy theorems and the assumption of an

unsubtracted dispersion relation, Beg" obtained a sum
rule for the amplitude Bg4(v, t) at 1=0. This sum rule
was rederived and extended to all t by Adler and
Dashen using the equal-time commutator of the time
and space components of the isovector current and the
infinite momentum limit. One interesting property of
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FiG. 19. The time-space current-algebra sum rule. See VI C 2
for comments. {a) The e= 1 sum rule I24(1). {b) The correspond-
ing effective a.

this sum rule is that it is invalid in a field theory of free
nucleons, because the infinite momentum damping as-
sumptions fail in that theory. On the basis of Regge
theory (Appendix D) the fixed pole (eRectively at
j=0) of 824(i, t) can be calculated to be

F,(t) = e'Gir (t)+H(t), (52)

where the first term is the nonasymptotic contribution
of the J"~=1 + fixed pole of 834, and the second term
is the contribution of a possible J~~=O + fixed pole.
If the current-algebra derivations of the sum rule are
correct, then H(t) =—0.

We show I2'(1) in Fig. 19(a) and n2'(1) in Fig. 19(b).
The X's denote the nonasymptotic contributions of the p
trajectory which Regge theory permits us to calculate
from I3'(0) (see Appendices C and D). This contribu-
tion is meaningless near n, (t) =0 because its singularity
there must be cancelled by a compensating trajectory. "'
The current-algebra fixed-pole residue e'Gir "(t) is sub-
tracted oG and the combined Born minus fixed pole is
plotted as the solid line in Fig. 19(a). The Born term
alone is plotted as the dashed line to show the dominant
eRect of the e'G~v(t) term.

M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys. Rev. 133, 8145 (1964).

If the current-algebra, fixed pole was correct then,
at least for the mythical high-energy cuto8, the data
points Q would be expected to lie near the zero line
in Fig. 19(a). Since the data points have a sign opposite
to the p nonasymptotic term (near t=0 where the
latter might be trusted) and even lie on the wrong
side of the generalized Born term, Fig. 19(a) suggests
that the current-algebra prediction is wrong and that
II(t) = e'G~—v(t).

However, n~'(1) does not support this interpretation
near t= 0 and indicates an eQective intercept consistent
withanXtrajectory $r 0=(+) +)withux(0)= —0.5,
instead of the fixed pole value of zero. Although the
sum rule results are presumably more reliable than the
effective e determination at our low cutoff energy, we
speculate further on the X trajectory. If nx(t) stays one
unit below the p up to t= —0.6, it could well be the
necessary compensator, a possibility which is supported
by the fact that the X coupling apparently has opposite
sign to the p nonasymptotic term. The wild behavior of
n~'(1) for —t) 0.4 could be due to a complicated can-
cellation between the p and its compensator. On the
timelike side, if nx(t) were roughly parallel to n, one
would expect a 0 + meson at reasonably low mass, for
which the lowest threshold decay channels are 4m and
XKir. Further, if I24(1) is satisfied by an X trajectory,
not a 0 + fixed pole, this Regge pole will contribute via
its nonasymptotic term (see Appendix D) to Ia'(0).
This effect is quite large L 25%%u~ of I,'(0)] at t= 0 but
negligible at the crucial larger

~

tI values.
In summary, although the sum rule I2'(1) seems

to show that the current-algebra prediction is incorrect,
and that the fixed-pole value is much nearer the free-
field-theory value of zero, the eRective e|2'(1) plot
allows us to explain this on the basis of a large I tra-
jectory contribution.

D. Antialgebra Sum Rules: li, 3' '(0), Ii'(&)

Current algebra purports to associate right-signature
j=1 fixed poles with the equal-time commutators of
currents satisfying pretty algebraic properties. In
Sec. IV D, we anticipated the proposal of a fundamental
algebra of anticommutators to describe wrong-signature
fixed poles at j= 1. Of particular interest are those sum
rules which share with Ii, &'(0) the property of having
Born terms which are singular at t=0. In the current-
algebra case, this normalization condition on the fixed
pole, in terms of the Born singularity, corresponds to
current conservation.

Because the singular Born-terni mechanism (dis-
cussed in Ref. 18 and our Sec. IV A) applies, the sum
rules Ii P(0) and Ii'(0) are guaranteed to exhibit
wrong-signature j= 1 fixed poles with singular coupling
strength at t= 0 fixed by the Born term. Since isoscalar
photons with small continuum contributions are in-
volved, we also expect that the fixed-pole couplings at
large

~
t~ follows the shape of the Born term. In the
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case of right-signature j=1 fixed poles (if current
algebra is correct), this is not true because the fixed-
pole couplings display the marked t dependence of the
form factors, Eq. (49).

As a typical example we show Ii'(0) in Fig. 20. It is
clear that the data points Q follow the Born term
(solid line) and lie far from the 5 points calculated,
Eq. (42), assuming n.o wrong-signature fixed pole.
Because the continuum contribution is small, ni3(0)
would clearly support the Axed-pole interpretation.

Because the Pomerhnchuk pole I with nr(t) =1 at
3=0j is present, the sum rules Ii,a' '(0) need not have
a wrong-signature j=1 fixed pole but can be satisfied
by the Pomeranchuk Regge-pole term with singular
coupling at t= 0. Ii2(0) is presented in Fig. 21. The lack
of correspondence between the sum-rule points Q and
the I'+I" contribution 6 calculated from Ii2(1) defi-
nitely shows the existence of a strong j= 1 fixed pole,
and this interpretation is supported by ni'(0) (not
shown).

The interesting behavior of Ii2(0) at large
~
tI should

be noted. Comparison of the data points Q with the
Regge contribution 6 shows that the sum rule is
dominated by the fixed-pole term even for

I tI &0.6.
The fact that the wrong-signature 6xed-pole couplings
do not decrease rapidly with increasing —t may be
related to the presence of left-hand cuts in the wrong-
signature couplings not present in the right-signature
case.

The formula

0 r =2lre'n/'(0) L-,
' F'y-,'I(I+1)j, .(53)

2 ~ 5
I
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Fro. 20. A2-exchange nonRip wrong-signature sum rule
I~'{0).See VI D for comments.

for the total photon cross section on hadron targets of
hypercharge P and isospin I, was derived in Ref. 18
assuming pure Pomeranchuk pole dominance. Existence
of the wrong-signature j= 1 fixed pole invalidates this
formula, at least for nucleons. Equation (53) is very
dubious on other grounds, since, using factorization, one
can derive from it clearly erroneous results for the ratio
of asymptotic total cross sections for any strongly inter-

I
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2.S
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-5.0
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I . I
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FIG. 21. Pomeranchuk-exchange nonQip wrong-signature
sum rule I1'(0). See VI D for comments.

acting system. Neither our sum rules nor the factoriza-
tion argument directly invalidates the weaker hypothe-
sis—namely, absence of the j= 1 fixed pole in y+ —+ yx
only —used by Mueller and Trueman. "

6'A. H. Mueller and T. I. Trueman, Phys. Rev. 160, 1306
(1967).

67 T. L. Trueman, Phys. Rev. Letters 17, 1198 (1966); 18, 822
(1967).

6'For a discussion of this point see the Appendix of S. R.
Choudhury and D. Z. Freedman, Phys. Rev. 168, 1739 (1968)."We have plotted our estimates of these nonasymptotic terms
in the figures and they are always small.

E. Drell-Hearn Sum Rules: I2' '(0)

These sum rules are sensitive to right-signature
j~=1+ fixed poles in the amplitudes B&' '(i, t). If
conventional theory is correct, the fixed poles are
absent and, since we have helicity Rip X= 2, the ampli-
tudes satisfy superconvergence relations. ' " In ex-
planation of the phrase "conventional theory, " we
cite two facts. First, the assumption of superconvergence
for B&(i,t) is, at t=0, equivalent" to the assumption,
used in the original derivation" of the Drell-Hearn
sum rule, of low-energy theorem plus unsubtracted dis-
persion relation for the forward spin-Rip Compton
amplitude fi(i). Second, it would seem that the super-
convergent sum rules follow from the conventional
algebra of the time component of the appropriate
isospin part of the electromagnetic current plus the
usual technical assumptions of the infinite-momentum
method. '

Drell and Hearn considered only the proton sum rule
obtained by adding 2LI&'(0)+I&'(0)+I&'(0)j, but, at
the cost of using the more uncertain isoscalar photon
data, we investigate all three sum rules. Normal
parity contributions to B2(i,t) are suppressed by one
power of energy, " and we therefore consider the
abnormal-parity trajectories D and E as well as the
normal I' and I" in isospins 1 and 2 (I= 0 exchange)
and the abnormal A~ and normal A2 in isospin 3



G. C. FOX AND D. Z. F REE DMAN 182

~ 1

I 2(0)
p p r2 C1

—.05

—.1'
I

0.0
I

.2
I

.4 .6
—T (GeV/c)'

I

.e

FIG. 22. Drell-Hearn sum rule I2'(0} (isoscalar photons).
See VI E for comments.

1.0
I

I 2(0)

(I= 1 exchange). We write schematically

I 1,2(0)~v av, tt(t) —1+v aP, P~(t)—2
c 0 t ($4)

I22(0)~v, ~at(t) —i+v ~a2(t)-2

indicating the asymptotic powers of the Regge-pole
contributions.

On the basis of the expected intercepts of these
Regge poles, all three sum rules should superconverge at
large cutoff energy. However, some doubt has been ex-
pressed" concerning the convergence of the J=O ex-
change sum rules on the basis of Regge-cut theory. If
there are important abnormal-parity components of
the two-Pomeranchuk Regge cut, then to within
logarithms we would expect ImB2"(v, t) v ' and the
corresponding sum rules would diverge. Note that a
fixed pole would make ReB~ u ' and the sum-rule
integral would still converge.

Our results are presented in Figs. 22—24. If the
superconvergence assumptions (rapid falloff of ImB2,
absence of fixed pole in ReB2) are satisfied, then at
sufFiciently high cutoff the data points should lie right
on the zero line in the graphs. The value of I2'(0) (Fig.
22) is very small and seems quite satisfactory" within
the large errors (see Fig. 3 for the disturbing picture of

ImB2'). The sum rule I22(0) (Fig. 23) shows an im-
pressive cancellation" ' between the Born term and the
continuum for all t. The data points are consistent with
zero (within errors) even at our low cutoff energy, and
the sum rule must be deemed a success.

In I2'(0), Fig. 24(a), on the other hand, continuum
and Born-term reinforce, for both the pure Walker and
the BDW plus Walker evaluations, and produce a sum
rule which gives no hint of the expected superconver-
gence. This judgment is based on relative size of sum
rule and Born contribution rather- than on the
absolute size of the former. Although the rule of
thumb that the scale of a convergent sum rule is set by
its Born term has proven quite reasonable, it is not
clear a priori that it should be true, and it therefore
becomes important to compute n2'(0).

In the context of this sum rule, the question answered

by the effective n calculation can be rephrased as
follows. What is the trajectory shape n(t) whose Regge
term fits our observed sum-rule result at cutofF 1.12
GeV, but would hopefully make the sum-rule super-
converge to the zero line at higher energies? It is
clear from Fig. 24(b) that (222(0) exceeds even the
Froissart bound for small t (it could not produce
superconvergence) and lies much higher than the ex-
pected n~, or n~, —1 trajectories. Therefore, the only
way we can interpret these results is to say that there
is an important axial-vector (JPo= 1+ ) fixed-pole
contribution.

This is our most surprising result. The Drell-Hearn
sum rule fails in the isospin segment where one would
have least expected failure. Such a 6xed pole would in-
validate either the usual current algebra or the technical
assumptions necessary to derive the covariant sum rule
I2'(0) from the antecedent equal-time commutator.

Although this fixed pole seriously challenges our
theoretical ideas, it seems to have one beneficial effect
on our sum-rule results as follows. As shown in Appendix
D, an axial-vector fixed pole with coupling A(t) to the
amplitude 8&' also contributes nonasymptotically to
Btt2 We take A.(t) from I2'(0), and assume that its
nonasymptotic efFect in 83' is not modided by a possible
0" fixed pole there I S(t) in Eq. (D14)]. We then recal-
culate at t= 0 the nonfiip/fhp ratio t Eq. (45)] for the
A2 Regge pole Lassuming domination of I22(1) by the
A2 and the fixed pole]. This gives a decreased value in
better agreement, with the expected A'jvB of strong
interactions, than the previous value Lcalculated as-
suming A (t) =S(t)= 0].

We close this section by reminding any remaining
readers that the Drell-Hearn proton sum rule, obtained
by adding our three isotopic components, agrees with
the original analysis' within errors.
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1.0 F. Conspiracy Sum Rules: It)' 2(0), I2'(1)

Fxo. 23. Drell-Hearn sum rule I2'(0} (isovector photons}.
See VI K for comments.

We have discussed the theory of these sum rules in
Sec. IV D.
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As pointed out by Pagels" there is cancellation in
Is'(0) between the continuum and the Born terms,
with the result that both Is"(0) (Figs. 25 and 26) are
consistent with zero at 3=0. Thus, we have evidence
against a large conspiring pole with vacuum quantum
numbers. Correspondingly, there is no hope of using
these sum rules to obtain information on the g ~ 2y
coupling.

For the pion conspirator sum rule Is'(0) LFig. 2/(a)]
we conhrm Pagels's result" at t=O but the Qatness in
t of ns'(0) LFig. 27(b)$ bears more resemblance to a
right-signature j=0 axed pole than a pion conspirator
Regge trajectory. In fairness, it must be said there is
little reliable information from purely strong inter-
actions on the slope of the conspirator and recent"
photoproduction data suggest that the intercept is
essentially zero up to —t= 2 GeV'.

We note that determination of the x —+ 2y coupling
through the Pagels sum rule critically involves the
assumption of smooth extrapolation to t=O of the
x-pole term. In similar kinematic con6gurations in-
volving s. exchange (e.g., pP ~ s+n, nP ~ Pe), the s.
exchange amplitude is more consistent with the rapidly
varying form (2m ') '(t+es ')(t—m ') ' near t=0
rather than the smooth pole form (t—m ') ' taken by
Pagels. It is not clear whether the rapidly varying form
should apply to doubly weak Compton scattering since
the success of the absorptive model for x exchange
suggests that the rapid variation is connected with the
strong interaction unitarity condition.

From our numerical result for Iss(0) at t= 0, we obtain
through Eq. (36) the prediction r,=2.5)(10 " sec
on the basis of a smooth m-pole residue which would
become a factor of 4 smaller if the rapidly varying term
above were used. These two values"" quite closely
enclose the possible range of experimental values,
although the second possibility, rapidly varying pole
term, would seem to be preferred on the basis of the
wallet-card value. "

In principle, we can test whether the zero at t= —m '
of the rapidly varying term is the factorable zero of a
s.-Regge-pole residue by studying the sum rule I7s(1),
Fig. 28(a), to which the s.-Regge trajectory should
couple although there is no x pole at t= m ' because of
photon helicity Rip. The sum rule shows no hint of a
zero. However, any attempt to use this fact to speculate
about m meson Reggeization would be thwarted
because n7'(1), Fig. 28(b), suggests an effective tra-
jectory somewhat lower than x. Although the zero in
question is suggested by simple x conspiracy models for
np ~ pn and yp ~ s+e, r' there is ample evidence from
strong processes that" the zero does not factorize.

703. Richter, in Proceedings of the Fourteenth International
Conference on Bigh Energy Physics, Vienna, 196'S (CERN, Geneva,
1968).

7' R. Brower and J. W. Bash, Phys. Rev. 175, 2014 (1968).
'"' G. C. Fox and L. Sertorio, Phys. Rev. 176, 739 (j.968); G. V.

Dass and C. D. Froggatt, Rutherford Laboratory Report No,
RPP/A 46 (unpubhshedl.
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G. Other Sum Rules (Spin Segments 4, 5, and 8)

Spin types 4 and 5 are too divergent for useful in-
formation to be obtained from our low cuto6. We tried
to use spin type 5 to predict the nonconspiring contribu-
tion to spin type 6, through Eq. (44), and obtained only
untrustworthy and useless results. The sum rule Is4(0)
has an unknown fixed pole at j= —1 necessary to cancel
the singular Born term.

.05

j 8(0)
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[I t) I)
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FAG, 25. p conspirator sum rule I&'(0) (isoscalar photons).
See VI F for comments.

Fio. 24. Drell-Hearn sum rule (isovector exchange). See
VI E for comments. (a) The n=0 sum rule I2'(0). (b) The cor-
responding effective n.
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4, 0

2.0

Finally, I8'(1) (not shown) appears to exhibit a fixed

pole at j=—1 rather than the hoped for Aq Regge
pole. Ke remember the A~ was also somewhat elusive
in I2'(0).
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I . l
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FIo. 26. g conspirator sum rule IP(0) (isovector photons).
See VI I' for comments.

0o0

I,to)
4 ~

Unfortunately I4'(0) and I8'(1) have the same con-
tinuum but diAerent Born terms. Thus wc need a
6xed pole in one or both of them. It is presumably in
I6 (1) becalise tliis lias rI =+ and i't woiild 'tlieli be 'tlie

spinfhp analog of the I54(0) 6xed pole. However, the
sum rules (not shown), if anything, prefer the assign-
ment of a fixed pole to I4'(0).

H. Po1arizabiHties

On integrating (40) up to E~,b ——1.12 GeV, we find

(assuming c;=0) the results given in Table IV. Here the
column headed %'alker uses his analysis from threshoM
onwards whllc that hcRdcd BD% uses thc RDRIysls of
Ref. j. from 0.15 to 0.5 GCV and YValker thereon. The
1Rst ro%' CODtMns thc pI'oton s polarlzablllty Rnd ls hRlf

the sum of the 6rst 3 lines. As described in Sec. IV K„
this and row 3 (isospin 3 which is the difference be-
tween the proton and neutron) may be hoped to be
measured experimentally.

From the published data" on 0-~~, 1 for photons on
protons we may estimate the contribution of the
integral from 1.12 to co for the proton as follows. From
1.12 to 5.5, we get 0.9&&10 4' cm' (error 20%) and
from 5.5 onwards, &0.2X10 4' cm'. The former comes
from direct integration and the latter from assuming
0-t ~,q does not increase after 5.5 GCV.

One may try to estimate the integral from 1.j.2
to ~ for isospin 1 and 3 by assuming it to be dominated

by the Regge pole saturating I,'(1) and Ii'(1), respec-
tively. Thc I'csult obtMncd ls Rn order of Inagnltudc
smaller than the difference between the two determina-
tions of thc lntcglR1 up to i, i2.

I. ReIative Imyortance of Different Intermediate States

In our graphical results, we have only given the total
integral over ImB in (41). So that one may judge the
relative importance of the contributions of various
intermediate states, we give in Table III the break-
up of

0.0 .2
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Fro. 27. m conspirator sum rule. See VI F for comments. (a) The
p=o sqm rule I6'(0). (b) The corresponding eR'ective n.

foI' vRllous sum 1ulcs. Thc columns hcRdcd Pgs„alp
D15, and Fl~ give the separate contributions of the ~X
intermediate state in these spin and isospin quantum
numbers. This isolates the important resonances in our

energy range. The remaining contribution of the ~E
state is in the rest column while further columns give
the inelastic and Born contributions to (41). The reso-
nant 511 and P&1 contributions to the rest column are
small and this column thus represents nonresonant
backglound which DCM threshold gets 1R1gc coDtllbu-
tions from the photoproduction Born terms. Both the
total and ~E columns are evaluated using the BD%
analysis up to 0.5 GCV, and Walker's thereafter.

%C wouM like to warn the reader that the 6rst four
mE columns include the total contribution of these
states integrated over the whole energy range and not
just the resonant portion. Thus, in Iq'(0), the resona, nt
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TABLE IV. The polarizability in the various isospin states
(see Sec. VI H). The units are 10 "cm'.

—.02
I

Isospin state

2
3

proton

Walker

0.2
25.6

—1.0
12.4

0.4
25.5

—2.0
j.2.0

—.04.

I pit)
—.06.

—.08

F~5 is much bigger than the resonant a~5 state but this
latter entry is large in Table III due to low-energy
contributions of these quantum numbers.

0.0
I

.2
I . I

.4 .6
—T (Gey/c)~

(a)

I

.8 1.0

VII. METHODOLOGICAL COMMENTS

%e discuss here some of the features, both desirable
and undesirable, of our analysis and make suggestions
for possible improvements and related future work.

For tests of the Drell-Hearn and current-algebra sum
rules, which derive from theoretical features particular
to Compton amplitudes (e.g. , algebraic properties of
conserved currents), it would be desirable to relax the
close dependence of our analysis on the Regge-pole
model of high-energy behavior. Although model-
independent statements concerning the validity of the
sum rules could presumably be easily obtained if the
cutoK were sufficiently high, at the present cuto6 we
can say only the following. Adopting the phenomeno-
logical criterion that the scale of a convergent" sum
rule is set by its generalized Born term (Born minus
theoretically predicted fixed pole) it is clear from the

figures that the I=O exchange Drell-Hearn sum rule
Is'(0) and the time-component current-algebra sum
rules Ii'(0) and Is'(0) must be regarded as successful,
while the I= 1 Drell-Hearn sum rule Is'(0) and the Beg
sum rule Is (1) seem to be failures. To strengthen these
statements we have been forced, at this lowcutoff
energy, to explore the consistency of our results with
the Regge-pole parameters which have been obtained
from high-energy data and FESR calculations on
hadronic processes. Actually the exploration of the
Regge-pole model enriches our understanding of high-
energy behavior. For example, we regard our results
concerning the lack of nonsense zeros in p Regge
coupling to the Compton amplitude as one of the more
interesting facts v hich this analysis has revealed.

Our study has been handicapped by the lack of
generally accurate estimates of the imaginary parts of
Compton amplitudes. In this situation, it becomes
crucial to study as many sum rules as possible in order
to obtain some feeling for the reliability of the results.
For example, if one studies 6ve equally convergent sum
rules and 6nds that four of them go according to

73To determine whether a sum rule is convergent we use
Regge theory to suggest the eGective power s ~ of the integrand at
high energy. This least-controversial and best-established prop-
erty of Regge theory has also been used for Compton ampli-
tudes by H. Harari, Phys. Rev. Letters 17, 1303 (1966).
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PIG. 28. s spin-iiip sum rule. See VI F for comments. (a) The s' = 1
sum rule Iy'(1). (b) The corresponding eGective n.

theoretical expectations and the fifth contains a sur-
prise, it is then rather dificult to explain away the
surprise on the basis of poor data.

It is, of course, distressing that we were forced to cut
o8 our integrals at the dubiously asymptotic value of
Ei,b= 1.12 GeU. In spin segments 2 and 3, this low cut-
oB was rejected in the quantitative importance of the
nonasymptotic terms in the Regge formalism, sup-
pressed by a factor 1/i from the leading terms.

Unfortunately, it appears very hard to extend our
integrals beyond E&,b=i. i2 GeV as long as we use
unitarity to estimate the imaginary part. Thus, above
our cutoG, a multitude of inelastic states become im-
portant and one would have to make models of the spin

. and isospin structure of all of these to find the imaginary
part of the general Compton amplitude. Hence, to ex-
tend our cuto6 we would need data on Compton scat-
tering itself but even this would not allow us to probe
the general isospin state.

It follows that in the foreseeable future the main
improvement in the evaluation of our sum rules must
come from an improved treatment of the region up to
1.12 GeV, and here the elastic (s.X) intermediate state
is dominant (see Sec. VI I).

It is rather disconcerting that different multipole
analyses of low-energy photoproduction experiments,
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and perhaps even different experiments, are incon-
sistent. An obvious approach which wouM hopefully
lead to an improved multipole analysis would be to
combine the theoretical treatment of BDW and the
phenomenological method of Walker. Thus, one could
formulate the dispersion theory with parameters,
representing its weakest points, to be determined from a
fit to the data. Such a treatment would at least have the
virtue of incorporating elementary theoretical con-
straints such as Watson's theorem'4 on the phase of
multipole amplitudes, which is not obeyed in purely
phenomenological analyses. It is also possible that the
use of theoretical models for the inelastic reactions
yE ~ mA and mA ~ xA would permit an approximate
incorporation of unitarity for photoproduction above
the BDW cutoff energy of E&,b=0.5 GeV.

The multipole parameters of the yX —+ xS process
are very fundamental physical data. Improved data
and multipole analyses for this process would be
vital in attempts to confirm (or refute) our finding of
a fixed pole in the isovector Drell-Hearn sum rule and
to decide the open and important question of the
validity of current algebra at large t in the I14—(0)
and I44(0) sum rules. We urge that experimental and
theoretical effort not be relaxed until the photoproduc-
tion multipoles are known to an accuracy comparable
to the xE phase shifts, although we realize that a
much larger eAort is required.

Since the greatest discrepancy getween BDW and
Walker is in the isoscalar photon multipoles, it would
be very useful to study the FESR's for isosca1ar photo-
production to determine whether the size of the pre-
dicted Regge-pole terms is compatible with the iso-
scalar component of high-energy photoproduction
which can be estimated from recent data. 7' Such an
analysis could determine whether isoscalar photon
multipoles were underestimated in Walker's analysis.

Since there is an experiment underway at the
Cambridge Electron Accelerator to measure the proton
Compton scattering differential cross section in the
4—5-GeV energy range, it would be interesting to use
the sum rules to work up a Regge-pole prediction for
this quantity. This could be done very easily with our
existing computer programs.
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APPENDIX A

We give here the relation of our amplitudes de6ned
by Eqs. (14) and (17) to the invariant amplitudes A&

of Hearn and Leader" and reduced s-channel ampli-
tudes defined analogously to (13) by

~1,14 i,i,= (cos~8.) " "{s»k8.) " "1Vx x .11
(A1)

We now list the expressions for the amplitudes 8 in
which for clarity we have omitted the isospin index i.
&1= —l( — ') 'L(A7 —A ){4m'—~)

+ (A4 —A4)m(s —u)]
= (s—m') '{s '"(s+m') sin'Q8, )lV;1, ;1

+mpM;1, .;1+cos'(-', 8,)M;1, ,1]},
82= (us —m') 'LA4(s —u)+ —,'t(A4 —A4)]

= (s—m') —'{cV41., ;1+2ms-'7' sin'(-,'8,)cV41, ;,
—L1—m't(s —m') —']cV 41., ;1},

84= (m' —us) 'LA4(4m' —t)+ ~(s—u)(A4 —A4)]
= (s m') '—{{s m')'IV—,1;41 2-ms' —'(s u)cV,—,1=; 1

+ t m't+ (s—m') (s+3m')]HEI, 1, ;1}, (A2)

84=33
—+2$ (S m ) L2lII—1—1;41+sin {7,84)3II4 1;—11]&-

84= t 'L(A1+A2)(4m' t) (A—4+A—4)m(s u)]-
=+s(s—m') '{s '"(s+m')

XLllII *,, 4,—sin'(-', 84)M'x .. .]
—4m cos'( 28,)DID 1,41} &

86——34+35
= —(s—m') '{2ms'"L18 ~1., 41—sin'(-,'8,)3II; 1, p]

+ 2(s+m') sin'(-,'8,)1II:,, 4,}.
87= —S' '(S—m') 'nil, 411

84——s(s —m') '3A 1,~1.

APPENDIX B

In our study of the sum rules in Sec. VI, we will
need to know the exact predictions that factorization of
the Regge couplings makes for our singularity-free
amplitudes B~ —+$8. In this appendix, we outline a
derivation. of these conditions while in Appendix C we
give the resultant expressions for G, (t), II;(t) t defined
in (19) and (20)] in terms of singularity-free vertex
functions. These latter we will denote by P„, Pf for
photon-photon coupling in nonRip (n) and spin-flip {f)
states and X, X~ for the corresponding nucleon-
antinucleo~ couplings. We will add a superscript c if
the pole conspires. ~'

First, we write our f-channel helicity amplitudes

(~
—44 a+ &)

~ax:}~x =— 4:""'~"'4'"yi1'Vi ), 'P' (H1)1 ~ 1
2 sln~cE

~D. Z. Freedman and J. M. Wang, Phys. Rev. 160, 1560
(1967);E.I.eader ibid. 166, 1599 (1968).Also see the discussion in
Sec. IV D.
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+11 ~In)

~f ~

(83)

if the particle evades at 3=0, while if it conspires
we put

y11 i( t) 112p c

I —2( t)l(2P c

For the EX coupling we must consider separately
rP=+ and rP= —.

(a) rP+ (nonconspiring):

y;)'= iNc/(4m2 t)'t2, —
yt = —(—t)'"Nf/(4m' —t)'" (»)

(b) rP+ (conspiring):

pter'= —(—t)'"N '/(4m' —t)'",
(86)

yL t' ——iNf'/(4m' —t)'I';

(c) rP (nonconsp—iring):

(lr) y;g'=i( t)'t'N„, —
(8'7)

(Al)

(d) rP (conspiring)—:

(~) V:1'=N-' (88)

Substituting (2t1 —+ 8) into Eqs. (14) and (17) we

get the results given in Appendix C.
%e will wish to compare our ratio of spin-nonQip

to spin-Rip couplings for I', I",p, and A2 exchange with
those obtained from analyzing strong interactions.
However, it is conventional~ to analyze ~E and EX
elastic scattering in terms of invariant amplitudes A'

and 8 which are related to our formalism by

while to include terms of order n —j. it is necessary to
multiply the resultant form that (81) gives to the
reduced amplitudes (13) by

1—Dl„; (X—n)/242l gL —t(4m2 —t)qlt2 (82)
where

~=max(l~l2I I~241)»-'-=min(ll »I, ll 24l)

Xsgn(ll»X24) .

We will need (82) to derive the form of H(t) defined
in Eq. (20). (This is considered in greater detail in
Appendix D.)

%e must now remove the kinematic singularities
from p' which we do first for the y —y coupling by
defining

Gl ,'(N——„P—f+tN„'Pf'),
&2= L(2 —~)/2~1~(Nf pf+Nf'Pf')
G2= (NfPf+Nf'Pf'),
G:= (N P—+N 'P '),
G4= (tNfP„+Nf'P„').

(ii) rP = —contributions:

Gg= Gg= G5= G6= 0,
H j.=H2= H4= H5= H6 =H7 =Hs =0,
Gg= EfI'f,
&2= (4m' t)D2 n—)/2~jN—fpf,
G4 —— ,'(tN„P„—+—N„'P„'),

Gl ———
2 (N~Pf+N„'Pf') )

Gs=-,'A

(C1)

(C2)

APPENDIX D

Although the direct connection established in Sec.
III 8 between asymptotic terms of the amplitudes

B(l,t) LEq. (21)j and contributions to the sum rules

LEq. (23)j is sufilcient to understand most of the
physics contained in the sum rules, for some features it
is necessary to go farther into the Reggeization of
parity-conserving helicity amplitudes. This is especially
necessary for spins 2 and 3 because Regge poles of both
parities contribute and because we have the additional
complication of a large nonsense interval in the j plane.

Since the imposing but straightforward details of
Reggeization are known" 7'~~ for hadronic amplitudes,
we concentrate here on eGects of fixed poles and on
matters directly connected with the interpretation of
our sum rules such as the nonasymptotic Regge con-
tributions [Eq. (20)j and compensators.

%e study the amplitudes

A~(4', t)=At t.. .&A;t, l l, (D1)

which diGer from 82,3 by the kinematic factors of Eq.
(14), and the definite-parity partial-wave amplitudes

torized vertex functions of Appendix S. %e omit the
isospin index i in all these results.

(i) rP =+ contributions:

G2= G4= G7= Gs= 0,
Hg- H3= H4= H5= H6 ——IIV =Hs =0,

Nf/N =rJ3/(4m2 t)ft. '. —(89) a~f(t)=at;,.2 lf(t)ma*, y,. l l'(t) (D2)

The behavior of E,f and I'„,f near n= 0 for various
sense-nonsense mechanisms is given in Table II .

APPENDIX C

Here we give the expansion of the functions G (t)
and II (t) of Eqs. (19) and (20) in terms of the fac-

defined in the usual way. 22 After defining signatured
partial-wave amplitudes, introducing rotation func-
tions of the second kind, "and performing the Mandel-

~6 S. Mandelstam, Ann. Phys. (N. Y.) 21, 8 (1963).
77%. Drechsler, Nuovo Cnnento 5BA, 115 (1968).
~' M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964).
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stam-Sommerfeld-%atson contour shift, we obtain the
representation

A~(v, t) =
8xi ~=+

.(2j+1)
dj (r+&-im z')

cosÃj

I
—t(4m' —t)g'"

For Compton amplitudes with dehnite crossing, the
signature, parity, and isospin are all correlated. See
Table I. For given 7 and I' from the Table the a~&'with
subscript (—rI') vanish.

The E functions have the asymptotic behavior (for
x) IpI &0)

~.+'(~)-f(j) ' "{1+Lg(j)/jj '+0( ')),
~& -'(z)-f(j)I &P —j)/jjz' " ' (D6)

&& {1+L&(j)/(j —1)hz '+o(z ')}
where g(j) and h(j) are regular (albeit zero for some X

and p) at integer values and f(j) has the following
behavior:

near jo= X, X+1, X+2,
near jo——I@I, I@I+1, , x —1

near jo=0, 1, , I@I—1 (D7)
near jo= —I~I, —IvI+1, ",—1

near jo= —X, —X+ 1, , —
I p I

—1

near jo= —X—1, —X—2,

Although the leading term in the asymptotic series
is regular near a positive nonsense-nonsense integer,
subsidiary terms may be singular, as is crudely shown
in (D6). The exact relation between the singular parts
of the E functions at reQected integers in the nonsense-
nonsense interval is

irm~ (j—jo)&»+'(z)

= —(—)" "sgn (Xp) lim (j—jo)E&„+ i '(z). (DS)

XI ~+"(i)~»+'(z)+~V"(~)E»-'(z)j (D3)

We take t&0 so that Regge poles satisfy Ren(t) &a2 and
do not explicitly appear in (D3). We have ignored a
discrete sum over half-integral j values because its
terms are asymptotically (in v) weaker than those we
are interested in and because they cancel out when
further shifts of the integration contour are made. The
angular functions appearing in (D3) are given by

~.+'(z) = {L(1—z)/2j'") " "{L(1+z)/2j'"} "+"

X. „- (.)~{L(1—.)/21 )- +

X{L(1+z)/2j'~') ~~ &~e q„&' '(z), (D4)

and the e functions differ from those of Andrews and
Gunson~ by the factor (—)" i'. The scattering cosine z
is given by

If Axed poles are present, then the partial-wave
amplitudes u+"(t) are expected to have the j-plane
behavior of their Born terms, namely,

a~"(t) regular, near jo= 2, 3, 4

near jo= 1

near 30= Oq
—1

near jo= —2

near jo= —3 —4 )

where we have again specialized to the particular
helicity values, X=2, @=1, that we are interested in.
In the absence of fixed poles, the expected behavior is
a factor of (j—jo) smoother at all. nonsense points
(j.& 1)

The singular parts of the partial-wave amplitudes at
the reQected nonsense-nonsense integers jo= 0 and
jo= —j. are related by

lim (j—jp)ag'"(t) =lim (j—jo)a~
—&'—'~—'&(t) . (D10)

This condition expresses the absence of Axed double
poles at jo= —1 and follows formally from the Froissart-
Gribov definition, and a mathematical relation, similar
to (DS), for the rotation functions. Equation (D10)
implies that 6xed poles occur in pairs at j=0 and
j= —1 with residues satisfying (D10) and that for
every Regge trajectory passing through n(t)=0 with
nonvanishing residue, there is a compensating tra-
jectory" of opposite parity and signature passing
through n'(t) = —1.

All of this technicality is necessary to understand
what happens in (D3) when the vertical contour of
integration is shifted to the line Rej= —~. The double
poles encountered do not contribute asymptotically and
obnoxious terms such as fixed powers in the imaginary
part of the amplitude cancel between the j=0 and
j= —1 contributions because of the phenomenon of
compensation expressed by (DS) and (D10). The net
result is a set of relatively simple expressions for the
asymptotic terms of the amplitudes A~(i, t) or 82,~(v, t),
which we proceed to give.

The current-algebra amplitudes 82,3i(i,t) have
asymptotic contributions from isovector right-signature
fixed poles at J~~= 1 + and 0-+ and from the p-Regge
trajectory and a mythical X trajectory'0 with

"We are puzzled by the following aspect of compensator theory
for hadronic amplitudes at right-signature nonsense points. Here
partial-wave unitarity requires u~&''(t) to be regular and Eq.
(BIO) reduces to a trivial identity. Further, although explicit
fixed poles have been eliminated in this way, the amplitude still
contains the corresponding 6xed integer power unless we require
the stronger condition u~&0'(t) = —a+ &'o '( ~'(t). It seems to be
this condition that leads to Regge-pole compensators. It is curious
that absence of fixed powers does not. follow from partial-wave
unitarity and must be assumed independently.

0See Ref. 4. We thank Professor Roger Dashen, who has
independently worked out the J-plane analysis given in this
Appendix, for helpful discussions concerning the Bbg sum rule.
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=(+) +. We find

2/2

B,4(v, t) = G)t v(t)v ' —H'(t)v —'—Gv(t)

( 1+e iaa—&(t))

&&
— — v t(" '—Gx(t)(4m' —t)

sin)ma(t)

(t) (1+e—ttrax(t))
X- — p&x(&)—3

2nx(t) sintrnx(t)

B24(v, t) = —e'G)tr v(t)v '—H(t)v '

2 —n (t) (—1+e ' '")
+tG, (t) pat) (t)—3

2n, (t) sintrn, (t)

g
—s1rtx+ 4

—Gx(t) — va-r(t) ' (D12)
sintrnx(t)

We have used current algebra to relate the residue
of the 1 + fixed pole to the isovector magnetic form
factor. Here H(t) is the coupling of a hypothetical 0 +

pole, and H (t) is a kinematic singularity-free function
which expresses the net contribution of the non-
asymptotic term of the 1 + fixed pole, and the 0 +
fixed pole and its compensator at Jv= (—1) .

We have not included explicitly the sects of com-
pensating Regge trajectories near o,= —1 which are
necessary to cancel the singularity at n, (t)=0 in B&4

and the possible singularity at nx(t) = 0 in Ba'.
Notice that the I&'(0) sum rule is sensitive only to the

1 + fixed pole, while the I2'(1) sum rule has contribu-
tions from both G)trv(t) and H(t). If current algebra is
correct and the infinite-momentum method is valid for
the commuator of one time and one space component,
then the resulting Beg sum rule predicts" that H(t) —=0.
From the standpoint of current algebraists, failure of
the Beg sum rule would mean that either current algebra
or the infinite-momentum method. is wrong. 4 However,
from the standpoint of Regge theorists, success of the

Itt'(0) sum rule and failure of the Beg sum rule would
indicate the existence of a 0 + fixed pole. But in as-
sessing the I2 (1) sum rule, one must be careful to take
into account the possible e6ect of an X trajectory
contribution.

The isospin-symmetric amplitudes B2,&'(v, t), i=1,, 2,
3, have asymptotic contributions from possible fixed
poles at J"=1+ and 0+. We explicitly treat B2 3'(v, t),
to which the A2 and A~ Regge trajectories contribute.
Lettering A(t) and S(t) denote the couplings of the 1+
and 0+ fixed poles, we find the asymptotic expressions

B..'(v, t) = —2A(t)v '+25'(t)v '+tGg, (t)

2 gn—,(t) 1+expL —itrng, (t)]X--— @&AD(&)

2ng, (t) s)ntrn~, (t)

—1+exp/ —em~, (t)j-G.,(t) vast(t)-2 (D 13)
sintrn~t(t)

B3'(v,t) = (4m' —t)A (t)t—

1+exp L
—itrng, (t)$—2~(t)v '—G~s(t)

sintrn. 4,(t)

2 ng, (t)—
avast(t) —2 (4m' t)G& (t)

2ng, (t)

—1+expL —itrng, (t)g
)( vast(t)-tt (D14)

sintrng, (t)

Here we have a situation opposite to that of the current-
algebra segment. The Drell-Hearn sum rule I2'(0) is
sensitive to the axial-vector fixed pole only, while the
sum rule Itt'(1) detects the combined effect of the axial-
vector and scalar fixed poles. In a derivation of these
sum rules based on quark-model current algebra and the
infinite-momentum limit, both fixed poles are absent.
See Secs. VIB (2) and VIE for our experimental
results on this question.


