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An e8ective Lagrangian for pseudoscalar, vector, and axial-vector mesons is used to calculate the E*+
~X~~ decay rate. It is shown that the octet broken-SU(3) PVV interaction generally increases the
calculated X*+~Em~ rate over that of the symmetric limit. Experimental determination of the exact rate
would allow fixing of parameters in this broken SU(3) scheme, which as yet have been determined by
measured decay rates only to be within a range.
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Diagonalization of (2) with respect to the physical ~
and y yields the relation of the V„ to the physical
fields:
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' 'T has been shown by Brown, Munczek, and Singer'
~ ~ that broken SU(3) in the PVV interaction is in
quantitative agreement with available experimental
data. They have also shown that this scheme gives a
significant contribution to the E mass difference. '
Fitting the broken SU(3) model to known decay rates
allows establishment of the various parameters used;
however, the determination is not complete, because
some of the parameters may take more than one value,
and some may vary over a range of values. It is shown
in this paper that the E*+~Em~ rate will effectively
fix these parameters.

The Lagrangian density employed is

~F+~AP+OCPVV ~ (1)

Here Zy is the generalized Yang-Mills Lagrangian for
the vector mesons, V„', a=1, , 8, with SU(3)-
breaking introduced by current mixing. 3 '
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The IC ~ factor gives the mass splitting of the octet,
where

with

E;=MS/M, 2 (i=P, E*,&0, q),
M=847 Mev, 0=27.5'. (4b)
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This type of breaking is only along the Xs axis; i.e.,
Zpv8 transforms under SU(3) as a scalar Plus the
eighth component of a vector.

The term ZAP is an SU(3) generalization of the
Lagrangian used by Brown and Munczek' in calcu-
lating the pion mass di8erence. This Lagrangian pro-
vides mixing of the x and A1 fields through the param-
eter 0,.
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The PVV interaction term contains the SU(3)-
breaking parameters, and is given by

Zpvv=828 de„(ISD bcV„paVe„bPc+XDabV daPSV„„O), (5)

where V„' is the SU(3) singlet vector meson and V„',
I', a=1, 2, ~ ~ ., 8, are the vector and pseudoscalar
octets, respectively.
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where C„and I' are pseudovector and pseudoscalar
fields, respectively, a=1, 2, , 8, with C„„=D„C„
—D„C„e, and D„( )a=8 ( )a gf 'V '( )' Sol—utions
to the equations of motion for (8b)—(8d) gives the
relation
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Fxo. 1. Diagrams for E*+—+ E+~+m,
decay.

The terms AD'~V„8~V p' and kc, do not contribute
in the calculation of the E*+—+ E~x decay rate.

The possible modes for the E*+—+ Exm decay are
as follows:

E*+~ E+m+m

E*+~ Eo~+~o,

E*+~E+&o~o.

The diagrams for these processes are shown in Figs.
1—3, respectively. The E*+—+ E+m+x decay has two
possible intermediate vector mesons, the p and the
E* .The amplitudes for these two processes are labeled
Ap and AK .

pa=n'"(pb)a. Clearly, 8„' ' ' iS A~„' ' '. n iS giVen by

n= 1+Mb'/Mg'. (10)

p
Ap ——e p„„E*+„e„ Iip,

k p' —mp2
(15a)

The specific problem to which this paper is addressed
is the calculation of the E~+—+ Exx decay rate. This
is accomplished by assuming an intermediate vector
meson; i.e., the E~+ decays into a vector meson and a
pseudoscalar meson, and the vector meson in turn
decays into two pseudoscalar mesons. Thus the perti-
nent interaction is ZQb b+2++b-. From Eqs. (Sc) and
(10), one term ot the PPV interaction is obtained,

E ~x p
A K+ &ap pvE pv ~K' )

OKER

—1ÃK4
(15b)

TAsI.E I. SU(3)-breaking parameters and calculated
E*+—+ Emw decay rates.

where E~+„ is the four-momentum of the decaying
E~+, and e.„ is its polarization. m+„, x „, and E+„are

(1+~2/~ 2)gfabcg PaV' bPc

and the other from (Sd),

e1 =0.77

FQ
QX= cl cc2

r (E*+~ I:+~+~-) r (IC*+~E~~) % of
(10 ' MeV) (10 ' MeV) total

(~ 2/~ 2)tfabcg PaV bPc

Thus the P'PU vertex may be written

~fabcg PaV bPc

(12)

(13)

2'"'=be p{hD"V p V„P'+AD'V„„'P'V p')
~fabcg PaV bPc (14)

which is the usual antisymmetric SU(3) coupling of
two pseudoscalar octets to the vector octet. It is
relevant to note here that the total Lagrangian con-
tains no direct interactions of the VPPP type.

Thus the interaction term is written

2.1'
—1.45~

3.3—2.65

—5.44
7.13—9.69

11.38

1.749
11.243
8.559

25.358

4.872 0.097
32.195 0.644
24.041 0.481
72.401 1.448

a Indicates value of Y for which the tadpole contribution was used in
calculation of the X mass difference.

P,= (2gh/E p+Klr") (1—-', &),

= L2d/(& ')'"j(1+&)

(16a)

(16b)

with += Ey—zE2.
For the E'm+~' mode, there are three possible inter-

mediate vector mesons, the p+, E*+, and the E*'.The
corresponding amplitudes, invariants, and symmetry-
breaking factors are

the four-momenta of the decay products, and k,' and
Iba' are the invariants (s +n.+)' and (X++w )', '—
respectively. Ii, and IiK* are the symmetry-breaking
parts of the amplitudes and are given as

K

I'IG. 2. Diagrams for E*+—+ E 7r m+

decay. m+ x'p
A p+= e„pI)vE*+I)Cv +@+,

k p@—esp'
(~++~o)2 (1)a)

E' ~+p
A K*+=e.P„vE*+„ev— ~K* )

k K8+ —t/SKIP+

krona&

= (E"+7r+)', (17b)
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x' E"p
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Fp+ = 2v2 (gh/K p+Krr*) (1+x),
F . =v~pgh/(K .)»oj(I—'x)

F o=%2jgh/(K )"'](1+x).

(18a)
FIG. 3. DiagramS fOr E*+—+ E+m'7r"

(18b) d ecay.

(18c)
K'

The E+mom mode has only one allowed intermediate
state; however, there are two diagrams (Fig. 3) due
to the indistinguishability of the two product x 's. The
corresponding amplitudes, A~ and A2, are

~'~.E+p
A g =e~p„„K*+„e„F k ' = (m'g+K+)' (19a)

kg2 —mK*2

2

I'(K*+~Koor+oro) (1 32) (3 029Y'+11 479WY
+11.172W') X10 ' MeV, (24)

I'(K*+—+ K+M~') = (1.32) (9.618Y )X10 ' MeV, (25)

x'2~E+P
A a ep„.K*+„e—„— F, koo = (m'o+E+)', (19b)

2 mK~2

with
(ma~/2K'~)g'h'(1+ e,)'= 1.32 MeV—' (26)

with the single symmetry-breaking factor

F=r h/(K-) j(1--: ) (20)

TABLE Il. SU(3)-breaking parameters and calculated
E*+—+ Em-7r deCay rateS.

eI =1.3
F

= el —ge2

r (E*+~E+~+~-) r (E*+~E~~) % of
(10 ' MeV) (10 ' MeV) total

1.93s-1.55~
3.14—2.76

—6.89
9.13—12.45

14.7

2.066
10.387
9.274

23.424

5.777 0.116
29.678 0.594
26.11 0.522
66.788 1.336

The decay rate is proportional to the square of the
amplitude, and thus for the E*+~ E+m+x mode

I'(K*+ E+ + -)=Cf(A ('+jA
+2 Re(A pea')].

The symmetry-breaking terms appear in combinations:
(1+X)', (1—oX)', and (1+X)(1—~oX). It is convenient
at this point to define two parameters, I' and 5'.

Y= (1—ox)/(I+e~), (21)

W= (1+x)/(I+ei). (22)

The decay rates are now given in terms of these two
parameters, using the values of g'/4n. and (h'm„o/4n. )
X (I+e&)' obtained by Brown, Muczek, and Singer. '

g2/4 —3 35 (hog~ 2/4~) (1+e )2 0 10

This gives the rates for the three modes as

I'(K*+—+ K+s+or )= (1.32) (1.378Y'+5.642WY

+5 859W')X10 ' MeV, (23)

&Indicates value of F for which the tadpole contribution was used in
calculation of the X mass difference.

In Ref. 1 the parameter ei was determined to have
one of the two values ei= 0.77 or 1.3.These values were
used by Brown, Munczek, and Singer2 in fitting the E
mass diGerence. With these values of ei the fit to the E
mass diGerence allows eight values of the parameter Y,
four of which correspond to the use of a tadpole con-
tribution in the mass-diGerence calculation. Tables I
and II list these values of F, the corresponding value
of X, together with the calculated decay rate for the
E*+—+E+x+m. mode. The rate for the total E*+~
E~x decay is given both in MeU and percent of the
total K* decay rate (49.5 MeV).

It is noted that in the symmetric limit, i.e., ej = &2= 0,
I =8'=1, the total E*+~Emx decay rate is calcu-
lated to be 5.10X10 ' MeV or 0.102%. Clearly, there
is an alteration in the rate due to the SU(3) breaking.
The current experimental upper limit on the Emx mode
of K* decay is 0.2%. This indicates that only two
values of I" are permissible: I =2.1 for e~ ——0.77, and
I'=1.93 for ay=1.3. It is noted that both these values
demand a tadpole contribution to the E mass diGerence
when calculated using the broken-SU(3) scheme of
Brown, Munczek, and Singer. ' Although the symmetry
breaking generally produces large eGects on meson

K"+

FIG. 4. Diagrams for radiative
decay of- E*+.

K
5+
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decay rates, the differences predicted in this case for
the experimentally allowed rates are rather small.

Fixing of e~ allows determination of ~3 since the
relations have been established2:

f1==- 0.7 l ) fo+ 63=2.I ~

@1=I.~ y &S+~3= 2.~ ~

Experimental determination of the exact A. mx decay
rate to within 10 ' MeV would Gx e1, e2, and e3. Con-
sideration of the radiative decays of the co and p is
required for 6xing e4.

It is perhaps useful to note here that the radiative
decay of the E'*+ (E*+~E+7) contains a different

symmetry-breaking factor from that of the E~+~
E+s+m decay: (1—-,'-e&+~e&) as opposed to (1——,'e&

+4e2) for the intermediate p'. The reason for this is
that the electromagnetic field couples to the isospin
singlet (V„'), as well as the neutral component of the
isospin triplet (p„") of the vector meson octet.

zRM = (em'/g) (V„'+';%V„')A „
It is the presence of the co-y term which accounts for
the discrepancy (Fig. 4).

I wish to thank Professor Laurie M. Brown for his
assistance and guidance throughout the progress of
this work.
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We show analytically that the slope of the dual or output trajectories is equal to the input slope for the
partial-wave pxojections of the Regge amplitude. This result is independent of the special kinematics, and
seems not to xequire a crossing-symmetric amplitude. We 6nd an infinite set of secondary trajectories, and
show that their spacing depends on the slope and approaches hs= 2/a' GeV' for large s. The detailed high-
energy structure of some Argand diagrams is shown.

I. INTRODUCTION

'T has been shown by Schmid' that the partial-wave
~ - projection of a crossed-channel Regge-pole contribu-
tion can result in partial-wave amplitudes which
produce circlelike traces in the Argand diagram which
rotate counterclockwise with increasing energy. In
particular, he analyzed the p Regge-exchange amplitude
for mE scattering. This produces loops in the Argand
diagrams, the tops of which correspond closely to the
prominent Ã~ resonances.

This mechanism for producing Argand loops has
been examined by various authors2 in a variety of
situations with diBerent degree of success. One reason
is that Schmid has shown only a small sector of the
Argand loops which suggested a circlelike structure.
Another question is whether the maxima or, for that

*Research supported in part by the National Science Founda-
tion.

t Research sponsored by the Air Force Oflice of Scienti6c
Research, OfBce of Aerospace Research, U. S. Air Force, under
AFOSR Grant No. AFOSR-69-1668.
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~P. D. B. Collins, R. C. Johnson, and E. J. Squires, Phys.

Letters 27B, 23 (1968); V. A. Alessandrini and E. J. Squires,
ibid. 27B, 300 (1968); V. A. Alessandrini, D. Amati, and E. J.
Squires, ibid. 27B, 463 (1968); R. E. Kreps and R. K. Logan,
Phys. Rev. 177, 2328 (1969); M. Ademollo et al., Phys. Rev.
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matter, any point of the loops can be identified as a
resonance. First, the resulting partial-wave amplitude
does not have resonance poles. Then it can be shown
easily that two resonances in the same channel which
have a mass diGerence which is less than their widths
create a single loop only and none of the two resonances
will be at the top. In addition, many functions can be
given which show a phase increasing through ~m but
which have nothing to do with a resonance. We are
well aware that this leads to a complex set of questions
on which we do not enter here but hope to return to
later. On the other hand, in the region of interest, the
lower part of the E* and 6 trajectories, one 6nds
experimentally that the resonances are well separated
so that it seems a not unreasonable working hypothesis
to identify each top of an Argand loop as a theoretical
resonance position. While the Regge input is a high-
energy representation in the t channel only, we have
taken the partial-wave projections for wider range of
energies. One of the interesting findings is that for each
partial wave one obtains an entire family of spiraling
loops. With increasing energy these loops get smaller
and smaller but, since they remain well within the
unitarity circle, the question arises whether the maxima
of these secondary loops should again be interpreted as
resonances. While these additional loops represent a


