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Recently, Sweig and Wada4 have estimated the cross
section for the production of 4; meson by pions on
heavy nuclei with the assumption that the diffraction
dissociation is the most important mechanism by anal-
ogy to p® production. According to their estimate within
the framework of the gauge theory, we get

do(m — A1)/dt = (16m)"}040t2(41—nucleus) ,

(9“1\;[ J. Sweig and W. W. Wada, Phys. Rev. Letters 21, 414
1968
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whereas in the algebraic approach this relation will not

hold.
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The secondary particles produced in high-energy inelastic collisions are treated statistically but in a
manner distinct from the concept of one or more fireballs. We employ the classical grand-canonical approach,
and in the spirit of information theory define an entropy for the system. It is postulated that this entropy is
independent of the energy of the system for a sufficiently high incoming energy. Consequently, the energy
dependence of the charged multiplicity NV of the secondaries is determined to be N~ (Eo/u)?3, where E is
the incoming center-of-mass energy and u a normalizing mass. Under additional but natural assumptions, the
ratios N *N g*Npz are predicted. Comparison of our results is made with experiment, and some limitations

and consequences of the method are discussed.

1. INFORMATION-THEORY APPROACH

HERE is in the literature a number of statistical
and thermodynamic models attempting to ex-
plain the properties of high-energy multiparticle pro-
duction.! Since the early work of Fermi, these models
have grown in sophistication, success, and generally in
complexity. The basis of these models is the concept
that incoming particles coalesce and/or transform into
multiparticle systems (e.g., fireballs) which survive
long enough to attain a state of equilibrium, and to
which the analysis of an ideal quantum gas may be
applied.

As far as we know, no attempt has been made to
apply a statistical approach to the produced multi-
particle system without this underlying concept of a
coalescence. Indeed, this is natural, since we do not
have a state at equilibrium but something more akin
to an explosion. However, the information-theory
approach to statistical mechanics (both classical and
quantum) suggests a broader sense of the term equilib-
rium, and it is in this spirit that our analysis is made.

* The research reported in this document has been sponsored
in part by the Air Force Office of Scientific Research OAR through
gle European Office of Aerospace Research, United States Air

orce.

1 E. Fermi, Progr. Theoret. Phys. (Kyoto) 5, 570 (1950) ; Phys.
Rev. 81, 683 (1951). See also, R. H. Mllburn Rev. Mod. Phys.
27,1 (1955) R. Hagedorn, Nuovo Cimento Suppl 3, 147 (1965);
J. R. Wayland and T. Brown, zbid. 48, 663 (1967); R. Hagedorn
and J. Ranft, Nuovo Cimento Suppl. 6, 169 (1968).

Information theory may be called the science of guess-
ing. Given any system of which only a few observable
constants of motion are known, the problem posed is to
guess its distribution function f in phase space. Usually,
there will be an infinite number of eligible distributions,
each satisfying the conditions known of the system.
Although it is the desire of any approach to make
predictions, it is first necessary to select the most
suitable f on the basis that it involves no spurious
arbitrary information. To this end, the concept of
entropy 7 is introduced. It can be shown that entropy
measures the amount of missing information in our
system, or, more precisely, for each f purporting to
represent the system.? The preferred choice of f is
then that f which maximizes I—i.e., which assumes
the least a priori.

I=k f fInf (k=arbitrary constant), (1)

where [ stands for integration (or summation) over
phase space. The constants of motion, together with
the normalization of f, are introduced into I via
Lagrange multipliers.

—THR@F D) =k 5 AR, (2)

e=1

2 For a very readable and fuller presentation of this approach,
see Ammon Katz, Principles of Statistical Mechanics (W. H.
Freeman and Co., San Francisco, 1967),
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(R;) being the expectation value of the observable
corresponding to R;.

It can then be shown that the f which maximizes I
(8I'/af=0) is given by

f=exp(@—2_ NiRy). (3)
=1
The values of @ and \; are determined by solving the
following set of constraint equations:

Q01+ - *\)=—In / exp(—i NiR:), ©

=1

o9
ON;

These constraint equations determine the A; (and
hence f) uniquely if the R; are linearly independent.

At this stage we have already achieved a good deal.
For, although we have conspicuously taken care to
select the f with the maximum amount of missing
information, by its uniqueness we have a very specific
discription of our system. For example, in the case of
n arbitrary choices with no known bias (no (R;)), our
analysis predicts a flat distribution, i.e., any particular
choice is as likely as any other. This simplest of examples
also tells us that any bias in the system will have to be
put in as a constraint.

However, the real power in the approach comes via
assumptions about the behavior of I under small
modifications to our system. Consider an ideal gas.
Its volume, energy, and particle number are assumed
known. For this system an f can be found together with
its corresponding entropy.

I=+k(‘9+?§ AT ©)

It can now be argued that, under certain changes in
the expectation values 7;, no additional information is
gained or lost. Consequently, invariance of I under
these infinitesimal variations dr; leads to the ideal gas
laws. In practice, such application implies some degree
of stability for the system. Entropy is not conserved
in irreversible processes, simply because more informa-
tion is known about the initial state of the system than
about the final state, namely the tendency for it to
transfer from the former to the latter.

Can this concept be applied to multiparticle produc-
tion? We have no intention of calculating the entropy
of the incoming system and equating it to that of the
final system. Experimentally it is found that the out-
coming particles in a two-body scattering process are
far from democratic. Two so-called primary particles,?

¥ We do not employ the word primary here in the usual sense
of the incoming particles (as used in cosmic-ray physics) but,
since we identify them closely with the incoming particles, the
naming is not inappropriate. They are comparable to the outgoing

particles in the two-body channel minus part of the incoming
energy.
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often identical to the incoming pair, carry away the
majority of the center-of-mass energy. The rest of the
energy is predominantly distributed among pions,
kaons, and nucleons. At machine energies (up to
30 GeV lab), pions dominate completely. In principle
therefore, the energy and momenta of the primary
particles can be measured, and even possibly an explicit
model of their behavior given. In any case, we shall
assume they contribute no appreciable entropy to the
outcoming system. It has been postulated that the
secondary particles remove a fixed percentage (~40%)
of the total center-of-mass energy (Eo), on average.t
We can therefore consider the average energy the
secondaries in the center-of-mass frame (E~2FE,) as an
observable, together with the multiplicity (V) of the
scattering. There are other constraints of the system
also such as conservation of charge, total isotopic
spin, angular momentum, etc. Thus, we may follow the
first part of the information-theory prescription and
define a suitable f. In fact, we should like to do this in
a Lorentz-invariant, and dimensionally invariant man-
ner, by a suitable choice of the phase integral and
observables (e.g., total four-momentum P, rather than
energy E).

It is known experimentally, however, that N is a
function of E (and hence Ep). It is primarily this rela-
tionship between NV and E that we seek. To this end
we make the following postulate: Asympiotically
(Eg>constant), a production process reaches stability in
the sense that the entropy is constant as a function of F,.

As suggestive of this assumption, note the universal
properties of the Pomeranchukon (which, via unitarity,
is related to the multiparticle-production processes).
In particular, note the tendency of total cross sections
to flatten out asymptotically. Our restriction of the
above assumption to high energies lies both in the
evidence from total cross sections, and in the belief
that the secondaries are produced in a multitude of
ways, some of which may (e.g., via resonance decays)
involve energy thresholds. From a practical point of
view the approximations in the classical grand-canonical
formalism necessitates a high multiplicity. Also, we
shall find our analysis can be performed explicitly in
such a limit.

Our treatment of the produced particles will be
classical. Generally, it is only when more than one
particle carries the same quantum numbers (including
its momentum), that the differences between various
statistics is important. In our case, the occurrence of
such a circumstance is considered negligible. Conse-
quently, the fermions and bosons will be treated
identically.

In Sec. 2 we shall present a calculation of the entropy
of a system of produced pions only. We shall not

4See, for example, F. Turkot, in Proceeding of the Topical
Conference on High-Energy Collisions of Hadrons (CERN,
Geneva, 1968), Vol. 1, p. 316; K. Rybicki, Nuovo Cimento 49A,
233 (1967).
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impose conservation of isotopic spin, nor of total
angular momentum. This analysis will extend in Sec. 3
to the case of pions and kaons, and pions, kaons, and
nucleons, under some additional simplifying assump-
tions.

Finally, in Sec. 4, our results will be compared with
experiment and a further discussion of our method
made.

2. APPLICATION TO HIGH-ENERGY
MULTIPION SYSTEM

Consider a system (secondary) consisting solely of
pions. Experimentally, its basic observables are its
average energy, in say its center-of-mass frame F,,
and the average number of charged pions produced ¥,
both for a given incoming energy Eo. For simplicity,
but without any loss of generality, we shall consider a
system with equal numbers of positively and negatively
charged pions. The experimental fact that only charged
pions are in general observed will be taken into account
in the usual way by setting the Lagrange multiplier for
the number of neutral particles (y) equal to zero.
‘However, we shall carry it along with us for the time
being to remind us that the corresponding phase-space
integrals must still be performed. The incoming and
primary particles are of course experimentally used to
determine Ey and E,. For which purpose the assump-
tion is made that the primaries, secondaries, and in-
coming system all share the same center-of-mass
frame. Nevertheless, they are of no interest to us in
calculating the entropy of the secondary system, and
will be ignored in what follows.

We shall define the relativistically invariant phase-
space integral per particle, a phase-space cell, as

1 radpP
B ™
I 2P
The limits are over all 3-momenta, with Pg@= P>+ m,2.
The normalizing mass u is introduced to make Eq. (7)
dimensionally invariant.
Our Lagrange multipliers will be (i) 87, corresponding
to the total 4-momenta,
2n+4-1

P,= Z Pvi5

7=1

(i) @, corresponding to the total number of charged
pions 2%; and (iii) v, corresponding to the number of
neutral pions /. The conservation of charge relates the
numbers of positively and negatively charged pions,
and hence dictates that only one multiplier be used,

namely a.
Our distribution for such a system with a given »
and /, is
fa=exp[Q—p"P,/m—a(2n)—~I], (8)

where again # is a mass introduced for dimensional
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reasons. In the grand-canonical formalism [ is an
infinite vector with components f,

f::(foyfl)'”fm”')' (9)

Having insured a completely relativistic procedure,
we now work in the center-of-mass frame of the second-
aries P, — (E,,0,0,0) and

B> — (8,0,0,0). (10)

Equation (10) can be proven from the symmetry of
Eq. (7) under P— —P and the uniqueness of f.°
Consequently,

o w 1 1 A3 P\ 2t
e = — —_ — ¢ BPo/m. > e~2an—7l} ,
EOZ! Eon!n!{( 2/ 2P,
(11)

0
where the factorials allow for the indistinguishability
among pions of the same charge. Such weighting would
be expected to be somewhat modified if the conserva-
tion of the other two components of isotopic spin would
be imposed. Note the infinite upper limits in the
number summations. These can at best only be approxi-
mations,® since for a given FE, there is a maximum
2n+1l=Ey/m,. Similarly each phase integral should
really have a cutoff imposed. However, both of these
facts can be ignored for high enough energies and hence
large N,’s if f, is decreasing sufficiently rapidly as »
(and hence 2n4I, for any given [) approaches the
physical upper limit.

Both from the identification of 8 as 1/£T for an ideal
gas and by explicit calculation, it can be determined
that 8 decreases as Er increases. Consequently, being
limited already to the high-energy region, we shall
calculate each phase-space cell in the limit 83— 0,

1 r @#P  2am?
¢=_ / e-—ﬁ[’o/m P,
It 2Py B

which follows from the effective unimportance of the
low-energy contribution to this integral, i.e., we can
replace Pe|P| for sufficiently small 3.

Now let us put y=0, for the reasons already given;
then Eq. (11) becomes

(12)

)

Q= —In[e*I,(2¢e™) ], (13)
where
o (o
Ii(z) =3 —— (14)
n=0 nln!

is the modified Bessel function of the first kind. Asymp-

5 See Ref. 2, p. 64.

6 The prescription for limits in this procedure is that they
should define the available region in phase space within which
the expectation values may lie. For an ideal gas there is no finite
upper limit to the number of point particles one may enclose in a
given volume; but even there, particles of a finite size would
require an upper limit to 3_,.
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totically as z— © (8— 0),

Io(2)~e?/ (2mz)12. (15)
Thus,

Q~—¢p— 20, (16)

where we have dropped the In(4mr¢e=) term coming
from the denominator of (15). This fact will be con-
sidered later in estimating the energy region above
which our approximations may be assumed to hold.

The constraint equations determining 8 and « are,
therefore,

o
—=2¢e =N, 17
da

and
o 2 E,
—=—(¢p+Ns)=—. (18)
B B m

At this stage, we should solve these two simultaneous
equations for @ and 8 as a function of E, and N,.
However, our intentions being more ambitious, we
shall first require that the entropy for our system is a
constant under any increment of E,. This provides a
relationship between E, and V., given by

aN, B
m =— (19)
dE, o
Equations (17)-(19) may be rewritten as
53E7r/m7r - 2Nﬂﬁ2= 47rm2/ﬂ'2 ) (20)
and
dN B
(21)

M=
dE, In(N 842/ drm?)

where Eq. (17) has been used to eliminate « in Eq.
(19), and give Eq. (21). The logarithmic term in Eq.
(21) severely restricts the asymptotic energy depend-
ence of N, and hence of 8 and a. Considering solutions
of the kind

N.=(E;)"(InE,),

(22)
B=(E:)*(InE,)*,
only one satisfies both Egs. (20) and (21), namely,
No=Ne(Er/1)*?, (23)
B=b(m/u) (Er)""2, (24)
—a=In(\b%/4T), (25)

where A, b (and therefore ) are constants, independent
of E,, m, or u. They are determined by solving numeri-
cally Egs. (20) and (21) with the above energy depend-
ences for the case when m=pu=1. They are

4.0, 8.2, a~—3.1.

(26)
Thus,

Ny=4(Ex/u)** (27)
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as E,— . Incidentally, the probability P, that
2n-charged pions are produced, normalized by
2 n=0° Pp=1, is given by

-Pn= (%Nr)znlﬂ_l (Nr)/ (’ﬂ !)2' (28)

This distribution, as with its related Poisson distribu-
tion, passes through its maximum at 2n=N,, i.e., at
its mean value for %.

When the total charge of our system is nonzero, the
modification of our solution, Eq. (27), is trivial. If
this net charge is », we obtain I, in place of I,, but the
asymptotic limit of I, is independent of » and is given
by Eq. (15). Consequently, the same solution is obtained
for N,, and Eq. (28) is modified by replacing one of
the #! by (r+v)! and Iy by I,. Indeed, conservation
of charge may be completely dropped without affecting
the basic (E./u)?"® energy dependence of N.,.

Notice the consistency of our solution with the
a priori assumptions that 83— 0 and N,— » as
E,— . After 2n=N,, P, decreases exponentially for
sufficiently large #, and this, coupled with N,/E,— 0
as N, — o, is consistent with the approximation of «
for the upper limits of our summations, which may
be expected to go as E./N,.

We have discarded a term in Q of order $ In(2wN,),
whose effect is to change N, into N,—1/4r in Eqgs.
(17) and (18). Consequently, our solution can only
be justified when N,>1/4mr. This condition is very
weak, and far outweighed by the limit approximations
discussed above. Thus, a more realistic condition is
when N./E.<<1/m, (corresponding to N,<K2Nmax),

3. SYSTEMS INCLUDING KAONS AND NUCLEONS

First consider the case when only pions and kaons
are produced. We shall treat these pions and kaons as
noninteracting systems in the sense that our statistical
distribution is the product of the statistical distribu-
tions for each system.” Again for simplicity, we assume
that the center-of-mass frames for each set of particles
are one and the same (i.e., 8,=8x=0). Each set of
particles is assumed neutral in total charge. The
generalization of this last assumption to some statistical
averaging over various P,(v), where » corresponds to
the net differences in total pion and kaon charges (e.g.,
Qr=3v, Qg=—1%v), will not be considered here; but
from what has been said earlier, each term in the averag-
ing should produce asymptotically the same energy
dependence that we derive below. Thus, our distribu-
tion is
fnm=exp(Q—B:"P,"— 2an—Bx"P,%

—2d'm—~i—v'k), (29)

7 The mere fact that at 30 GeV in the lab, 96%, of the secondary
particles are pions, but that this percentage is dropping as the
energy increases, implies either a bias towards pions at low energy,
which must be put in by hand in our statistical approach, or
used as a justification for the asymptotic form of our basic
assumption concerning the entropy. In either case, the different

growth rates of the multiplicity of pions and kaons suggests
their treatment as independent systems.
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TF1c. 1. Plot of total outgoing charged multiplicity N+ as a
function of lab energy Ez, for protons and pions interacting with
nuclei (see Borashenkov et al., Ref. 8). The dashed curves are
interpolation curves, also taken from Ref. 8.

where m, o/, v/, and Bk are the kaon counterparts of
7, a, v, and B, for the pions. Consequently,

e~ bl ()(2¢K)10(2(}5.,,6*0‘)10(21121{6»“’) . (30)

We have distinguished ¢, from ¢x by allowing for a
different u in the two cases, namely u, and ux. The
appearance of Io(2¢x), rather than e, for the neutral
kaons is a consequence of the existence of two neutral
kaons related via hypercharge conservation.

Thus,

Q= — (¢rt+re™)— (2¢x+2¢xe). (31
The entropy will be separable into two parts, one due
to the pions, and one to the kaons. The extra ¢x in
Eq. (31) causes Ak to differ from A, but only insignifi-
cantly. Consequently, the solution based upon the
constancy of the entropy under separate variations of
each set of particles is

N'lr:4(E7r/ﬂ1r)2/3 )
NK=4(EK/#K)2/3-

(32)
(33)

Let us now assume that the energy available to the
secondaries (FE,+ Eg) is asymptotically equally dis-
tributed among pions and kaons, ie., E,=FEgx=3F.
Then,

NK/NW: (P"Ir//‘K)le' (34)

If u were a universal constant, then this ratio should
be 1. Throughout we have naturally assumed that u is
independent of the total center-of-mass momentum
of the system. But it is natural to propose that u is
proportional to the mass of the produced particle to

which it corresponds. In which case,
Nk/Ne= (m./mg)**~0.43. (35)

The case when nucleons (p,p,n,7) are also produced
may immediately be written down since the nucleons
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are treated identically to the kaons. Thus,
N p/ Np= (mrEp/ mpEr)2/3-

If the equal subenergies assumption is again made,
E,=Ex=E,=3%E, we obtain

Ny:Ng:N,=59:25:16. (37)

Thus, we would predict the ratio of antiprotons to
charged pions, produced at high energies, to be ~13.5%,.
Notice that the assumption of equal subenergies does
not necessarily imply equal energy per produced
particle, since the ratio of neutral to charged particles
is not expected to be the same for pions and kaons.
Under the general assumption that

Net=N~2N o,
Ng+#=Ng~Nkego,
1\71@5 Np-fXNnﬁ ’

and that on average a neutral particle has the same
energy as its charged counterpart, we obtain

(er): (ex): (ep)=21:31:48,

where e, is the average center-of-mass energy per pion,
etc. At high enough energies these e are identical to
what is sometimes called the inelasticity per particle,
the center-of-mass average 3-momentum per particle.

From our analysis, these €’s increase with energy as
E'3) while Eq. (39) suggests that more than twice as
much energy is needed per nucleon as per pion.

(36)

(38)

(39)

4. COMPARISON WITH EXPERIMENT
AND CONCLUSIONS

The basic conclusion of our analysis, assuming that
409, of incoming energy goes into production, is the £/
dependence of V. This corresponds to an £.'/* depend-
ence, where £y, is the laboratory energy. In comparing
with experiment we should restrict ourselves to large
N, and consequently to the cosmic-ray region. At
present, the most popular fits in this region are made
with logEyr, and/or Er!/4. The latter drawing inspiration
from the prediction of the Fermi model. However, in
comparison with cosmic rays interacting with nuclei
(10-10% GeV), and E'/® dependence is in very reason-
able agreement with experiment® (see Fig. 1). The
errors in experimental measurements, however, do not
allow us to exclude any of these proposed energy
dependences.® From this data, a crude estimate of ur
(applying the analysis of Sec. 3) is

ur=22-3 GeV/c2. (40)

8V. S. Borashenkov, V. M. Maltsev, 1. Patera, and V. D.
Toneev, Fortsch. Physik 14, 357 (1966). Further references are
given in this review paper. C. B. A. McCusker, L. A. Peak, and
R. L. S. Woolcott, Can. J. Phys. 46, 655 (1967).

9In comparing our prediction with experiment, it should be
noted that the total charged multiplicity N+ usually quoted
includes the charge of the primary particles, in our terminology.
For high enough multiplicities, this difference may generally be
neglected.
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Until recently, the ratio of Nx*/N,+ was believed to
be around ~209%,.1 However, a recent reanalysis of the
determination of this ratio via the detection of vy rays,
by Pilkuhn,"! gives the values Nx#/N,+=0.44, in
extraordinary agreement with our result of 0.43 for
the case when pr~m, and ux~mg. In his analysis,
Pilkuhn assumes only a very small percentage of
heavier hadrons other than kaons. This suggests that
the pion, kaon, and nucleon systems reach their asymp-
totic limits at different energies,” and that for certain
energy regions we must consider the secondaries as
being only pions, or only pions and kaons, and so forth.

Our prediction of N,;/Ni%®t~169, must therefore
stand as a definite prediction for scattering in the
higher TeV range. It is quite consistent with various
experimental results on the multiplicity of antiprotons,
which give upper limits of the order of

Np<0.1N ot

Thus, our simple approach gives quite reasonable
results. Our analysis, of course, is far from complete.
Where possible, we have clearly expressed the approxi-
mations involved, and the assumptions made. Although
some, like the equality of the subenergies (E.=Ex
= E,), are nothing more than a miniature application
of information theory again. Another is the neglect of
all other possible secondaries. However, the rate of
growth of N with energy is stubbornly independent of
most modifications, being derivable basically from the
condition that a~In(Ng?) be energy-independent.

The basic question must be the validity of our treat-
ment of the particles as classical particles. We have
given a justification for this, but a very practical
difficulty underlies the choice. The quantum mechanical
grand-canonical approach is not well behaved for
negative a [as we required from Eq. (19)].22 An
embarrassment solved only partially by noting that the
mass of the particles imply an N™* ie., a cutoff.
A final justification for our classical approach derives

10 T,, Briatone and M. Dardo, Nuovo Cimento 51B, 475 (1967).

1t {, Pilkuhn, Nucl. Phys. B4, 439 (1968).

2 The problem arises due to the fact that conventionally, in
the quantum approach, the summation from #=0 to « is made
before the phase-space integration. This sum becomes infinite for
bosons if a<0.
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from the expression for P,(E'), where E’ is any given
energy for an outcoming secondary system consisting
(for simplicity) of # pions: m positive, m negative, and
! neutral. The averaging over £’ gives rise to the mean
energy E. To obtain this P,(E’), we introduce the
integral

/ 3(E'—Y Py)dE!, (E'>0)
0 i=1

into our usual expression for P,, and compare the
result with the definition of P,(E’),

/ P,(EdE' =P,. (41)

This leads to

eABE'—2am B3Pl G3p2
P,,(E’)=——-———[v / .
,uZ"m!m!l! 2P01 2P02

/ o -3 ), @)
il —3" Py), (42
=5 r,

which is, up to a factor, the familiar center-of-mass
phase-space integral for the production of 2m-charged
and /-neutral particles.!®

Our approach is much more sympathetic to a
bremsstrahlung concept of multiparticle production,
than to the statistical-thermodynamic approaches, al-
though Er!'® energy dependences are also obtainable
in some versions of these models.4

As always, we must rely upon experiment to dis-
tinguish between the various models, and unfortunately
the experimental data are far from conclusive at this
stage.
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