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Ordinarily, a one-particle state in conventional field theory is said to be composite if Z; =0, Z:=0. (Z1 and
Z; are the usual vertex and wave-function renormalization constants.) The presence of neutral vector bosons
coupled to a conserved current complicates the issues in two related aspects: (1) Z; and Z; become gauge-
dependent, so that any equation like Z;=0 is suspect, since the notion of compositeness should be gauge-
invariant; (2) there is a theory (spinor-vector scattering) in which the spinor particle is automatically
Reggeized, while one ordinarily expects only composite particles to lie on Regge trajectories. In this paper,
we show that the notion of compositeness is indeed gauge-invariant. Further, we show that, in spinor-vector
scattering, one may pick a special gauge in which the spinor shows some of the properties of a composite par-
ticle, and in which all manifestly non-Reggeized terms in the scattering amplitude vanish. Of course, the
scattering amplitude is gauge-invariant, so there were no non-Regge terms to begin with.

I. INTRODUCTION

OME time ago, Gell-Mann, Goldberger, and their
collaborators’™ investigated the Regge behavior of
conventional field theory, with at least one surprising
result. In a world with spinors and massive vector
bosons coupled to a conserved current, the spinor
particle lies on a Regge trajectory, regardless of what
values one chooses for the coupling constant and masses
in the theory. This result does not hold for vector-scalar
theory, or any renormalizable theory not involving
vector bosons. It stands in apparent contradiction to
the bootstrap principle and composite-particle phi-
losophy, according to which only composite particles
should lie on Regge trajectories. But the masses and
coupling constants of composite particles are not
arbitrary; they are to be determined by the forces
which bind the composite particle together.
Mandelstam* has investigated this phenomenon. He
shows that in the spinor channel of spinor-vector
scattering, kinematic threshold constraints force the
spinor particle to lie on a Regge trajectory (i.e., there
are no Kronecker ¢ functions in the angular momentum
for this channel). He further shows that there are (in
general) such Kronecker § functions in other channels
(such as the channel with the bosons’ quantum
numbers). Thus, the bootstrap program is technically
saved by defining a bootstrapped universe as one in
which there are no Kronecker 8 functions in any channel.
In this paper, we study the question of automatic
Reggeization from the point of view of the requirements
of gauge invariance which are imposed when neutral
vector mesons are coupled to a conserved current.
Specifically, we explore the implications of the freedom
of choice of a gauge. This freedom of choice expresses
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itself in part through the fact that the spinor wave-
function and vertex renormalization constants (Z; and
Z,, respectively) depend on the chosen gauge. We would
like to connect this circumstance with the often ex-
pressed®7 idea that a composite (hence Reggeized)
particle is characterized by the vanishing of Z; and Z.
Crudely speaking, we might expect that we can choose
a gauge such that Z;=0, Z,=0, and that in this gauge
it will be manifest that the particle is Reggeized.
Clearly, for this to make any sense, it must be possible
to give finite expressions for Z; and Z,. Cases where the
2’s are undefined or identically zero because of divergent
quantities are of no interest to us in this work, nor
are they sensible in composite-particle theories. For
spinor-vector scattering, it is possible to give finite
expressions for the Z’s; their vanishing for particular
choices of gauge parameters then implies Reggeization
of the spinor.

While this is indeed what happens for spinor-vector
scattering, it is by no means the whole story. At least
two questions raise themselves. First, why does this
not work for scalar-vector scattering, where it is known®
that the scalar particle does not lie on a Regge tra-
jectory? The answer is the same in the Z=0 approach
as it is in the approach of Ref. 3: The seagull diagrams
interfere. These diagrams yield non-Regge terms in
both sense and nonsense amplitudes, unlike elementary-
particle poles which only appear in sense-sense ampli-
tudes. As will become clear later on, it is impossible to
choose a gauge in which the seagull diagrams do not
contribute, hence impossible to conclude that scalar-
vector scattering does Reggeize. (We cannot prove that
it does not Reggeize, but explicit calculations?® show that
it does not.)

The second question strikes at the foundations of the
composite-particle philosophy: If one can, in any
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theory involving vector mesons, manipulate the gauge
so that Z; and Z, become equal to zero, how can the
Z=0 criterion be meaningful? This question is not
hard to answer, if one recalls the old work of Landau
and Khalatnikov® (later reformulated by Zumino and
Johnson® 1) concerning the effect of gauge transforma-
tions on renormalization constants. We define a class
of covariant gauges by writing the vector-meson
propagator as

A,“,(k)=A,‘,.(F)(k)-{-k,,ky)\(k2) . (1)

The gauge for which A=0 is the Feynman gaﬁge, in
which the free propagator is

Dy ® (k)= — g/ (R2—mtie) . @

The Feynman gauge is calculationally convenient
both in quantum electrodynamics (QED) and massive-
vector-boson theories. However, in massive-vector-
boson theories there is a gauge which is physically
distinguished because it is both manifestly covariant
and contains no superfluous scalar components. This is
the Proca gauge, where —g,, in Eq. (2) is replaced by
—gut+kuk,/m?. Corresponding gauges in QED, such
as the radiation gauge, are not manifestly covariant,
because the photon field is not an ordinary four-vector
density; a change of reference frame implies a change
of gauge if manifest covariance is desired. Later, we
shall separate the vector propagator into the Proca
gauge plus a remainder, but for now it is convenient to
separate it into the Feynman gauge plus a remainder.

Now, consider a renormalizable field theory con-
taining spinors, scalars, and the neutral vector meson.
Let us denote, e.g., the spinor wave-function renormali-
zation constant, as calculated to all orders of all coupling
constants but in the Feynman gauge, by the symbol
Z,F. It requires only a trivial modification of Landau
and Khalatnikov’s work?® to show that, in any gauge A
(where Z,=25"),

Zz)‘= ZgFG)‘ y (3)

where the gauge-dependent quantity G* depends only
on the function A(%%) in Eq. (1) and on no other details
of the full theory. Furthermore, gauge transformations
are compounded according to the formula

ZMN = ZFGNGN = Z G (4)

It is the crucial property of factorization in Egs. (3)
and (4) which allows us to give an essentially gauge-
invariant definition of compositeness. We must first
recognize two critical requirements for the Z=0
program to be meaningful: (a) The expressions for
Zy, Z,, etc., must be finite in principle, and (b) these
expressions must depend continuously in some domain
on the renormalizable parameters of the theory (masses
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and coupling constants). In strong-interaction physics,
one hopes that this is true, while in pure spinor-vector
theory it is known!'? that it is possible to choose order
by order in perturbation theory gauge functions A so
that requirements (a) and (b) are satisfied. Let us
suppose, then, that it is possible to choose a gauge
function A\, which depends on the observable parameters
of the theory and possibly other parameters, such that
Z,* obeys conditions (a) and (b). If it is possible, by
varying only the observable parameters, to make the Z’s
vanish for some choice of these observable parameters,
we shall say that there is a composite particle in the
theory. Clearly, by Eq. (4), Z, then vanishes in all
gauges (for which GV is finite). In strong-interaction
physics, one might hope that the gauge in which con-
ditions (a) and (b) are true is the Feynman gauge.

On the other hand, it may be possible to modify
the gauge arbitrarily in such a way that Z,* vanishes,
without regard to the particular values of the coupling
constants and masses. As we shall see below, this simply
corresponds to the fact that spinor-vector theory is
automatically Reggeized in the spinor channel.

Our criterion of compositeness can distinguish be-
tween the case where vector-meson forces are actually
sufficient to produce a bound-state or composite
particle and the case where only automatic Reggeiza-
tion occurs.

Observe that a change of vector-meson propagator
induces a change not only in Z, but also in the cut
structure of the propagator (see Secs. III and IV); this
change would be exactly cancelled by the phase trans-
formation of the charged fields which ordinarily ac-
companies a change of vector-meson gauge, but which
we need not consider for the purposes of calculating
scattering amplitudes. As Z; becomes small, the cut
structure changes in such a way that a zero appears in
the propagator near W= M, and in the Z=0 limit, the
zero cancels the elementary-particle pole at W=M.5"
In this limit the unrenormalized propagator is gauge-
invariant, as discussed in Ref. 7, which emphasizes
the gauge transformation properties of the imaginary
part of the propagator.

The main tool in our investigation of automatic
Reggeization is the decomposition of the scattering
amplitude into two parts: the one-particle irreducible
graphs and the direct-channel Born term with full
propagator and vertex functions. This decomposition
is used extensively in the Z=0 theories®7 and has been
studied thoroughly by Ida.!®* When vector mesons are
present, this decomposition is not gauge-invariant,
which allows us to see the effect of gauge changes on
the one-particle irreducible amplitudes. Details of this
are given in Sec. III, while Sec. II contains kinematic
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Cimento Suppl. 3, 80 (1956).

12K, Johnson, M. Baker, and R. Willey, Phys. Rev. 136, B1111
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preliminaries. Section IV briefly recapitulates the
Landau-Khalatnikov® arguments, with a derivation
which differs somewhat from those in the literature.®~1

II. KINEMATICS

In this section, we give the kinematics necessary for
the decomposition of a scattering amplitude for
particles with spin into two parts, one of which is the
one-particle irreducible part.’* Our work uses the parity-
conserving helicity amplitudes of Ref. 2, which should
be consulted for further references. These kinematics are
useful not only for the problem of automatic Reggeiza-
tion, but also for the general program of studying
compositeness for particles with spin, which has not
received much attention in the literature.

Consider the elastic scattering process e+ — ¢+d,
where a- - -d are the helicities of the particles involved.!
(The restriction to elastic scattering is inessential.) We
write the T matrix as

Toawv=[i(2m)"/ (A1 2E)*16(ps—p) M oaan,  (5)

where M is the invariant amplitude. We treat the

scattering in the s channel, where s=W?2= (p,+ps)%; W

is the c.m. energy. There is the usual Jacob-Wick!®
helicity expansion

Mcd;ab(Ws COS&) ZZ (2]+1)tﬂd:abJ(W)d)\MJ(0) ) (6)

A=a—"b,

We are interested in the case where @ and ¢ refer to a

spin-1 particle, b and d to integral spins. Then, there
is a MacDowell symmetry (CTP theorem) which says

M ea,as(W, cos0)=2_ 2T+ 1) fea;ar” W )dr,7 (6)
+fcd;abJ<—W)d—>\—#J(0)]' (7)

In other words, the 7" matrix is invariant under the
exchange W <» —1¥, along with reversing all helicities
in the d functions. Of course, this reversing of helicities
is just shorthand for the phase relation

A () =" O0d_ 7 (6). ©)

Partity-conserving amplitudes which are free of
kinematic singularities are defined by?

Fea:art= (V2 cos®)~M# (V2 sinf) " # M og;0s
:l:nd(__))\-!-)\m‘l-sd(\/j Cosg)—l)\—#[
X (VZ $ind)- M o_gip,  (9)

where An=max(|\|[,|x]|), and nq and Sq are the parity
and spin of particle d.

Next, we discuss vertex functions which connect on-
shell particles a and b to an off-shell spinor of momentum
(W,0). These are necessary to discuss the one-particle
reducible terms (s-channel pole terms). We write, for

u=c—d.

14 Other conventions: Our metric is such that p2=p2—p?;
the Dirac equation is (y:p—M)u(p)=0, and Dirac spinors are
normalized so that wu=2M. We also use p=v-p.

15 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
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the form factor,
Fubpi(W’p) = Xpi@f‘//(o) {pa’; _pb> (ZEaZEb)1/2 ) (10)

where ¢(0) is the renormalized Heisenberg field, and
the four-spinors X,* are defined in terms of two-
component helicity spinors by

X, 0
Xp+ =< > , xp— =¢im (p~—ll2)< > . (1 1)
0 X,
Rotational invariance allows us to write
Fun* (W p)= (EFM)'2Dprs,*(U)F o (W), (12)

where F is the energy of the external spinor (particle @)
in the c.m. frame, and N=a—b. The rotation U is
connected to the polar angles of p in the usual way.!®
MacDowell symmetry and parity invariance allow us
to conclude
Foym (W)=F,*t(—W),
F oy (W)= £np(—)SoF a2 (W).

If & is an odd-parity particle, the factors (EFM)V?
remove all kinematic singularities from the form factors
F; for even b parity, the signs would be reversed in this
factor.

To define proper vertex functions, we need the
kinematics for spinor propagators as discussed, for
example, by Ida.!* We write the propagator as S(p);
near its pole, S(p)~(p—M)"L Let us substitute W
for p in S, to define a function Z(W):

ST W)=W—-M)ZW), Z(M)=1.
Then it is easy to show that

(13)

(14)

S( )—w[(W—M)Z(W)]"I
b= oW

W az—mT. (13
+—2—vg—[(— —M)Z(=W)T. (13)

Observe the following relations:

Wep Wp

Xt =X, % 16
p— » (16)

X, T=0.

p

With the normalization given in Eq. (14), it is custom-
ary to define the wave-function renormalization con-
stant Z, as the limit of Z(W) as W approaches infinity—
if this limit exists. In perturbation theory, this limit
ordinarily does not exist, but, for a special class of
gauges discussed in Sec. ITI, it does. Z(IW) obeys a
dispersion relation, and ImZ (W) is positive indefinite,
if there are no vector mesons in the theory.
Proper vertex functions are defined by

Pat(W)=Fo*(W)Z(£W). (17)

Because of parity conservation, it is sufficient? to set the
spinor helicities ¢ and ¢ equal to %, and we write ex-
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plicitly only the boson helicities b and d. Using Egs. (9)
and (15)-(17), we can write the parity-conserving
amplitudes corresponding to the one-particle reducible
graphs:

:F
fart® = —V2
W=

w
MI‘d*(W)I‘bi‘(W)Z“(iW)- (18)

Of course, these terms have no angular dependence,
and hence correspond to Kronecker § functions at
J=% (or I1=0, if we set J=I+%). Furthermore, f*
(see Ref. 1) vanishes except in sense-sense channels.

We record the following unitarity relations, valid in
the elastic approximation, but easily generalized:

q
1111F1,+(W)=Z fde(W)Fd*'(W)*, W>W, (19)
. d 8rW
q
ImTt(W) =3 fat T (WD (W)*, W>W,. (20)
da 8xW

[For the definition of f, see Eq. (22) below.] Here we
have introduced the partial-wave amplitudes f/+ of
the f%, as given in Eq. (2.11) or Ref. 2. In Egs. (19)
and (20), W, is the positive threshold and ¢ is the c.m.
momentum. There are similar relations for F~ and I'",
for W< —W,. Also, in the two-particle approximation
to the propagator,

g E—-M
ImZ(W)=————2% |Ts*(W)[?, W>W, (21)
EqTWW—-M »

with a similar expression for W< —W,. Observe that
Eq. (21) is not valid as it stands for intermediate states
involving vector mesons; the appropriate modifications
will be discussed in Sec. III. Equation (21) is valid in
the Proca gauge [see remarks after Eq. (2)], which is
the distinguished gauge for making unitarity calcula-
tions; however, in perturbation theory it leads to badly
divergent expressions.
The full scattering amplitude f becomes

=W ,0)= far=® (w)+Far:(W,9)

which defines the one-particle irreducible amplitude
J*. When vector mesons are not involved, Egs. (17)-
(20) allow us to conclude (just as in Ida’s work?!)
that the f* are separately unitary scattering amplitudes,
just as the f* are. This fact is used very often in
discussing Z=0 theories,>7 where both f and f are
written in ND~! form. The form factors are expressible
in terms of D!, and the proper vertex functions in
terms of D, When an elementary particle becomes
composite, f@ disappears, which is the basis for saying
that a theory with only composite particles is Reggeized.
Because the decomposition in Eq. (22) is not gauge-
invariant, it turns out to be possible to accomplish the
vanishing of f® in a particular gauge, and thereby
exhibit the phenomenon of automatic Reggeization.

(22)
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This lack of gauge invariance prevents us from con-
cluding that f is a unitary amplitude; in the next
section, we rig up a pseudo-unitarity which allows us
to pursue closely the ideas of the Z=0 theories in
connection with automatic Reggeization, when vector

mesons are involved.

III. AUTOMATIC REGGEIZATION

The decomposition (22) of the scattering amplitude
into a one-particle irreducible part and a remainder is
not gauge-invariant when vector mesons are present.
We exploit this circumstance to inspect the inner
machinery of gauge transformations as it works on
the one-particle irreducible part f.

Because the full amplitude f is gauge-invariant, it
follows that the only part of f which changes under
gauge transformations is the sense-sense J=3% sector,
since f= f otherwise. This sector of f or f is the only
one which might possibly be non-Reggeized. Ordinarily,
when one discusses composite particles, one says® that f
is mainifestly Reggeized, since it gets contributions
only from Feynman graphs which are know to be
Reggeized in perturbation theory (i.e., which obey the
Mandelstam representation). We emphasize that f
cannot be manifestly Reggeized in any arbitrary
gauge, whether or not f is; in nearly all gauges f
necessarily has a non-Regge part in the sense-sense
J=1% sector. Such a non-Regge part is easily extracted
from, say, the fourth-order box diagram. The purpose
of this section is to show that there is a class of gauges,
in which Zs, etc., vanish, where simultaneously the
vertex contribution f® and the non-Regge part of f
vanish, thereby explicitly exhibiting the Regge proper-
ties of f (which equals f in these gauges). The vertex
contribution vanishes for just the reasons discussed in,
e.g., Refs. 6 and 7: A “composite” particle appears in f,
whose mass and coupling constant are equal to those
of the elementary spinor.

To illustrate these ideas, consider the fourth-order
uncrossed box diagram for vector-meson-spinor scatter-
ing. To define our gauge, we write the meson propaga-
tor as

— 8w/ (BB —mP+ie)+kuk N () /72, (23)

where v is the vector-meson coupling constant, and
the first term is the Feynman gauge propagator. The
invariant scattering amplitude M of Sec. IT is written as

M=1.(p") A" uq(p)e (R)e, (R))*. (24)
The contribution of the gauge term in (22) to the box
diagram is
iy?
A (\)=—
(2m)*

Here, S(p+k—¢q) is the free spinor propagator. This
gauge-dependent contribution to 4 is, of course,
canceled by terms which come from the radiative

/ d*q N@v'S(p+k—q)v . (25)
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corrections to the s-channel [s= (p+k)2] pole term.
In a similar way, the crossed box graph has a gauge-
dependent part canceled out by the u-channel pole
term. Note that 4 (\) is not Reggeized. In general, we
can divide all non-gauge-invariant graphs in f into two
classes, direct and crossed, depending on whether the
gauge terms are canceled by s- or #-channel pole terms.
It is clear that all crossed graphs (including the
#-channel pole terms) are Reggeized in the s channel;
we may evaluate them, if we wish, in the Feynman
gauge, since their sum is gauge-invariant. But for the
direct-channel graphs, we seek special gauges in which
the non-Regge terms drop out.

To this end, let us consider the vertex renormaliza-
tion constant in perturbation theory. It is sufficient to
consider only gauge functions A which can be written

* A(s)ds
)\(k2)=—/ s—l;—ie.

We require, for reasons which will shortly be evident,
that A(k?) fall off like £~* at infinity, which implies

(20)

/»°° ds A(s)=0. 27

A simple perturbation calculation shows that, if (27)
holds,

Zi=1— (167r2)‘1l:ln<—]‘—1;>:l[72—- / ds s\ (s):l

+finite terms, (28)

where A? is a suitable cutoff. Therefore, if we choose

/ ds sh(s) =72, (29)
Z, is finite. A special case of (29) is the Landau gauge!* 12
in QED, where X (s)= —~v28'(s).

Let us denote by I'(W) the coefficient of yy* in the
renormalized proper vertex function I'*(IW). Of course,
I'(W) is just a linear combination of the helicity
vertices discussed in Sec. IT. We can write

T (W)=1+y[F(W)—F(M)].

With Z; finite, F(W) (obviously a gauge-dependent
quantity) obeys an unsubtracted dispersion relation.
In the usual way, we sum up an entire string of graphs
by replacing (30) with

rW)=[1—vFAOY1-yFW)]. (31

Because F(W)— 0 as W—», we can recover Z;
from Eq. (31) as

Zy= lim T(W)=1—y'F (M),

(30)

(32)

a result which can be derived directly from the un-
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renormalized vertex, to O (v2). Now we choose the gauge
parameters so that Egs. (27) and (28) are true, and
also so that 1—+2F (W) has a zero for some W=W S M.
Then, I'(W) has a pole at W=Wg; if welet Wrp— M,
Eq. (32) tells us that Z;— 0, and the proper vertex
function vanishes from Eq. (31). [It is clear that all
components of I',(W), not just the coefficient of ¥,
vanish as Z, vanishes, as long as Z; is finite and the
unrenormalized vertices are well defined.] Clearly,
these results are not confined to the approximate vertex
function constructed here.

We can construct the propagator from the vertex
with the aid of the Ward-Takahashi identity

Y Hp— )l (p,0") =S () =SB,

letting, for example, p’ be on the mass shell. It is easy
to see that (1) Z, is finite if Z; is; (2) as Z;— 0, Z, — O;
and (3) Z(W) has a zero at W=1Wg, and as Z, goes to
zero, Z(W) vanishes like Z,. If we were dealing with
massless QED, these results would be trivial, for in
such a theory Zi1=2Z,, and T'(W) in Eq. (30) is equal to
Z(W) in Eq. (14). But it is not trivial to discuss
Reggeization in massless QED, because the propagator
does not have a simple pole at W= M, in general, but
a very complicated singularity.

So far, all of the properties of the vertex and propa-
gator given above, in the special gauge where I'(W)
has a pole, correspond precisely to the discussion in
Z=0 theories™7 of the emergence of a composite
particle of mass Wg. As Wr— M, Z; and Z, vanish,
and with them the entire one-particle reducible graphs
(which vanish like Z;?/Z,). Clearly, because the very
existence of this pole depends on our choice of gauge,
it is physically inappropriate to speak of this pole as a
composite particle, but the mathematical manipula-
tions are the same as if it were.

There is only one ingredient lacking to make the
correspondence complete: In composite-particle theory,
the one-particle irreducible amplitude f is unitary. We
give a particle interpretation to the gauge function A,
which allows us to think of f as pseudo-unitary; that is,
Imf is a sum of squared amplitudes, but is not positive
definite.

Write the gauge function \(k?) as

(33)

2

Y
ME) =t .
mA(k2—m?) i k2—mPtie

1

(34)

The first term is added to put the vector meson into
the usual Proca gauge, which is convenient for giving
a unitary interpretation to the Cutkosky rules as
applied to intermediate states containing vector
particles. If all the C; were positive, the other terms
could be considered as physical scalar particles gradient-
coupled to the spinor. However, the sum rule, (27)
prevents this interpretation; at least one of the C; is
negative, so there is at least one scalar ghost in (34).



182 GAUGE

This is what prevents f from enjoying positive-de-
finite unitarity.

We think of unitarity for f as presenting a multi-
channel problem, where the scalar states of mass m;
can scatter off the spinor, mathematically if not physic-
ally. It is not hard to convince oneself that the ap-
propriate definition of the elastic scattering amplitude
for spinor-scalar particle ¢ is

Mi=cai(p")S7(p+R)u(p), (35)

where k; is the initial momentum of particle 7. Likewise,
the amplitude for spinor+-vector — spinor-particle ¢ is

My#=(ci)'2a(p’ )T+ (p, p+k)u(p). (36)

Clearly, both these amplitudes are non-Reggeized, and
have only J=% partial waves, corresponding to orbital
angular momentum / of 0 and 1. For example, Eq. (35)
can be subjected to the usual partial-wave analysis of
scalar-nucleon scattering. The /=0 partial-wave ampli-
tude, normalized to e% sing, is

ao’= (ciqs/8cW)(EAM)(W—-M)ZW), (37)

where g; is the c.m. momentum, and E; the c.m. spinor
energy. The /=1 amplitude is obtained by changing W
into —W, by MacDowell symmetry. To check that
Eq. (37) is indeed a pseudo-unitary amplitude, we
apply the Cutkosky rules to the propagator and isolate
the term with a threshold at W=M+m,. With the aid
of the Ward identity (23), we find, after a brief cal-
culation,

ImZ(W)
= (ciqi/8TW) (Ei+-M)(W—M) | Z(W) |2+ -+, (38)

where the omitted terms have other thresholds. A
similar relations holds for the part with threshold at
W= — (M+m;). Equation (38) shows that Eq. (37) is
unitary in the “elastic” approximation. A similar dis-
cussion proves the pseudounitarity of Eq. (36).

Of course, we do not have true physical unitarity,
because the omitted terms in Eq. (38) are not positive
definite (the C; are not positive definite). If these
omitted terms were positive definite, then we would be
able to conclude that |e¢?| <1, and hence

[ZW)|=0(W?), as W—ew. (39)

Then Z, would be identically zero, but Z(W) is well
defined, and the one-particle terms would not vanish.
Such a scheme is not consistent with the composite-
particle theories we are trying to imitate.

We are now in a position to combine the various
elements of the problem. The only differences between
our discussion and the usual composite-particle theory
are that (a) f is pseudo-unitary, instead of unitary,
and (b) there are some manifestly non-Reggeized terms
in f, such as those in Egs. (35) and (36). But point (a)
does not prevent us from writing fin ND—!form, which
is all that the composite-particle theories need; as to

INVARIANCE IN COMPOSITE-PARTICLE THEORY

1615

point (b); when Z; and Z, approach zero, so do the
non-Regge terms like (35) and (36), since I'y,(W) and
Z (W) vanish in this limit. As a result, both the one-
particle terms and the gauge-scattering terms vanish
simultaneously, leaving only a manifestly Reggeized f
(which is of course equal to the full amplitude f in the
limit). Since f still has a spinor pole, it follows that the
spinor lies on a Regge trajectory.

Observed that similar results cannot be derived for
scalar-vector scattering, because there are non-Regge
(seagull) parts coupled to nonsense channels. No
amount of gauge transforming can affect these, be-
cause all nonsense amplitudes in f are gauge-invariant
to begin with.

IV. GAUGE DEPENDENCE OF
RENORMALIZATION CONSTANTS

In this section we give, for the sake of completeness,
a derivation of the gauge transformation properties of
the renormalization constants. The result is not new,®1
but the derivation differs from those in the literature,
and is easily interpreted in terms of Feynman graphs.

Let us begin with a renormalizable field theory, say,
pion-nucleon theory, to which we want to add a gauge-
invariant massive-vector-boson coupling. Let y(x) be
the unrenormalized Heisenberg field for the nucleon,
with the vector coupling constant v set equal to zero.
The complete propagator with all vector-boson cou-
plings included is then

is@ =0l (a0 expf i [ 2 £1<y>])+|o>, (40)

where it is understood that only connected graphs are
to be saved, and

Ly()=—77Tu(y)V*(y)+seagull terms,  (41)

with V&(y) the vector-boson field and J,(y) the con-
served current. The seagull terms are, of course, those
interaction terms involving (V,)? which are necessary
when scalar particles are in the theory. We make one
mistake here and ignore seagull terms; a second mistake
later on exactly cancels this first mistake.

By contracting all vector fields and doing some
simple combinatorial analysis, we arrive at

o 1
iSx)=2 —-(—%iqﬂ)”/dxl- e dxon
=0 7!

XO[@ @) P0)T (1) - - T (24))+ | 0)

XA(xl—xg) . -A(xg,,_l—xg,.). (42)

For the sake of typographical convenience, we have
omitted Lorentz indices; A should carry two such
indices, and J one. Our convention is

J (@) (22)A (21— 22) = Ty (®1) T, (%2) A¥* (11— 2) ,  (43)
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where A" is the vector-boson propagator. In any
covariant gauge \, we write
AMV(xl_x2) =AuV(F) (xl—x2)

a a
Fyt— ——N(@1—w2),
(‘)xl" ax2"

(44)

where A,,® is the free-vector propagator in the Feyn-
man gauge.

Now we make repeated use of the Ward-Takahashi
identity, after inserting Eq. (44) into Eq. (42) and
integrating by parts. First, let us make our second
mistake by assuming

[Jo(x,0),J,,(0)]=¢ number. (45)

This is not so in theories where seagull graphs are
present. If Eq. (45) is true in theories where no seagulls
exist, as is most likely, then it is not difficult to show
that mistakes one and two cancel each other order by
order in perturbation theory. With the assumption
of Eq. (45), the Ward-Takahashi identity reads

e}
5(01 W @)P0)T# ()T (x2) - - +)4|0)
=[84(x1) —04(x—21)]
XO] @ (x)@(0)T" (x5) - - - )1]0).

This expression is used twice each time the function A
appears in Eq. (42). Thus, all the terms in Eq. (42)
which contain the function X to the first power are

(46)

)

n 2
% (—4in) DO -A@] [ - ds
n!y?

X O] @ ()P (0)J (x5)- - )y | YA (x5—24) - - -
—i[A(0) —\(x) (O] (¢ (x)¥(0))+]0).

The » in the numerator comes from the 7 ways of in-
serting the gauge function. Equation (47) adds up to

—i[A(0) =\ (x) JiSry (), (48)

where S (x) is the full propagator, to all orders in v
and any other coupling constants, but in the Feynman
gauge. After some more combinatorial analysis, the
general expression is

(47

1/72\™ n!
fs<x>=z<—%wz>n—(—> N0 @ T

n!\y2/ m!(n—m)!
x / dr- (0] WP (O)T (x1)- - -)+]0)

XA® (z1—3) - =iS ) ()

Xexp{i—[M0)—N(@)]}. (49)
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The wave-function renormalization constant Z, can be
identified® from the asymptotic behavior of Eq. (49),
which yields
Zor=ZFen® , (50)
where Z,* is computed in the Feynman gauge. Equa-
tion (50) immediately yields the factorization property
Z2X+)\’=Z2)\6—i)\’(0) s (51)
which, as discussed previously, ensures the gauge-
invariant meaning of the equations Z=0. A different
proof of this gauge-invariant meaning has been given
already”; in this work, the proof was based on a dis-
persion analysis of the propagator, and was valid only
to first order in A.
Similar conclusions about Z; can be drawn by ob-
serving that the ratio Z:1/Z, is gauge-invariant.

V. CONCLUSIONS

In this paper we have distinguished two different
ways in which field-theoretic scattering amplitudes can
show full Regge behavior. They are very similar in
their mathematical aspects: In both cases, the re-
normalization constants approach zero, as a pole in f
moves to the spinor mass. As a consequence of the
vanishing of the Z’s all, non-Regge parts disappear from
the scattering amplitude. In physical interpretation,
the two ways are quite distinct. For automatic Reggeiza-
tion, it is of course not necessary to appeal to the vanish-
ing of the Z’s in some particular gauge to prove Regge
behavior. The full gauge-invariant amplitude f is
Reggeized, no matter how the Z’s behave, and the
proofs of Refs. 2 and 4 may be invoked instead. Never-
theless, it is instructive to relate automatic Reggeiza-
tion to true composite-particle theory, even if only
because spinor-vector scattering is the only theory
with spin in which the mathematics of composite-
particle theory can be made plausible by virtue of the
finiteness of the Z’s.

Another important byproduct of studying the
relation of vector mesons to Z=0 theories is the proof
that the equations Z=0 are gauge-invariant, obviously
a necessity for a meaningful theory. This is not merely
an academic question, but quite a real one for the study
of electromagnetic mass shifts of composite particles
(a brief discussion of the relevent points is given in
Ref. 7, along with a different proof of the gauge in-
variance of Z=0). Here one might expect to be faced
with infrared problems, but strict adherence to gauge
invariance will remove possibility of calculating an
infrared-divergent electromagnetic mass shift.
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