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Regge Cuts, Absorytion Model, and Diffractive
EfFects in Inelastic Scattering*
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We propose a model for calculating Regge-cut contributions to scattering amplitudes in terms of a Regge-
pole and elastic scattering. Physically, the cuts are caused by absorption efFects. Our expression for the
cuts contains only one parameter with limited range besides those associated with the Regge pole and
elastic scattering. We can explicitly show that combining absorption and Regge poles leads to no double
counting. In this model all Regge poles are evasive at t,=0. This model, with m--exchange input, applied to
the forward peaks in pp ~ m+n, ~E-+ (transverse p)N, ep ~ pn, and ~p ~ pA, is qualitatively the same
as the absorption model, which is successful for these reactions. On the other hand, the conspiring Regge-pole
model with factorization fails for mp -+ pb, . We also apply the model with p-exchange input to m p —& m'n.
The dip at —t=0.6 BeV' in ~X charge exchange is a difFraction minimum which, in the Regge language,
is an interference between the Regge pole and the Regge cut. The Regge-pole contribution to the ampli-
tude, taken by itself, has no dip. We predict that the dip drifts to smaller values of —t as the energy is
raised and the forward peak shrinks. The crossover eBect in the m+p di6'erential cross sections is also obtained.

I. INTRODUCTION

K present here a theoretical model for the calcula-

~

~ ~

~ ~

~

tion of high-energy quantum number exchange
reactions. ' The amplitude is represented as the sum of
Regge-pole exchange amplitudes and a "principle-cut"
amplitude associated with each pole. The cut is an
absorption correction, ~ or equivalently a double-
scattering correction, to the Regge-pole exchange, and
is associated with elastic scattering in the initial and
final states. ' '

A. Review of Results

In recent years a phenomenology of high-energy
(quantum number exchange) reactions based on
Reggeon exchange has enjoyed some success. ' We
claim, however, that recent detailed experimental in-
formation makes it clear that the description of high-
energy reactions based on analytic properties in the
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For a brief preliminary version of this model, see F. Henyey,
G. L. lane, Jon Pumplin, and Mare Ross, Phys. Rev. Letters
21, 946 (1968).'B. M. Udgaokar and M. Gell-Mann, Phys. Rev. Letters 8,
346 (1962).' R. C. Arnold, Phys. Rev. 153, 1523 (1967);Argonne National
Laboratory Report No. ANL /HKP 6804, 1968 (unpublished).

4G. Cohen-Tannoudji, A. Morel, and H. Navelet, Nuovo
Cimento 48A, 1075 (1967).' K. J. Squires, Phys. Letters 26B, 461 (1968).' J. Finkelstein and M. Jacob, Nuovo Cimento 56A, 681 (1968);
C. B. Chiu and J. Finkelstein ibid. 57, 649 (1968).' J. N. J. White, Phys. Letters 26B, 461 (1968); F. Schrempp,
Nucl. Phys. B6, 487 (1968).' Several papers have appeared, introducing cuts with poles.
The most important technical difFerence in the present formulation
is the absence of nonsense wrong-signature zeros in the pole terms,
and the presence of the "coherent inelastic factor, " increasing
the cut.

See, e.g., the review article by L. Bertocchi, in Proceedings of
the Beidelberg International Confererjce on E/ensentary ParticIes,
edited by H, Filthuth (Wiley-Interscience, New York, 1968),
p, 197.

angular momentum plane will not be simple mathe-
matically: The Regge representation used must be
determined by physical arguments' and experimental
evidence, and not by mathematical simplicity. In
particular, we show that multiple-scattering arguments
and the evidence demand a large role for Regge cuts.
We present an expression for the principal cut asso-
ciated with any pole. The model which we use to
determine this expression is an absorption model, with
the single scattering input given by Regge-pole ex-
change. The expression involves only one (scale)
parameter, in addition to the parameters needed to
describe the pole. The scale parameter is closely tied
to the physics, and it can only vary over a limited range.

The experimental evidence indicating a strong role
for cuts is (a) forward peaking in s.-exchange processes,
and (b) dips and secondary maxima. There is also a
variety of relatively detailed experimental indicators,
such as polarization, in xE charge-exchange scattering"
and the crossover in the x+p differential cross sections. "
All these phenomena can probably be accurately under-
stood in terms of the principal cut and its interference
with the pole contribution. Detailed applications are
presented. Good agreement with experiment is found.
We do not consider elastic scattering as such, nor in-
elastic processes proceeding with no quantum number
exchange.

After a qualitative discussion, we discuss the validity
of the model in Sec. II. We develop in Sec. III the
formula for the cut contribution. In Sec. IV we apply
the formalism.

B. Qualitative Considerations

How do considerations (a) and (b) strongly support
Regge cuts' Because the pion has parity —(—1)~,

+ M. Ross, in Proceedings of the Irvine Conference on Pion
Nucleon Scattering, 1967 (unpublished)."P.Bonamy eE al., Phys. Letters 23B, 501 (1966).

~ V. Barger and L. Durand, Phys. Rev. Letters 19, 1925 (1967).
1579



HEXYEY, KANE, PUMPLI N, AND ROSS

orbital angular momentum is usually involved in the
creation or annihilation of a pion; thus most reactions
proceeding via ~ exchange vanish at zero momentum
transfer (which we call "forward" for convenience).
Instead of zeros, forward structures (peaks) over a
small momentum transfer interval, ht=m ', are ob-
served in pn —& ep,"yp —+ m.+e,"and vr+p -+ p'X*++."
The evidence is very strong that these peaks are
associated with m- exchange. It has been observed that
the mathematics of the Regge representation allows the
possibility of nonzero forward amplitudes in certain
of these cases, if the m trajectory "conspires" with a
trajectory of opposite parity. " This possibility is
physically unmotivated, and also does not agree with all
the known forward ~-exchange reactions in its basic
factorizable form. '~ On the other hand, the explanation
in terms of cuts, or double scattering, is physically
compelling: Forward reactions occur as a result of small-
angle x exchange with compensating elastic, or diErac-
tive, scattering. The absorption model includes such
processes and has, indeed, been found successful in
these cases." (Of course, the small pion mass implies
that there is little distinction between the elementary
pion used in the absorption calculation and a x
Reggeon. )

The cut contribution should be viewed as a diffrac-
tion phenomenon associated with the Regge pole in-
volved in the quantum number exchange. The dips and
secondary maxima observed in momentum-transfer dis-
tributions of a variety of reactions are a natural aspect
of this diffraction phenomenon. To understand this
statement, erst consider multiple scattering in the
eikonal approximation, ' used for describing reactions
on deuterium and other light nuclei, at high energy:
The reaction occurs on one nucleon; the shadowing
e6'ects of a second nucleon need to be taken into
account; they are taken into account by adding the
double-scattering contribution (eikonal approximation)
involving elastic scattering on the second nucleon; this
term has phase roughly opposite to the single-scattering
term and is broader in momentum transfer because it
involves nucleons lined up spatially one behind the
other. Now consider the relation of the multiple-scatter-
ing formalism to scattering from a homogeneous ab-
sorptive optical potential. Historically, we associate
diBractive structure with the latter and, in particular,
associate the di6raction minima and subsidiary maxima
with edge eA'ects of the optical potential. However,

"G. Manning et a/. , Xuovo Cimento 41, 167 (1967).
"A. M. Boyarski et a/. , Phys. Rev. Letters 20, 300 (1968);

P. Heide et a/. , Phys. Rev. Letters 21, 248 (1968)."Aachen-Berlin-CERN Collaboration, Phys. Let ters 278,
174 (1968).

"The many papers in this Geld are reviewed in Ref. 9."M. LeBellac, Phys. Letters 25B, 524 (1967).
' J.D. Jackson, Rev. Mod. Phys. 37, 484 (1965);J.D. Jackson,

J.Donohue, K. Gottfried, R. Keyser, and B.E.Y. Svensson, Phys.
Rev. 139, B428 (1965).

"R.J. Glauber in Iectlresin Theorem a/ Physics (Wiley-Inter-
science, Inc., New York, 1959), Vol. 1.

recent experiments' have shown that high-energy
elastic scattering on deuterium, and other light nuclei,
has a dip and secondary maxima at momentum transfer
roughly related in the usual way to the deuteron radius.
These observations cannot be explained by a homo-
geneous optical potential shaped like deuterium since
the deuteron is too smeared out to yield the structure.
Rather, the dip is beautifully explained" by approxi-
mate cancellation between the strongly peaked single-
scattering amplitude and the broader double-scattering
amplitude. For heavier nuclei, the homogeneous-optical-
model picture eventually merges with the multiple-
scattering picture. Thus, for these composite hadronic
objects, the multiple-scattering formalism provides the
most basic description of diffractive structure. It is
this type of process which, we claim, naturally explains
the dips observed in particle physics. These dips are
di6raction dips. A collateral conclusion is that introduc-
tion of zeros in the Regge amplitudes at nonsense wrong-
signature points" is physically artificial and is incorrect.
In the conventional Regge-pole language, we expect
then to And important multiplicative fixed poles at
nonsense wrong-signature points in Regge-pole ampli-
tudes. Excellent agreement is obtained in our approach
with the observed structure of the m-charge-exchange
scattering. The dip is predicted to move forward (in t)
logarithmically as energy is increased because of the in-
creasing range of the p-exchange amplitude (shrinkage).
This effect is one of the most striking predictions of
this paper.

Although we have not completed careful fits to the
backward elastic ~+p scattering data, we have found
that it is easy to obtain a dip with appropriate proper-
ties in m+p ~ per+, and no dip in 7r p ~ per . In addi-
tion, for some reactions the dips that would be expected
from zeros in the Regge amplitudes at nonsense wrong-
signature points are not present experimentally. From
our point of view these reactions do not appear to
require dips. Examples of these reactions include co

production and backward x+ photoproduction.
It can be shown that the Gottfried-Jackson absorp-

tion model is essentially the same as single plus double
scattering in the eikonal approximation. The quantum
number exchange in their model is via an elementary
particle, i.e., a Feynman propagator. The energy de-
pendence predicted is wrong for all but ~ exchange.
We propose instead to describe the quantum number
exchange by Regge poles in the usual manner. Then the
absorption correction or double-scattering term is
calculated by the same method as that of Gottfried and
Jackson. It is a Regge cut. Possible double counting is
carefully discussed in Sec. II and is found not to exist.

2' For example, the experiments on light nuclei by H. Palevsky
et cl., Phys. Rev. Letters 18, 1200 (1967).

"R.H. Bassel and C. Wilkin, Phys. Rev. 174, 1179 (1968).
~~ The removal of the zeros is discussed by A. H. Mueller and

T. L. Trueman, Phys. Rev. 160, 1296 (1967); S. Mandelstam and
L. L. Wang, i'. 160, 1490 (1967); C. E. Jone and V. L. Teplitz,
ibid. 159, 1271 (1967).
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II. VALIDITY OF MODEL

In order for the proposed model to be valid, it is
necessary that the physical effects involved in absorp-
tion and in Reggeization be distinct. If this were not
the case it would be very likely that double counting
would occur, and that the absorption correction would
be too large a correction to Regge-pole exchange. Since
our model generates Regge cuts, the physics of absorp-
tion should also agree with the physics of other ap-
proaches to Regge cuts.

Both Reggeization and absorption involve composite
structures. What is required is that the composite
structures be distinct. Regge-pole exchange involves
two kinds of structure. It includes the composite
structure of the exchange object and it includes that
part of the structure of the scattering objects which

FIG. 1. Double scattering on a deuteron that
will not occur at high energy.

gives rise to form factors. Absorption involves that
part of the structure of the scattering objects which
allows them to scatter more than once during a single
collision. (The connection between absorption, multiple
scattering, and Regge cuts is demonstrated in Sec. III.)
Composite structure of the exchanged object is distinct
from composite structure of the scattering objects.
Since the absorption model with elementary-particle
exchange lacks the former structure, it cannot be
complete. This shows up in the wrong s dependence in
such a model.

The two aspects of the structure of the scattering
objects are also different. The form factor involved in
single scattering represents the time-averaged structure
of the object and does not require that part of the
object which does the scattering to be composite. The
multiple scattering involves the structu're averaged in
time only over the period in which the scattering occurs.
If the relative velocity of the two scattering objects is
much greater than the internal velocity within each
object, this becomes the instantaneous structure. Exist-
ence of instantaneous structure requires that the part
of the object causing the scattering be composite.

In order to clarify these ideas, consider the example
of something scattering off a deuteron. In this example

I'rc. 2. Double scattering on a deuteron that persists at high
energy when e and p are properly lined up.

FrG. 3. Feynman diagram
which has no high-energy
double scattering, and which
does not contribute to the cut.
The wavy lines represent Reg-
geons or ladders.

assume that the proton and neutron are elementary.
if the scattering is electromagnetic (assuming no mag-
netic moment for the neutron), it can only occur o8 the
proton. There will be a deuteron form factor for this
scattering, because the position of the proton within the
deuteron is not determined. If the scattering velocity is
greater than the proton's velocity, double scattering, as
shown in Fig. 1, will not occur. If, on the other hand,
the scattering is strong rather than electromagnetic,
both a form factor and double scattering occur, even
at high energies. The double scattering involves one
scattering off the proton and one scattering off the
neutron. This is illustrated in Fig. 2. This double
scattering will occur whenever the proton and neutron
are properly lined up. It is just the shadow-scattering
correction to single scattering on the downstream
nucleon. The imaginary part of the forward elastic-
scattering amplitude on the upstream nucleon represents
the loss of Aux at the downstream nucleon. The double-
scattering amplitude takes this into account, and the
scattering is reduced under normal circumstances.

The double-scattering, or absorption correction is
pure Regge cut, as shown in Sec. III. This represents
further evidence that double counting does not occur.
If the correction were simply a modi6cation of the
Regge-pole parameters, or contained such a modiica-

FIG. 4. Feynman diagram
which has high-energy double
scattering, and contributes to
the cut.

tion, it would be probable that double counting did
occur. However, since the mathematical structure of
the correction is completely different from the single
scattering, there is no double counting.

The aspects of composite structure discussed above
also play a role in other approaches to Regge-cut theory.
We shall compare our model with the Feynman-
diagram approach. "The diagram shown in Fig. 3 is an
example of a diagram in which the same two (elemen-
tary) particles scatter twice. We would then not expect
it to contribute at energies high enough so that those
two particles only come together once. This is also a
diagram which does not contribute to the cut, because
the two sides of it have no third double spectral func-
tion. The diagram shown in Fig. 4, on the other hand,

'~ S. Mandelstam, Xuovo Cimcnto 30, 1127 t'1963); 30, 1148
(1963).
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a

(0)
FlG. S. (a) Feynman diagram

corresponding to Fig. 2. How-
ever, it does not contribute to
the cut because of a form factor
for the intermediate particle g.
(b) A similar diagram.

posite (in the form factor that vanishes at infinity).
It is not clear whether it should be considered relevant
in an actual physical situation, where virtual particles
of large momenta presumably behave in a subtle way;
e.g., perhaps they are Reggeized with osci1lating signa-
ture factor.

Our expression is analogous in form to Fig. 5. The
essential difference is that the intermediate particle is
on the mass shell. Thus our expression represents the
sum of all persistent diagrams associated with elastic
scattering on the first target particle. There are addi-
tional double-scattering contributions associated with
inelastic scattering at the 6rst target. These are dis-
cussed later.

III. FORMULA FOR REGGE CUTS

is an example of a diagram in which diferent particles
scatter, We expect the double scattering to persist at
all energies. It is also a diagram which contributes to
the cut, since the two sides have third double spectral
functions.

The diagram shown in Fig. 5 is an intermediate case.
One partide scatters on two others. We expect double
scattering to persist at high energy, yet this diagram
does not contribute to the cut. The conditions that this
not contribute are, 6rst, that the intermediate particle
at some point be the elementary particle u, governed
by a Feynman propagator, and, second, that the inter-
mediate particle have a form factor which vanishes for
infinite four-momentum squares. '4 A specihc example
for the diagram in Fig. 5 is shown in Fig. 6. Physically
the vanishing occurs because the projectile e is com-
pletely distorted by the initial scattering (i.e., is in
state b) so that there is no elementary particle a for
a distance of order p/h. '~y behind the first target.
Here A is the mass characteristic of the form factor
and p is the relativistic factor. Beyond this distance
there is an increasing probability of finding state a
(Fig. 7).

Thus Feynman processes of the type of Fig. 5 vanish
at high energy because the projectile's form factor
vanishing at infinity implies that none of the pro-
jectile is elementary in the initial part of the shadow
behind the erst target particle. Meanwhile, Feynman
diagrams of the type of Fig. 4 give a contribution which
persists at high energy. Thus the conventional method
of estimating these processes simultaneously treats the
particle as elementary (in the propagator) and com-

In this section we construct the formula used for appli-
cations of our model, and we demonstrate the connec-
tion between absorption, Regge cuts, and multiple
scattering.

We begin by showing very simply how an absorbed
Regge-pole amplitude is equivalent to the same Regge-
pole amplitude plus a moving cut. Assuming spinless
particles for the moment, consider a process dominated
by the exchange of a Regge pole. Although the detailed
form of the Regge-pole amplitude does not play a role in
these considerations, it might be useful to the reader
to keep in mind that M' can be written in the form

P(t)
M'*(s, t) = —

~
(1+e—'~~&'&) .

sins. a(t) se)

We apply the absorption by using the Sopkovitch
procedure, " where we first expand 3f'" in direct-
channel partial waves and then multiply each partial
wave by the square root of the S matrix for elastic
scattering in that partial wave in the initial state, and
again in the 6nal state. For simplicity we assume that
initial- and final-state elastic scattering are the same.
Thus each partial wave of M' is multiplied by e"~«").

Then we have (M is the total amplitude)

M' (s,t) =Q(2l+1)Pi(s)Mi' (s),

M(s, t) =g(2t+1)P~(s)Mp*(s)e'~s«"&,
l

and putting e''"&"~= 1—igMp'/4n. W in our normaliza-

DISTORTED STATE

V io. 6. Particular contribution
t;o the form factor of Fig. 5.

24 The necessity of including form factors was brought out by
H. Rothe, Phys. Rev. 159, 1471 (1967).

TARGET $

I'M. 7. Intuitive sketch of spatial dependence of the scattering
of an elementary particle g on a target ~hen form factor as iii
Fig. 6 applies.

~' N. J.Sopkovich, Nuovo Cimento 26, 186 {1962);K. Gottfried
and J. D. Jackson, ibid. 34, 735 (1964).



tion (q and W are the magnitude of the c.m. three-
momentum and total energy, respectively)„ this gives

'Eg

M (s,t) =M'"(s,t) =-—P{21+1)I'i(s)Mie*(s)Mie'(s) .
4 5

Now insert for Mg and Mg" their expression as a
partial-wave projection of a full amplitude

Zg
M(s, t) =M' (s,t) —-- P(2k+1)Ei(s)

4~8

dh P&(h)Me" (s,x)

Fio. 8. (a) aud (b) Multiple-
scattering diagrams. The inter-
mediate states are on mass shell.
(c) Momentum labels for (a).
(d) Feynman diagram which may
correspond to double scattering.

dy &i{y)M"(s,y)

g=M~" (s,&)—
16xW

&&LE(21+1)~(*)& (y)& ( )j
&&M'"(s h)M" {sy).

It is a fairly conventional exercise to show that the sum
in brackets is given by 28(E)/s+E, with E=1—xs
—y' —s'+2xys. Then if one changes variables from y to
q, with y=xz+(1 —x')'"(1—s')'I' cosy, one finds

dh dyL j=— dh dv = dQ—

Thus, finally,
Zg

M(s, t) =M~(s, t) —dQ M'"(s,h)M" (s,y).
16m'8'

This is the essential result except for the coherent
inelastic factor introduced later. Let us note some of its
general properties before we discuss it in detail. M" is
the amplitude describing the initial or Gnal elastic
scattering, and to a good approximation can be taken as

where A is the slope of the elastic differential cross sec-
tion. In applications we will give —~c the measured
phase of elastic scattering at 0', but here let us assume
c if real (i.e., the diffraction elastic scattering is mainly
imaginary) in which case it is determined by the optical
theorem to be c= 2gR'Og. Thus we see that the relative
magnitude of the pole and cut terms is fixed (with one
qualification, to be discussed just below) and the
relative phase is also determined and is mainly such that
the two terms destructively interfere.

Next, we note that the 6rst term is our original Regge
pole, with no modiacation in value or rede6nition of any
parameters or function, while the second term is
purely a Regge cut. Although this may not be obvious,

(c)
i I I I I IX

recall that the erst term is a pole in the complex l
plane, and the second a superposition of two poles,
which is a conventional way of obtaining a cut.. In fact,
the second term is a cut whether Me' is taken as above
(a fixed pole) or as a moving Regge pole. These ques-
tions are discussed in more detail below. By choosing a
simple form for M, with Hnear n, putting P (t)/sintrn (t)
=const over the region of integration (the scat-
tering region), and giving the elastic scattering an
(s/so)~'+ 'i" dependence, the reader can convince him-
self that the cut term has the branch point at I=o,
n, =a +a,i—1=n,„, the branch-point slope given by
1/e, '= 1/n '+1/n, i', and an energy dependence 1/lns
relative to the pole term, all as in the usual Regge-cut
formalism. ~ Ke will argue below, both theoretically
and phenomologically, that the cut and pole contribu-
tions to the amplitude are comparable.

As discussed above, the mathematical pole-cut sepa-
ration is one indication that there is no signi6cant
overlap in the physics of absorption. and the physics of
Reggeizing, so that it is sensible to do both; i.e., we
are not including the same contributions twice. Thus a
Regge cut is associated with every Regge pole in a
deanite way. Except for angular momentum and parity
the pole and cut have the same quantum numbers.
Since the cut corresponds to the simultaneous presence
in the I channel of two space™time separated systems
(e.g., see Fig. 4) there can be orbital angular momentum
L, exchanged, along with parity (—1)s. Thus the cut
always contains both natural- and unnatural-parity
pieces; it can give rise to many interesting polarization
eGects, it can be self-conspiring, etc.
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From another point of view which we will not pursue
further here, the cut is in a bootstrap sense an important
crossed-channel singularity. For example, it can give
rise to circles on Argand diagrams in a definite partial
wave. Analyses of the finite-energy sum rule sort will
have to be reexamined.

So far there is one important physical effect that we
have ignored. Imagine our cut term constructed as in
Fig. 8(a), with a Pomeranchult exchange representing
the absorptive diGraction elastic scattering, followed
by the quantum number exchange which causes the
transition of interest. We should also, however, get a
contribution from a process where a is replaced by a
state a*, with a* any state that can be reached from a
by Pomeranchon exchang" e.g. . any Regge recurrence
or diGraction inelastic product. " For the nucleon e*
would include all its Regge recurrences, the Ã*(1400)
resonance, and all the isospin-~ resonances and con-
tinuum states. It appears to be sensible to assume that
all of these processes contribute- constructively, and
contribute quite similar cut terms. It is dificult to
estimate quantitatively their effect, but a typical esti-
mate of one such term gives a contribution of the order
of a few to 10% of the elastic cut term. Summing a
number of such terms for both particles and for initial
and final scattering, it would appear reasonable that
these contributions should approximately double the
elastic-cut term. To take account of these effects we
introduce a "coherent inelastic" factor ), multiplying
the cut term, We expect X to be of order 2 for most
processes; presumably, it would vary somewhat depend-
ing on the particles involved. It is very encouraging
that for a number of processes, including pion, vector
meson, and baryon exchange, we Gnd good fits to data
(see below) for just such values of X. The phenomo-
enology is rather sensitive to X, determining it to well
within 20%%uq.

The expression for the amplitude becomes

in very important ways. AFS suggested that the cut
contribution should be calculated by use of elastic
unitarity. We are discussing inelastic processes, so
elastic unitarity must be modified to include the initial
and final states in the unitarity integral. We consider
that cut in the AFS model generated by the Pomeran-
chon, with amplitude TI, and another Regge pole, with
amplitude T~, exchanged either before or after the
Pomeranchon. Then the amplitude of the AFS cut is
(neglecting spin)

ImT, „z~rs = dQ (Tp*prTR+TR*p; Tp), (5)

where

(5'el)1/2T ex (g el)1/2

Sle'=1+ 2zTle'pl.

Defining the absorption correction by

T' abs T ex

where the integration is over the angle of the momentum
of the intermediate state.

Here p~ and p; are the phase-space factors for the
intermediate state the same as the final and initial
states, respectively. If the amplitudes are expanded in
partial waves, this equation becomes

fmTl 2 TlP plfTLR+TlR pl TlP ~ '(5')
However, elastic unitarity is not a useful approximation
at high energy. In fact, Mandelstam has shown that
the cuts given by AFS are cancelled by other cuts.
Therefore, T,„t, is not necessarily a good estimate of
the actual cut contribution.

The absorption model combines an elastic-scattering
amplitude T", with an exchange amplitude T'. The
precise way in which these amplitudes are combined
depends on the version of the absorption model. We use
the Sopkovich formula'5

where

16% M

dQ M'"(s,x)M" (s,y) .

Note that we use M'"' for the entire cut and 8M for
that part including only the elastic intermediate states.

It is now of interest to examine the connection
between the absorption model and Regge cuts. This
can be understood by comparison with the model of
Regge cuts originally proposed by Amati, Fubini, and
Stanghellini (AFS).22 The absorption formula has a
similar form to the formula of AFS, although it diRers

"The same e8ect in scattering on nuclei has been discussed
by Jon Pumplin and Mare Ross, Phys. Rev. Letters 21, 1778
(1968).

'1 D. Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1,
29 (1962); Nuovo Cimento 26, 896 (1962).

and expanding the square roots, we find

bT1=i Tl"ply Tl'"+iTl'"pllTl"+ . (6)

The lowest-order terms, explicitly exhibited in Eq. (6),
are common to various versions of the absorption
model. The higher terms diGer among the models, but
are generally small compared to the leading terms.
We use only the explicitly exhibited terms in Eq. (6)
for phenomenological fits.

Our model consists of identifying the exchange ampli-
tude with the Regge-pole exchange, rather than with
elementary-particle exchange as in the ordinary absorp-
tion model. We have

+ex

If, furthermore, we approximate elastic scattering with
Pomeranchon exchange,

T'i= TI
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the con

(10)

ex ' ex .Tel)"pT= dQ(iT't2f T' +2T p;

t,Ilbutlon My2 of I' g.i . 8(c)

182

esent model ses As Feynman diagrams,. ,2)$ and the pres
. Th the

then t e

amplitude in Eq.ya

1

zc 2 m2 —ze(p +p —k) +222 —'
k +222 —7p

f T" consists of any corn in-

ious y - - hell parts of theious y e off-mass-s e e
diagram do not pions that are pure y

t b retaining ony

e trajectory is t e
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since signature involves a half-twist of a ladder diagram.
These crosses are exactly the necessary part of the
Feynman diagram to make it contribute to the Regge
cut."Perhaps this provides a more precise connection
between our formalism and the Feynman-diagram
approach to the Regge cut.

In order to obtain a formula (for either double
scattering or absorption, which are the same), spin must
be included and the correct phase factor must be used.
The phase-space factor appropriate to the Feynman
amplitude is given in Eq. (12). The helicity is taken
care of by summing over helicity indices. The formula
for helicities P, p in the initial state and. X'p, ' in the final
state is

~~X/p'Xp,
32m''0/

dQ Q (Me*1 „.1 „"M"), „1„

'5M/rr /rr 1/r (Z)
16+8'

dzg
e(~)

dzg
(g)1/2

X p LM"1 „1,"(z1)M'*) ","1,(z2)

where

+M /rr/rr1rr/r" (Z1)M " 1" /r( 1/2r)7Z

)&cos(hrs11+h2222+h2q 2), (15)

A = 1—z' —s12—z22+ 2zs1s2,

e'&1= (s2 —zz1+iLV")/(1 —z')'"(1—s1')1/' (17)
e'1'2= (z1—zz2+iLV/')/(1 —z2')""(1—z')'" (18)

eirpm ( z+z z 2+1/2)/(1 z 2)1/2(1 z 2)1/2 (19)

The real part of these expressions are just the cosine
addition theorem, so the angles q; have a simple
geometric interpretation. Finally,

h1——V—/1', h2 X /2, h2 ——X"———/2"—. (20)

The factor 8(h)/LV/' is the Jacobian 80/cj(z1, z2). A
factor of 2 appears in Eq. (15) since 221, &/2, 222 and —221,—

q 2, —ys correspond to the same z, z~, z2. The phase"
is in the cosine instead of an exponential because the
sine part integrates to zero as a result of this same
symmetry. For small-angle scattering, one can put
222= —221—222 in Eq. (15); then it depends only on
helicity Qips. When the elastic scattering is diagonal in
helicities (81"18„„) the sums vanish and using

29 C. Wilkin, Nuovo Cimento 31, 377 {1964);also, Ref. 21.
~ J. Charap, E. Lubkin, and A. Scotti, Ann. Phys. {N.Y.) 21,

143 {1963).

+M 1rirr1rr/rrr M 1rr/rrr1/r) (14)

Each JIt/I has a phase depending on its initial and final
directions which must be included in the evaluation of
Eq. (14). It is often convenient to change variables to
the cosines of scattering angles in Eq. (14).

The absorption correction, then, is given by

221+ s 2+ 222= 0 one gets just a factor cos/tq&2, /2= (x'—p, ')—(&—/1) =net helicity Rip.
The above result is cast in several different, useful

forms and discussed in some detail in the Appendix.
To perform calculations the reader should proceed as
follows. First it is necessary to obtain an appropriate
set of Regge-pole exchange contributions to s-channel
helicity amplitudes. As we discuss in our applications,
it appears to be possible at the present time to describe
experimental data with very simple Regge-pole ampli-
tudes. The amplitudes need not vanish at wrong-
signature points, nor at integral or half-integral J
values for t(0, so long as they do not have poles at
such points. Similarly, it appears that one can ignore
possible conspiracies, always using the simplest alter-
natives, which will correspond to an evasive solution.
Thus many of the subtleties introduced in the past few
years concerning Regge amplitudes can probably be
ignored, and it is not diAicult to obtain a set of s-channel
Regge-pole helicity amplitudes for any process in
question. Having obtained these, the cut contribution
associated with each one is constructed from Eq. (15),
or the. approximate versions of it LEqs. (A11) and
(A12)7. This construction is usually rather straight-
forward, particularly if the pole amplitudes can be
taken as exponentials in t, when it can be done analyti-
cally; otherwise a numerical integration is generally
required.

Finally, we remark that justification of our model
requires that the Reggeon effecting the quantum
number exchange be a "particle. " It is not clear that
such a description applies to elastic scattering (or
"diffraction inelastic" scattering). There is no known
particle definitely associated with the Pomeranchuk
Regge trajectory, so that this may not be a simple
Regge pole representing single elastic scattering. Since
no quantum number exchange can be separated out
to drive the elastic scattering, it may not make sense
to consider elastic scattering as a single exchange with
initial- and final-state interactions. Related models'
have assumed a description for elastic scattering, in-
volving single and multiple Pomeranchuk Regge-pole
exchange. Although this assumption is plausible, our
justification of our model does not extend to these
models. Therefore, we apply our model only to inelastic
(quantum number exchange) scattering.

IV. APPLICATIONS

A. Pion Exchange

In this section we discuss the application of our model
to several processes which appear to be dominated by
pion exchange at small momentum transfers. We re-
strict ourselves here to —t&0.1(GeV/c)2; for larger t-
it is necessary to consider contributions from other ex-
changes (vector and tensor mesons). First let us review
the experimental situation. The reactions 22P1 Pn,
&P ~ x+22, and x+P ~ p'5++ all exhibit sharp forward
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peaks, with widths of order —t~m '. Separately, any
of these can be treated in a Regge-pole theory, the 6rst
two with a conspiring pion trajectory, and the third
with an evasive one. When considering them together
one can show" that it is not possible for all three of these
processes to have sharp forward peaks in a factorizable
Regge-pole model.

From our point of view all of these reactions can be
understood simply as resulting from an evasive-pion
Regge pole and its associated Regge cut. There is no

difhculty with LeBellac's argument'7 because the full
amplitude (pole plus cut) does not factorize. In all
cases the peak is due to a rapid variation of the pion-
pole term (on the scale of ht=tN '), relative to the
associated (destructively interfering) cut with the same
quantum numbers (apart from J~, as discussed above).
In addition to allowing us to deal with all three processes
in a uni6ed way, our treatment of any one of them in-
volves fewer parameters than an ordinary Regge-pole
treatment; we have only the pion Regge-pole param-
eters plus the coherent inelastic factor X, and X can
vary only over a very limited range whose origin and
approximate value is well understood physically (see
Sec. III).

Consequently, although one cannot prove that the
pion is evasive, there is no need to assume otherwise to
understand the experimental data, and to us it appears
to be the natural assumption.

We only discuss photoproduction in detail. The
behavior of the other processes is qualitatively similar,
and we defer their discussion to a future publication
covering the full angular distribution and all relevant
exchanges (at larger angles vector and tensor meson
exchange will contribute).

For yp —+ pr+e we use a vector-dominance model in
the sense that the photon is coupled to a p meson and
the amplitude for pp ~ pr+ee is constructed by subtract-
ing o6 the longitudinal p's to obtain the photoproduc-
tion cross section. That is,

do/dt(yp —+ pr+n) = (1 ppp)do/dt(p'—p —+ pr+n),

where ppp is the zero helicity density matrix element in
the s-channel center of mass. In the pion-exchange
region only the external p contributes (not &p or p).

To understand the results qualitatively, consider
xE —+ pX. Dehne the quantum number m which mea-
sures the net helicity flip; for a process o+b ~ c+d,

From angular momentum conservation, any helicity
amplitude must vanish as (sin —,'8)" as tt ~ 0; we write
this as (—t)"~', ignoring t; . Then if we w—rite the
full amplitude M in the form

M=B+A,

when 8 is the pion Regge-pole term and A is the Regge

400—

2 3
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Fxo. 9. (a) xlV ~ pX amplitudes for e=0. (b) Comparison of
our model with experiment for yp ~ m+e for small t (—t&0.1).
See the discussion in the text for the interpretation of the various
curves.

cut, near 1=0 we have approximately

et=0: Bt y'=2egt/(t p'), —
ep=1: Bt, ~p=2eg(g t)(ea,+t/m—e)/v2(t p'), —
I=2: B~y '= 2egt/(t p'). — —

The amplitudes M+g+g& fall oG for pion exchange one
power of s faster than these, so we do not need to
consider them.

Compare the Regge-pole terms for @=0 and m=2.
They are equal because the pion exchange is pure un-
natural parity, which can be shown to give B~ ~'

= —By ~
'. But there is no need for M~y' (with e=O)

to vanish as t —+ 0. Using the Regge-pole terms as they
stand is known as choosing the evasive solution (or,
in another language, giving the pion a Toiler quantum
number M=0).

On the other hand, because the cut term arises
physically from the exchange of two space-time sepa-
rated systems, both natural and unnatural parity are
always present in its contribution, so A~~' need not and
does not vanish as t ~ 0.



HE NYE Y, KANE, PUM PL I N, AND ROSS

Thus qualitatively what happens is as follows [Fig.
9(a)]." The cut term is only sizeable for the 22=0
amplitude. There, at larger t the cut and pole have been
destructively interfering and they are of similar magni-
tude; thus M is smaller than either one separately.
Very near the forward direction A~~' is essentially
constant, while suddenly B~y' drops to zero, and there
is no longer any interference with A. Thus 2+8 shows
a forward peak. (We note that from this analysis we
would expect the cross section. for production of longi-
tudinal p's to have a forward dip, while that for trans-
verse p's would have the photoproduction forward
peak. )

We have carried out quantitative calculations for
—/&0. 1. The results are shown in Fig. 9(b); the fit is

quite good. The pion Regge-pole parameters were
chosen toben(t) =t—ttt ', s,= 10 GeV', and)9(t) =2V2eg
where I,'2/42r = 1/137 and g2/4tr = 14.7. The elastic-
scattering treatment was the same as for the ~Ã charge-
exchange analysis, described in Sec. IV B.The coherent
inelastic factor ) was chosen to give a good fit to the
data, giving a value P = 2.7. When p and cu exchange are
included and the entire differential cross section fitted,
this value will have to decrease somewhat. It is to be
compared with X=1.5 from the xE charge-exchange
analysis and values of ) 2.2 in preliminary analysis of co

production and less in backward m+Ã elastic scattering.
This is perhaps a good place to emphasize two im-

portant practical differences between the present model
and the conventional absorption model with elementary-
particle exchange. "First, inclusion of the coherent in-

elastic states gives P &1 and increases the CBcct of the
destructive interference between the pole term and its
absorption correction. Second, the Regge-pole term
itself initially has the usual Reggc exponential decrease

[e ' 's/s()] '+ '~e '('"('/"' '"/'I rather than the slow

dccrcRsc ol incl cRsc of thc elementary-particle ex-

change. Thus (apart from the forward zero) the Regge-
pole term is a decreasing exponential with a slope
(2'[ln(s/so) —itr/2], while the cut is an exponential with a
reciprocal slope given by 2/2+ 1/((2'[ln(s/s()) —itr/2]).

2/A+ 1/(n'[1n(s/s()) —itr/2]) = 1.8 (Gev/I;)2.

Without this decrease there would be a tendency for a
dip near —3~0.02 rather than a break as is observed.
The m= 2 amplitudes fills in any dip structure as well,

since it is mainly a pole term and varies smoothly
~(ea' t [1n (s/sp) —sx/2]

Wc also note that the calculated magnitude is
correct, as is to be expected from the nearness of the
elementary pion to the forward direction.

Also shown in Fig. 9(b) are the cross section tr(), and
0-~, corresponding to scattering with polarized photons
with polarization parallel or perpendicular to the
scattering plane, respectiveIy. The break appears only

"These corrections are an approximate evaluation of the
form@.las given by G, J, Kq,ne, Phys. Rev. 1/3, I54$ ($967)2

in o.
& &, corresponding to pure unnatural parity exchange,

because there the pole and cut are interfering Rnd the
pole suddenly goes to zero as —t —+0. The slowly

varying natural parity contribution o-~ is purely the
cut contribution. The experimental data on m+ photo-
production with polarized photons are in agreement with
the curves in Fig. 9(b)."

The results for 22p p p/2 and Ir+p —+ p'6++ are quali-

tatively the same as those for yp —+ Ir+/2 near the for-

ward direction. In all cases it is now necessary to carry
out detailed calculations over large angle and energy
ranges to verify that the results continue to be so en-

couraging. "We are also analyzing the combined diGer-

elltlRl cl'oss sectloll Rllcl polRI'lzRtloll clRtR oil )pp + 2r+22,

yn —+ Ir P, and yP —+ tr'P.

B. Diffraction Dips.' ~-Charge Exchange
and the ~+y Crossover

We consider the reaction 2r p —& n't2 via p exchange
in order to iIIustrate the phenomenon of dip plus
secondary xg.aximum. The particular advantages of this
reaction are that the data are relatively good and that
there is onIy one weII-established trajectory that can
contribute. The amplitude is the sum of p Regge-pole
exchange and the associated double-scattering term.

M„„=M„„p+M„„'"',
—iP„„

dQ M„„&Sf„„".

(21)

mp P++
it,—tppp' p ( t ) /2 (I//F )pp p ( t )

3—mp2
(25)

—mp'7+-
( )t)I/2i~ —ip'ap(t)/2(+/I/ )pp(t) (26)

5—m„2

These forms satisfy all known requirements on Regge
poles. They have the phase appropriate to the signature
factor, the p pole, the appropriate energy dependence,
etc. We have ignored various factors of sinmo, , I' func-

tions, etc. , which sometimes are included but mainly

32 P Schmusser (private communication).
3305 course, we know that vr exchange does not dominate at

larger angles. In m+, x photoproduction on deuterium, P. Heide,
U. Kotz, R. Lewis, P. Schmusser, H. Skronn, and H. Kahl, Phys.
Rev. Letters 21, 248. (j.968) show substantial deviation Trodi g
ex+.ange for —5 &0.01,

For unpolarized nucleons,

dtp/Ch= (642rq2S)
—I([M~+ i

2+
i M+

i
2) . (23)

The subscripts are s-channel c.m. helicities.
The recoil-neutron polarization in the direction

y -gy 0 is given by

8=2 Im(MppM+ *)/(~M++(2+ ~M+ ~2). (24)
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serve to cancel one another. As far as is known the above
representation is an entirely adequate Regge representa-
tion in the region where it is used, for t(0 (F. or positive
i on.e would have to include poles for the p recurrences. )
Of course, for arbitrary p+~ this is obvious, but we
shall assume that for the above form we can take
p++= const. Slightly different forms were used in Ref. 1.

Note that the helicity-Rip amplitude is not con-
structed to vanish when n, =0. It appears to us more
natural that the dip should arise as a pole-cut inter-
ference or diffraction minimum. Throughout our appli-
cations we have used Regge-pole amplitudes constructed
as above, as simply as possible, with evasive solutions
to conspiracy relations, and with no other zeros not
required by general analyticity arguments. In particu-
lar, the conventional procedure of setting M+ =0
when n, = 0 is not necessary. "4

To construct the cut terms, we make one further
approximation which is good to an average of better
than 2%%ue over the range of integration where the pole
terms are used. If the Regge-pole exchange were an
exponential, the integration could be performed ana-
lytically, as given by Eq. (A12). Moreover, if the ex-
ponential is multiplied by a polynomial in L, P(t), the
integral still can be done explicitly as

P (f)e"=P (d/da) e",
and the operator P(d/da) can be pulled outside the in-
tegral. The factor 1/(t —m, ') in our pole expression pre-
vents this from being the case, so we approximate it by

e
—t/mp2et/mp&

f —m p' —m, '(1 i/m p')—
e"""1—t/m, '+P/2mp4

1—&/m, '

= (e""~'/ m') (1—+t'/2m, ') . (27l

The elastic-scattering amplitude is taken from the
data to be fixed at n=1, with constant phase, and heli-
city nonRip:

M~ ~"=—b),.~(i+ p)sare ', (28)

where p is the ratio of the real to the imaginary part of
the forward mS diffraction peak, and o-~ is the xS total
cross section. All of these are taken from experiment, ,

including their gradual energy dependence. '4

The cut terms M' " are then given by substituting
(26) and (28) in (A12):

—X+po-z
M+~'"'= (1 ip) A~+—

Sxo

X 1+(
1 d' G GBtexp, (29)

2m„4 d82 G+8 G+8
'4 K. J. Foley et c/. , Phys. Rev. Letters ll, 425 (1963); 14, 862

(1965); IS, 45 (1965).

1.0-

0.1 I

0 .2 .4

FIG. 10. Absolute value of spin-flip amplitudes in ~N charge
exchange (Solution II discussed below at 9.8 GeV/c). Arbitrary
scale.

—X~ oz
iV+ '"'= (g t) (1 —ip)A—+

'
SmG

where
2m 4d+2 G g 6

A++ =V++~e '-"(E/&o)",

8= (1/m ')+a~on(E/Eo) —is/2j, (32)

and we have assumed that the p trajectory is linear
over the experimental region, n&(/)=np+ny$. The co-
herent inelastic factors )+~ are discussed for the spinless
case in Sec. III.

Before proceeding with a quantitative discussion of
our ht, we describe the qualitative features. The
Regge-pole amplitudes are smooth as functions of t,
having approximately an exponential form. The cut is
about ISO out of phase with the pole. The double
scattering can occur with two small-angle scatterings
adding up to a relatively large angle. Therefore, at
large angles the cut dominates the pole, although it
gives a small correction to the integrated cross section.
When the magnitude of the pole and cut are equal, their
sum (interfering destructively) is very small. If one
amplitude is dominant, as in x p-+~ I, this results
in a dip in the cross section (see Fig. 10).The difference
between the vr+p~~+p and s p~m p amplitudes is
the same as the n. p ~ s'e amplitude by isospin con-
servation. Because these two amplitudes are mostly
nonfhp and imaginary, the crossover in their differential
cross sections occurs close to the point at which the
imaginary part of the nonQip charge-exchange am-
plitude vanishes, which in turn is close to the point
at which the magnitudes of nonQip pole and cut are
equal. In the expression for the cut there is a factor
LG/(G+8)]"+' which is smaller for larger net helicity
Rip e, arising from the angular momentum conserva-
tion factor (—i)"I'. Therefore, the crossover in the g+
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1000

100-

~ 4.8$, 9.8, 18.2 GeV/c

5.88. 133 GeV/c

energy dependences of the pole and cut are different.
At ininite energies these points would be at t=0, but
at low energies the drift of the dip can be in either
direction.

The pole and cut terms have different phases because
the cut is constructed by integrating over the pole
whose phase depends on the integration variable and
because the elastic scattering has a small real part.
Thus the helicity-Rip and nonQip terms have different
phases, and the polarization is nonzero.

A fit to the data on Co/Ch for er p —e er'ee," the
polarization at small angles, " and the total cross-
section difference for Trap scattering" has been made.
The seven parameters were varied. We find that the
predictions are insensitive to the freedom of allowing
different Eo's for Rip and nonRip, so we set them equal.
Also, a wide range of 0,& is permitted by the fit as long as

do Pb
dt (GeV/c)'

so we choose
ree inc (14 GeV)/Ep] =4,

cep+eeep tee= 1 .

(33)

(34)

The 6tting thus involves the six parameters: 0,0, X++,
~+, Eo, y++, and y+. . We are not interested in fits

TABLE I. Parameters for ~$ charge-exchange
scattering, energies in Be7 units.

0,10,2
I I I I I I

.4 .6 .8, 1.0 $.2 1.g
-t, (GGV/c)'

O.o nl EP X+ X++

Solution I 0.473 0.9 0.165 1.511 1.292 85.7 —22.6 349
Solution II 0.418 1.0 0.269 1.547 1.311 129.3 —34.9 464

Fn. 11. Fit of ~ p~ ~'e using the parameters of Table I.
The dip is a diffraction minimum. Neither the helicity-Qip ampli-
tude nor the Regge-pole term vanishes at the nonsense wrong-
signature point where n, =0. The data are from Ref. 35. The solid
line refers to Solution II and the dashed line to Solution I.

with unreasonable parameter values and so consider
the rough ranges

and m differential cross sections occurs at a smaller t
value than the er P ~ ereee dip. Both the crossover and
the dip positions are functions of energy, since the

3f '&E &M '
i.0&X&2.0. (35)

1.0

.75-

50-

P (t) ~I=ff=f
.25-

J[

-.25-

-.50-

-.75-

I I I I I

DATA (ref 55) $5. GGe cV/(11.2 GeV/c

THEORY 5.88 GeV/c
———- 133 GeV/c

TD GeV/c

We do not obtain an excellent fit, but rather a
fairly good fit, comparable with all other attempts. "
The results are significantly different from those re-
ported earlier, involving spin Rip alone. Two kinds of
fits are shown: Solution I is good in the low —t region
and poorer at high t (Fig. 11).—Solution II is better
than I at large —t but poorer than I at low —t. The
parameters are listed in Table I. If there are no system-
atic problems with the data or quoted errors we should
obtain X'=100. Instead, we obtain X'=350.

The polarization results are shown in Fig. 12. The
fits to the existing data are good. The general shape of
the curve is insensitive to changes in the parameters,

-1.0
O.f 0.2 0.3 0.4 0.5 0.6 0.7 O.g 0.9 1.0

-t (Gev/c) '

FIG. 12. Fit to polarization data of Ref. 36, using
parameters of Solution II of Table I.

~5 A. V. Stirling et al. , Phys. Rev. Letters 14, 763 (1965); P.
Somleregger et al. , Phys. Letters 20, 75 (1966}."P.Bonamy et al., Phys. Letters 23, 501 (1966}.

3~ K. J.Foley et al. , Phys. Rev. Letters 19, 330 (1967).
1' See, e. g., W. Rarita, R. J. Ridell, Jr., Charles B. Chiu, and

R. J. ¹ Phillips, Phys. Rev. 165, 1615 (1968); see also Refs. 7
and 4, which show the same di%culty with large-angle data.
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but reasonable its to do/di can be obtained with maxi-
mum polarization ranging from 0.05 to 0.15 in the
small-t region. A prediction for '/0 GeV/c is shown. The
polarization is small for small t because the helicity-Qip
amplitude dominates; there is no dBBculty in obtaining
difFerent phases for the two amplitudes. Near the dip
region the two amplitudes are comparable and the
polarization approaches unity. The crossover in m+

di6'erential cross sections is assumed to satisfy

1000

100

4= —.02T5 E

t = -.2t z

t= -.8

Re(i+p)M++ ——0. (36) dy' gb
dt (GeV/c)

It occurs at —3=0.3, while present data indicate
—1=0.2.

The theory appears to have one systematic problem
when compared with difFerential cross-section data:
The theoretical secondary maximum is too small at low
energy and the theory decreases too slowly with in-
creasing s for 6xed t in the secondary maximum region;
i.e., the theoretical efFective 0. in the region where the
cut dominates is too large. In Fig. 13, the energy de-
pendence at three 6xed t's is shown to illustrate the
point.

We now discuss the sensitivity with which the param-
eters are determined and the signi6cance of the values
obtained. The 6t -is sensitive to the value of o.o. The
effective n in the presence of the cut is higher than n(t)
(of the pole) at low i. We obtain fi—ts comparable with
I and II for 0,0=0.46&0.05. Meanwhile, as remarked
in connection with Eq. (33), ei is not well determined.
The coherent inelastic factors are fixed within about 5%%uo

with X+ ——1.54, X++——1.28. The value of y+~/7~ is
well determined at —0.27 while the absolute value of
~p~+( varies roughly from 10 to 50. The "errors" are
estimates of points where the 6t becomes qualitatively
worse, and, of course, depend on the very particular
assumptions under consideration.

The values of the residue functions can be compared
with the on-mass-shell coupling constants by extrapo-
lating to the p pole. This gives y++= —4g„G„Eom/m, '.

The values of the residue functions can be compared
with the on-mass-shell coupling constants by extrapo-
lating to the p pole. This gives

v+~= —4g G.EO~/~, ' and y+ ——2g,.GLED/m, ',
where a factor Gyp„+Gro„„E„/2m goes at the p pn
vertex and a factor ig, (p; +p,„,) at the s —@+so

vertex. Using g, „-~5 (corresponding to a p width of
105 Me&), Gv=+3.5 and Gr ——'+3.7Gi (from vector
dominance), we obtain y++=112EO, y+ 220EO.
Using this relative sign for the y's gives the polarization
result that we have shown, of the same sign as the
experimental data. One good fit to the data has Iy~+ ~

=22.6, [y+ ~
=85.7, Eo——0.165; using this Eo above

gives y++ only 20%%uo too large and p~ just over a factor
of 2 too large. This agreement is consistent with our
assumptions about the slowly varying nature of the
residue functions.

$0-

do
$ 10'—at tdt
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FIG. j.3. Energy dependence of charge-exchange differential cr at
three fixed momentum transfers. Data from Ref. 35.

The values of the X's are reasonable. We have not
attempted any detailed evaluation. Particular E* and
m* contributions have been estimated by Ravenhall
and Wyld'9 with contributions up to 0.2 from N*(1688)
and A&. Contrary to Ravenhall and Wyld, we take
such numbers as indicating values of 'A up to 2 or more,
although the values of A. needed in our 6t here are
smaller than that. Our estimates of the coherent in-

elastic factor X will be discussed in detail in future
publications. Our opinion, stated very briefly, is that
available experimental data imply the existence of a
large number of contributions to 'A all in the range
0.05—0.25. All of these contributions have the phase
of the exchanged Regge pole, up to an over-all + sign.
If all have the same sign then we have complete co-
herence and we can get quite a large value of X. If
there is even partial coherence it is not dificult to
get X 2.

The absolute values of X involved here roughly corre-
spond to total absorption in the s states, if one looks at
X&1 as an increase in absorption. That is, a value of
one for the coeKcient C in the Gottfried-Jackson ab-
sorption model's corresponds arithmetically to X= 1.49
for Op ——25 mb, so we have effectively increased the
absorption over that deduced empirically (as Gottfried
and Jackson also found convenient). We believe that
there is no reason in principle why ) could not be
signi6cantly larger since we regard the single- and
double-scattering formalism as more general than the
absorption model which originally motivated our ampli-
tude. It is diKcult to think about absorptive efFects via
optical analogies in the presence of coherent inelastic
channels.

The relative values of 'A++, X+ make sense because
the charge coupling of the p at an EE*vertex should

'9B. G. Ravenhall and H. W. Wyld, Phys. Rev. Letters 21,
1770 (1968).
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be zero at t=0 according to the usual ideas about inter-
action with the conserved isospin current. Thus there
will be contributions from the area under the form
factors at these vertices, but the form factors will
vanish at t=0. Since charge coupling corresponds to
helicity nonQip at high energies, we expect P++ to
be only a little greater than 1.At an helicity- fHp vertex
it is the magnetic moment coupling that contributes at
high energies. This can be as big as it wishes for all
E*'s, so we expect X+ to be significantly greater than I.

The other parameter values are reasonable. The value
for the trajectory slope a& is =1. The value of ap is

significantly less than the effective value of n(0) =0.55,
which, in the absence of consideration of cuts, has been
considered the proper value for the p. There is not much
to say about the values of Eo except that they seem
typical of other fits to the data.

Several possible reasons within the context of the
present theory could be responsible for the difference
between theory and experiment. The outstanding
problem is lack of knowledge of the elastic amplitude
near the break (—t=0.8) and beyond. Instead of (28)
this amplitude has less than half the slope, has destruc-
tive phase with respect to the forward term, and also
has a considerable helicity-fiip part at low energy.
The contribution of this region to the cut amplitude
is large enough to account easily for the discrepancies
in our fit. The destructive term will decrease the value
of n. Perhaps the large Rip amplitude at lower energies
will have the sign to greatly increase the nonfiip con-
tribution to the secondary maximum at low energies.

Other possible problems are the following. (1) Our
level of knowledge of the phase of the low —t elastic
amplitude is not sufhcient. (Variations in the phase and
phase dependence on t in the elastic amplitude were
considered in the fitting, but the eBects were not such
as to promise great improvement. ) (2) The trajectory
n(t) may be curved. (3) The coherent inelastic factor X

may depend slightly on s and t. (4) The residue func-
tions could depend on t Pa linear dependence (1+at)
with (a~ (0.5 was considered and was not found to be
very helpfu17. (5) t-channel unitarity corrections should
be made. " (6) Lower-lying trajectories may be
important.

It is not clear how to decide on the basis of experi-
rnents in the near future whether dips are diffraction
minima or zeros in Regge amplitudes at nonsense
wrong-signature points. Eventually, it will be possible
to find out whether they move with energy, but not for
some time. For many processes the two approaches will

give similar results for differential cross sections. This
is because, in the case where the pole amplitudes vanish

at nonsense wrong-signature points, these points occur
in the range of integration in constructing the cut, so
cancellations occur and the cut contribution is smaller.

"R. J. Esterling et al. , Phys. Rev. Letters 21, 1410 (1968)."J.B. Bronzan and C. E. Jones, Phys. Rev. 160, 1494 (1967}.

To obtain large polarizations, however, a large cut
contribution will be necessary in processes dominated
by exchange of a single Regge pole, so good polarization
data as a function of momentum transfer will prob-
ably suffice to distinguish; some processes under
investigation include vr p —+ n-oe, n. p —& qe, n X-+ &olV,

"
and mE ~ coD.

On the other hand, data may appear where a dip is
required by a nonsense wrong-signature zero but is not
present experimentally. There are two possibilities for
this at the present time. One is in backward vr p, where
a dip should appear when o.~———~. The data do not
show such a dip, but there may be some other reason
why it does not appear at such a large momentum
transfer (—u~2). The second is in backward s+photo-
production, where the data show no dip. This can be
interpreted by saying that 6 exchange dominates;
since nucleon exchange is allowed this would appear to
require considerable justification. Vector-dominance
arguments appear to indicate that nucleon exchange
does dominate.

From our point of view dips are not so easy to get.
They generally require that only one Regge pole should
dominate, and in addition that only one helicity ampli-
tude should dominate; otherwise diferent helicity
amplitudes have their diffraction minima at diferent
places and fill in any dip.

Another experimental indicator could be the appear-
ance of a dip associated with a given exchange at
different momentum transfer. In backward x photo-
production, it appears that nucleon exchange pre-
dominates. A dip is observed4' at u= —0.4, rather
than at I= —0.15, where it occurs in backward ~+p
scattering.

C. Low-Lying Trajectories

One of the more uncomfortable features of conven-
tional Regge-pole phenomenologies was the necessity to
include trajectories associated with high-mass particles;
these were presumably rather low-lying on a Chew-

Frautschi plot, and should give contributions which
fall off rapidly with energy. An example is the 8 meson,
included conventionally in yp~ m'p and m.lV —&cd%,

~1V —& cud. There is no guarantee that Q.s(0) = —s3, as
would follow from using straight-line trajectories with
slopes of order unity, but to assume otherwise is an
ad hoc procedure that is not very attractive. Such an

intercept would give a contribution to a cross section
of order s ' relative to a vector meson (p,s&), and should

presumably not be included.
%'e conjecture that, in general, our cut contributions

will play the role of filling in dips and giving both
natural- and unnatural-parity contributions to generate

polarization. Preliminary results in cv production4' and

4' D. Ritson (private communication).
4' F. Henyey, K. Kajantie, and G. L. Kane, Phys. Rev. Letters

21, 1782 (1968).
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mo photoproduction appear to be consistent with our
conjecture. It appears at present that it will be possible
to understand most reactions with only the high'est-

lying trajectories and their associated cuts.
The difference in ~ photoproduction between our

model, involving absorbed ao exchange, and a 8-ex-
change model can be determined by a polarized-photon
experiment, which distinguishes natural-parity and un-
natural-parity exchanges. "If m' photoproduction were
pure co exchange, and if the a) coupled to the nucleon
without any anomolous magnetic moment coupling,
then it turns out that the absorbed amplitude would
correspond to pure natural parity. These conditions on
thc N should bc approximately valid so wc cxpcct R

small unnatural-parity part. On the other hand, the 8
meson has unnatural parity. Therefore, the 8-exchange
model would predict a large unnatural-parity part. The
recent Cambridge Electron Accelerator experiment'5
shows a small unnatural-parity part, strongly favoring
our model. In ~ production by p exchange, ' on the
other hand, the p will have a large ratio of anomalous
moment to charge couplings, which introduces signifi-
cant amounts of the unnatural-parity' amplitudes and
accounts for the large production of longitudinal ~'s.

D. Further Discussion

Two areas of research on high-energy two-body
reactions present themselves in connection with the
present work. (a) Can the prescription be obtained in
R morc complete thcorctlcRl contextP Techniques used
to determine leading high-energy behavior of series of
Fcynman diagrams can be applied to 6nd the types of
diagrams that are relevant and to predict the form of
the leading amplitude. If this 6rst step is made, we

may be in a position to determine general rules so that
wc can calculate, e.g., elastic scattering and 2~3
particle reactions. At this writing the 6rst step is
well in hand. 4' (b) Does the prescription fit the variety
of inelastic two-body reactions now being observedP
At present we are calculating Ps+%~I's+X and
Ps+% —+ V+X (in particular, photoprocesses), both
forward and backward. One of the encouraging aspects
of this phenomenology is that (in the one reaction
studied, n.S charge exchange) the coupling constants,
assuming constant residues in a simple Regge-pole
amplitude, agree rather well with the constants inferred
from low-energy measurements. Thus we can hope to
discuss high-energy experiments without arbitrary scale
factors. Successful fittig. g of data will determine the
form of the Regge-pole amplitude including the tra-
jectory. It will also conirm (1) that there is no zero at
a nonsense wrong-signature point, (2) that the coherent

44 P. Stickel, Z. Physik 180, 1N (1964).
4~ D. Bellenger, R. Bordelon, K. Cohen, S. Deutsch, W. Lobar,

D. Luckey, L. S. Osborne, E. Polhier, and R. Schmitters, in
I'roceedings of the Fourteenth International Conference on High-
Energy I'hysics, Vienna, 196'S (CERN, Geneva, 1968)."P. Henyey and C. Risk (private communication).

inelastic factor is greater than 1, and hopefully, (3) that
a small set of exchanged Rcggeons will suKce to describe
all processes with high accuracy at all except lowest
energies. It is in these matters that the present theory
divers from other cut and conspiracy calculations.

Two important applications which will extend the
theory will be to second dip and third maximum (from
"triple scattering" or, equivalently, the cut arising from
the second region in t of the elastic amplitude) and to
double exchange (i.e., the cut due to exchange of two
Reggeons rather than Reggeon plus elastic). Further
empirical information on the elastic amplitude, on
inelastic reactions at high —t, and on double-exchangc
processes are needed.

APPENDIX

Various forms for the absorption correction are given
here. In particular, Eqs. (A11) and (A12) are useful for

- computations.
The entire amplitude for the exchange of a Regge

pole and its associated cut is

M =Mp, i,+MM.

bM is the absorption correction, given by

(BM) (= —(iq/S~W)

X[(Mp, i,)((M,i)(+(M,|)i(M„i,)(j, (A2a)

or, for the case with spin,

(8Mg „,g„);
= —(iq/Ss W) [(Mp.»g „.,g"„-),(M,» .„- ),„);

+(M.» '.~-' )'(M"i.~-',&.)~j (A2b)

In every equation (b) there is a sum over l%.",p". Insert-
ing these expressions into a partial-wave expansion, and
using partial-wave projections, we obtain

hM(s) = «gCs, Q (2l+1)Pi(s)Pi(si)P((s, )
32vr H/' l

X[M. (s )M...(» )+M...(s )M.&(s )j, (A3a)

M'~, , ),„(s)= «|«2 Z (2j+1)A —,,x-,'(s)
32xR'

XA „,v, "'(si)A.",",), , (s2)

X[Me»'p', x"y''(sl)Mpa1e), "y",) y(s2)

+M .yg, .„,),"„"(sg)M,»"„",),„(s2)j. (A3b)

The sum over l or j can be explicitly evaluated:

P(2i+1)&i(s|)&~(s2)&i(s)= (2/m)&(h)/6'" (A4a)

Z(2 j+1)da, i a'(s)da, a, '(si)da, a, '(s~)

= (2/s)[8(h)/cV"j cos(kgb g+ksq s+h, q g), (A4b)
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