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Infinite-Component Field Theories; Fubini Sum Rules, Completeness,
and Current Algebra. I. Discrete Spectra~~

CHRISTIAN FRONSDAL

UrIinersity of Califorrlia, Los Arlgeles, California POOZ4

(Received 23 December 19N)

Jt is shown that the Born-approximation scattering amplitudes in a class of infinite-component field
theories satisfy Fubini sum rules. The contributions to the sum rules are analyzed, and completeness rela-
tions are obtained. These are found to di6er radically from the naive expectations. Singularities associated
with the vertices give rise to cuts in the scattering amplitudes; the discontinuities contribute to the sum rule
and hence to the completeness relations. Such contributions are incompatible with current algebra and with
locality of the second-quantized form of the theory. Spacelike solutions, on the other hand, seem to be less
relevant than has been feared.

I. INTRODUCTION

z = d'x p'(x}r((—)p(x)

be a Lagrangian for a theory of a set of fields (P„where
. The canonical conserved current is of the

forID

(1.2)

The operator I„(eBj8x), or its Fourier transform I„(p,q),
Inay not be determined uniquely by the Lagrangian in

all cases, but
1.(PP) =~J-(P)/~P' (1.3)

If (P; and (P; are two solutio~s of the field equation, then
orthonormalization condition (for the discrete

energy spectrum) is

0 (11)lo(~' p; ~.,p)4 (p) =~'., (1.4)

where jv,. Rnd g~ are the energy eigenvalues of the t%'o

states.
Naively, one expects a completen'ess relRtlon of thc

fol m
A(q)A' q-Io qP =1

n (q)

n'(q) =0 "(q)Io(q q)4'(q), (1.6)

to bc valj.d. This would be equivalent to the current

algebra'

where J'o(x) is the time component of the canonical
collselve(l current (1.2), Rnd J(x) is tile cori'espo11clllig
scRIR1' dellslty 'IPt(x)(P(x). Ill practice) there Rle'
complications.

It has been shown' that, if the number of Gelds is
finite, and if 1.(P) is a second-order polynomial in P„,
then the above simplihed analysis can be Inade precise—
provided only that the I agrangian field equations have
a sufhcient number of independent solutions. (The
required number is twice the number of fields. ) First-
order Lagrangians, and a class of fourth-order theories,
were also treated. Here we attempt to extend the results
to the case of infinitely many 6elds. Only field equations
with discrete spectra are considered here. Continua will
be treated in a subsequent paper.

In prRctlcc lt ls easy to cvRluRtc thc terlns ln thc sum
(1.5) but hopeless to carry out the summation by direct
methods. A very convenient technique, which was
applied successfully to 6nite-component theories, ' is to
derive (1.5) from a Fubini sum rule. We study the
functions

»m qoTo(P, P', q) = IP; '(P')(PI;(P) . (2 2)

~.(P,P', q) =a'-'(P') I.(q,PV, ;(P), -

I-(q)

wllele IP' andi(I' Rl'e two paltlclllal' solutions of the field
equRtlons. %e show thRt To ls Rn anRly t1c function
of goq Rnd thRt

g(x)g, (x') i.,=., =J(x)S(»(X—X'), Tjurd Coral Gables CorIfere@ce oe Symmetry I'rAsc~Ples at High
ErIergy, edited by B. Kursunoglu, A. Perlmutter, and I. Sakmar
(%.H. Freeman and Co., San Francisco, 1966).An application to
hadrons was attempted by G. Cocho, C. Fronsdal, H. ar-Rashid,
and R. VVhite, Phys. Rev. Letters j.7, 275 (1966). It was pointed
out by us that problems related to gauge invariance could be
solved by relating the currents to in6nite-component grave equa-
tions LC. Froiisdal, Phys. Rev. 156, 1653 (1967)j, and that such
currents naturally lead to models of Gell-Mann's current algebra
LC. Pronodal, ebed. 156, 1665 ii96'jig.

~ G. Cocho, C. Fronsdal, and R. %hite, Phys. Rev. 180, 1547
(1969).

1564

~ Supported in part by the National Science Foundation.
e suggestion that quantities like J(g) and J„(x),constructed

unitary representations of noncoxQpact groups»

might berelated to hadron form factors eras erst made in con-

nection with relativistic SL~(6) theones; see Y. Dothan, M. Gell-

Mann, and Y. Ne'eman, Phys. Letters I7, 148 (1965);C. Fronsdal,

in ProoeeChlge of Ihe Irllerlo8oeoi Similar ee Hegh Zwergy-
Ekysjes and Elementary I'articles, Trieste, 4965 (International
Atomic Energy Agency, Vie»a, 1965).The &st evaluation of a
form factor was carried out by C. Fronsdal, in ProceeANgs of the
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6'onscqucntly, I'0 satishes a Fubini. sum rule, '

dqa AbsT0(p, p', q) = Ii (p', p) . (2 3)

This is equivalent to (1.5) if all the contributions to the
integral are related to solutions of the field equations.

We next analyze the singularities of To(q~) and deter-
mine the poles and cuts that contribute to (2.3). The
results are rather startling. The following summary is
intended to show that our conclusions are not strongly
model-dependent.

Suppose that there exists a sct of real q„such that the
matrix I.(q) has a purely discrete spectrum. (This is
usually related to the existence of discrete points in the
mass spectrum, whether or not a continuum is present
in addition. ) Let P&'&(q), with r=0,12 . be the
eigenvectors of L(q), and L,(q) the eigenvalues. Then4

To(p,p', q) =2 V"(p', q) Vo" (q,p), (2.4)
L.(q)

h

dr csc~r V'&'&(p', q) Vo'«&(q, p) . (2.7)
L.(q)

The contour must pass to the right of all singularities
of the integrand, with the exception of the poles of-

cscm7. at v=0 1 2 . . The primes on. the form factors
indicate the usual change of sign of the argument. From
(2.7) it may be concluded that:

(a) To has poles for all values of qo such that a zero
of L,(q) coincides with one of the points r=0, 1,2,
because the contour gets pinched between a pole of
1/L, (q) and a pole of csex r. These poles of To are related.
to the "timelike'" solutions of the Geld equations.

' V. de Alfero, S. I'ubini, C. Rosetti, and G. Furlan, Phys. Rev.
Letters 21, 576 (1966).

'Equation (2.1) does not de6ne T„completely, since the
boundary conditions that must be imposed to select the appro-
priate Green's function have not been specihed. Equation (2.4)
contains the proper boundary conditions; they are expressed by
the interpretation of 1/L, (q) as an analytic function of q'.

~We call these solutions "timelike" because the physical inter-
pretation requires that they have q'&0. This is not automatically
true far an ad hue Lagrangian, of course. Similarly, the "spacelike"
solutions often have q'(0, but this is not automatic. In the
models considered in this paper, "timelike" solutions will be true
solutions only if q~&0, and "spacelike" solutions will be true
solutions only if q'&0.

V "(q p) =4 "'(q)1 (q p)A'(p) (2.6)

are the scalar and vector form factors between the
external states and the intermediary states. In any
theory of physical interest, the form factors will have a
singularity in q, for p„and q fixed. Suppose next that
there exists a range of values of q„.for which the sum
(2.4) does not converge. LThis is usually related to the
fact that the spectrum of the matrix L(q) depends
on q.j Then a Sommerfeid-Watson transformation may
be carried out,

(b) To has no additional poles related to any other
zeros of L.(q). This means that To has no poles that are
related to "spacelike'" solutions of the field equations. '

(c) The poles of 1/L, (q) give rise to "Regge terms"
that can be separated from the integral. The residues,
and hence To, have branch points at the values of qo at
which the form factors are singular —even if the form
factors have only poles. These branch points may he
on the .physical sheet. If they do not, then this fact
implies the existence of another branch point on the
physical sheet. The associated branch cuts give contri-
butions to the Fubini sum rule, and hence also to the
completeness relations.

Conclusion (b) indicates that discrete spacelike solu-
tions may, after aH, be no obstacle to constructing
reasonable saturations of Gell-Mann current algebras-.
We may note, in this connection, that "decoupling" of
spacelike solutions (noncontribution to completeness)
does not imply the vanishing of any current matrix
elements. ~

Conclusion (c) indicates that an exact model satura-
tion of current algebra may not be possible within
infinite-component held theories rvith purely discrete
spectra. Equivalently, one may conclude that local held
quantization is impossible, which would not be sur-
prising in view of the results of Grodsky and Strcater. '
Probably this remains true in thcones with partially
continuous mass spectra. Nevertheless, it may be
interesting to investigate how closely the ideal theory
can be approached. Perhaps the 6 function on the right-
hand side of Eq. (1.7) has to be replaced. by a rapidly
decreasing function. This would. not be unreasonable,
since some infinite-component field theories are known
to describe composite systems, ' and the Gnitc size of
such systems may bc expected to manifest itself ln thc
form of a small departure from strict locality.

In order to judge the extent to which the extra, un-
wanted contributions to the completeness relations may
be inevitable, it is helpful to explore the physical
lntcrprctatlon. Thc following dlscusslon D1ap not apply
to all cases, but it is accurate in a number of examples.

The inGnitely many states of the physical system
6 This rather surprising result depends, of course, on our choice

(see Ref. 4) of boundary conditions for the Green's function. The
crucial point is that the contour in (2.7) passes to the right of the
zeros of 1.,(q). If T0' is the function that is obtained by shifting the
contour to the left of the zeros of L,(qj, then the difference T0—T0'
is just the "Regge-pole term"; this is given by (2.7) if the contour
is a small closed curve surrounding the zeros of J,(q) only. Clearly
this is a solution of the homogeneous equation I (q)(T0 —T0') =0.
An interesting discussion of this point has been given by T.
Shirafuji, Progr. Theoret. Phys. (Kyoto) 39, 1047 (1968).

7 An analogy may be instructive. The Kronecker product of'

two unitary representations of a noncompact group can be red'uced,
to a direct integral of unitary irreducible representations; '&he
reduction is unique, and the irreducible representations that occur
form a complete set. This does cot imply that the Kroneck~'
product cannot be coupled invariantly to a nonunitary irreducible
representation.' I. T. Grodsky and R. F. Streater, Phys. Rev. Letters 20, 695
(1968).

9 This has 1ong been stressed by T.Takabayasi; see, for example,
the review in Progr. Theoret. Phys. (Kyoto) 34, 124 (1965};
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%'zo. 1. Physical model of the interaction
of a composite system with an external field
systeIn.

described by the Lagrangian can be thought of as the
cxcitations of a particle with internal structure. Thc
form factors, and their singularities in particular, give
us information about this structure, and in some cases
it is possible to interpret the information in considerable
detail. ~ Suppose that our physical system consists of
two particles interacting with each other and forming
bound. states and. possibly scattering states. An external
Geld quantum may bc absorbed or emitted by one of

two constituents ' this xDay bc illustrated as in
Fig. i. The triangle diagram, in ordinary local-field
theory, has a singularity —the anomalous threshold
singularity. This singularity is found in potential theory
as well, and. it is this singularity that is always present
in thc form factors of in6nite-component Geld theories. "
It is go], associated with any physical state; iDstead, it
is thc landau singularity obtained, by putting aQ three
internal Enes on their respective mass shells, running
around in the direction of the arrows in Fig. 2.

Fubini and Furlan" proposed. that their sum rule be
saturated in the inGnite-molnentum frame, in order to
avoid contributions from the "mass-type" singularity
illustrated in Fig. 3(a). In in6nite-component 6eM
theories, these particular mass-type singularities are
absent" {as in potential theory); instead, we run afoul
of the triangle singularities. These too can often be
avoided by a judicious choice of reference frame; in the
models studied in this paper, the preferred frame is the
center-of-mass one. The triangle singularities do not
become irrelevant in the inGnite-momentum frame,
and nothing ls gaiDcd by spcciallzlDg to that frame in
the context of field-theoretic models. The reason that
Fubini and Furlan" do not have trouble with tnangle
singularities is that they can tuck them away on an
unphysical sheet. "The trouble with inGnite-component
Acid theories with discrete spectra is that the cuts that
are supposed to hide the triangle singularity are absent,
and the triangle singularity is always on the physical
sheet. The missing cuts are illustrated in Fig. 3; one of
them corresponds to physical states that lie outsid. e the
scope of the theory, "the other one is absent in the case
of discrete spectra.

Ke believe that the "missing cuts" are the main
obstructions against constructing model current
algebras or in6nite-component second-quantized local

FIG. 2. Illustrating the Landau triangle
singularity. %hen the binding is weak (see
Rd. 12), it is possible for the three internal
particles to be on the mass shells with the
direction of motion indicated by the arrows.

Ia C I ronsdal Phys. Re&, j.7I& Ising (1968)."S. I'"ubini and G. Furlan, Physics I; 229 (1964).
~ According to local-field theory, the triangle amplitude of

Fig. 2 has no anomalous singularity in q~ if m2(p'2 —mP-ygP)
+mi(k' —2m/) &0.

/ IX
~~6 ~. Diagram (a) illustrates the type of mass-type singularity

that con'tributes to the Fubini sum rule in a finite-momentum
frame, but is absent in field-theoretic models. Diagram (b)
illustrates the normal branch point that will occur in field-
theoretical models with a partly continuous mass spectrum.

Ge&ds. In a subsequent paper, we shall consider models
with mixed (discrete and continuous) spectra. In such
theories the ionization point supplies onc of thc missing
bl anch points.

IIL MODELS

To enumerate the Gelds, we use a set of E four-vector
indices"

0(*)~A, - ~~(~) (3 1)

This tensor is supposed symmetric in all the indices but
is subject to Do other supplementary conditions. It is
convenient to think of the Geld components as a basis
for an irreducible representation $(1V) of the group
SV(3,1), with the generators C„"de6ned by

N

~p 4g".AN Z 4~VpA&" ~, ~ "Ag ~ (3 2)

&~i -~~(p) = 2 A,"~~"(p)

when p„ is timelike. The details and the group-
theoretical signiGcance of this reduction are discussed
in the Appendix and in Ref. 13.

» G. Cocho, C. Fronsdal, I. T. Grodsky, and R. %hite, Phys.
Re@. 162, j.662 (1967).

The case of inGnitely many Gelds is reached. by analytic
continuation ln IV the representation K)(cV) ls unitary
if E is negative real."

Soluble Geld equations are obtained. by taking the
Lagrange operator L(p) to be a polynomial L,(p') in
p'= p p and in p'r, where r is deaned by

p"C."p =p'(& ~) (3.3)

The eigenstates of mass are then the eigenstates of r,
and the mass values are found by solving the algebraic
equation L„(p') =0. It is important that r always occur
in the combination p r; otherwise L(p) is not a differ-
ential operator, and one cannot hope to obtain a local-
Geld. theory.

The spectrum of 7. is"
v=012 1f pp ls tlmehke

=X,X—1,X—2 . if p„ is spacelike. (3.4)

In the case of a non-negative integer X, the upper
sequence terminates with the value S, and the lower
sequence stops at zero; otherwise both sets are infinite.
The reduction of the tensor (3.1) according to eigen-
vectors of r may be written
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L(p) =(P')' (p-C."p.+&p')'. (3.6)

It is not hard to write field equations that have no
spacelike solutions"; for example, one may take

1/L(q)
Of 1

Fxc. 4. Feynman diagram for the
scattering ampHtudes T„and
Every solid line represents the
propagation of the states of the
in6nite system.

However, it turns out that spacelike solutions are much
less important than anticipated, and we shall concen-
trate on simpler models.

For detailed investigation, we limit ourselves to the
following type of Lagrangian:

Here

and

(P P')q'

(P q)(P' q)
(4.6)

L(P) =P"&."P.+~p'+PP'+& (3.7) F(P,P') =!!'""(P')4"'(P)=(P P'/~~')" (4 7)

IV. FUBINI SUM RULE

We shall write down a scattering amplitude that
satis6es a Fubini sum rule when X is a positive integer,
and show that it is possible to extend the validity of
the sum rule, by analytic continuation in Ã, to the
case of in6nite-component fields.

To the Lagrangian (1.1), we add interactions with
external scalar and vector 6elds,

&r = d'xL J(x)A(x)+J„(x)A&(x)]) (4.1)

where J(x) is the scalar density

J(x) =Pt(x)P(x), (4.2)

and J„(x) is the conserved current defined by Eq. (1.2).
The Feynman diagram of Fig. 4 illustrates the scattering
amplitudes

T(p,p', q) =C -'(p') O '(p),
L(q)

T.(P P' q) =4'-'(P') 1.(q,p)A (P) -(4 4)
L(q)

Both external states will be taken to have 7. =0 (the
"ground state") and p'&0, p'2&0.

First we calculate T (see the Appendix):

P(p, p') (—S—1+r)!
(1—z) '. (4 5)

(—X—1)!z~ -0 r!L,(q')
I

'4 The 6rst in6nite-component wave equation without spacelike
solutions was written down by Y. Nambu, Phys. Rev. 160, 1171
(1967).Another example may be found in Ref. 10.

where n, P, and y are real constants. In diagonal form
this is

L (p') = p'7+—b, (3 g)

b(P') =~p'+(P+&)P'+v (3 9)

The conserved canonical current is given by (1.2), withz

Jp=z(c:"+C")(P+q)"+(~P'+~q'+P)(p+q)' (3 1o)

When &=0, this theory has a linearly rising mass
spectrum.

This is valid in the cut plane

[arg(z —1)I(z. (4.9)

The contour must pass to the left of the poles of

(—r —1)!and to the right of all other singularities of
the integrand. . When L,(q') is of the form (3.8), we have

~(p,p')
T= 2P&(—Il!', b/q', 1—b/q—'; 1—z) . (4.10)

b(q2)zK

The following calculations were carried. out for this
case only.

Next we derive a useful formula for T„in terms of T
(see the Appendix):

1 ( a a
T.= (P+q)"i P. +-P

2 ( Bpv gpgj

+(np'+nq'+P)(p+q)„T. (4.11)

This may be written

T„=X„T+X„'F, (4.12)

where E„and E„' are given in the Appendix. As qo
tends to infinity, Xo behaves like b(q )/qP, while (4.5)
shows that T is analytic and tends to zero like 1/b(q').
Furthermore, Eo' tends to qfl ', so that To is dominated.
by the second term in (4.12), and.

lim qoTO
——P(p,p') .

'QO~ o
(4.13)

Although this result has been verified for Lagrangians
of the form (3.7) only, we feel that it has much wider
validity.

Let 1' be a closed contour that encircles all the
singularities of T. Then it follows from the residue

is the scalar form factor of the ground state. The series
(4.5) converges when q'&0; a more general representa-
tion is obtained. by a Sommerfeld-Watson transfor-
mation:

F(p,p')
T =--—

(—X—1)!z~2si

(—E—1+v)!(—7 —1)!
X (z-1)'. (4.8)

L,(q')
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theorem that

~qo7'o(P f
'

q) =F(P f ') .
2' Z p

(4.14)

The integral may be written in terms of the absorptive
part of To and is a Fubini sum rule' for the scattering
amplitude.

Our next job is to determine the poles and the cuts
that contribute to the sum rule.

V. CONTRIBUTIONS TO THE SUM RULE. POLES

From (4.8) it is evident that T has poles at those
values of q' for which L,(q')=0 for non-negative

integer v-,

q'=m ' r =0, 1, 2, ("timelike spectrum"). (5.1)

This is just the "timelike spectrum" Lsee Eq. (3.4)j.Of

course, the equation I,(q') =0 will generally have

several solutions for q' for any given value of ~, but it
is not necessary to complicate the notation by dis-

tinguishing them. The correspondence between the

discrete solutions of the field equations and the poles

of T is less than complete. First, all the points (5.1) are

poles of T, including those that occur at negative values

of q~. Such anomalous points do not correspond to
solutions of the field equations, since the only nor-

malizable solutions for negative q2 are
l compare

Eq. (3.4)j
q2=m ~

T

("spacelike spectrum"). (5.2)

This is a familiar phenomenon; it occurs in the Dirac-
Coulomb problem when the coupling constant, Ze' is

too large. Second, none of the points (5.2) are poles of

T, whatever the sign of m, '. The poles at (5.1) come

from the pinching of the contour in (4.8) between the

zeros of the denominator and the poles of (—r —1)!.
Since the contour passes to the right of the zeros of

L,(q'), it cannot be pinched against the poles of

(—X—1+r)!.
In the case of Lagrangians of the type (3.7), it has

been demonstrated explicitly' that the sum of the

residues of Ta at the points (5.1) actually "saturates"

the sum rule when E is a positive integer, provided

y/0. When y=0, the theory is not canonical, i.e., the

field equations do not have a complete set of inde-

pendent solutions. This manifests itself in the appear-

ance of a pole of order %+1 at q'=0; the contribution

of this multiple pole must be included to saturate the

sum rule. The poles at (5.1) also saturate the sum rule

when E is noninteger and q =0. In that case the residues

of ~o are

l(s —1)'s ~P. (5.3)
1np'qo' —y &)

2 oq, '—p

Herc wg bove left out terms that are odd ln qp, since

these cancel out, in the sum. The factor ~» is removed by
summing over the two signs of qo, the fraction disappears
when we add the contributions of the two poles with
the same ~, and the next three factors sum to unity
since s is independent of qo when q=0. The fact that
the timelike spectrum saturates the sum rule when q =0
is elementary and well known. "However, this result
also depends on 7 being diGerent from zero. Thus it
appears that the distinction between canonical and
noncanonical theories may be useful in the infinite-
component case as well. Obviously we need a new
criterion; we suspect that the distinguishing character-
istic is the existence of solutions with vanishing norms,
and we shall call theories canonical if they have no such
solutions.

When Ã is not a positive integer, and q/0, then To
has singularities in addition to the poles of the timelike
spectrum, and the real mass intermediary states do not
saturate the sum rule. It has frequently been conjec-
tured" that the spacelike spectrum supplies the addi-
tional residues needed for saturation, but we have seen
that that is not always the case. Instead, the missing
contribution is associated with branch cuts of To.

—~ &s(0. (6 1)

Let v=p/po and v' =p'/po', and suppose f' or definiteness
that

q. v&q v'. (6 2)

Then the image of (6.1) in the qo plane is the set

(—lel&qo&» v)U{ev'&qo& lql), (6.3)

consisting of two finite segments of the real axis. The
discontinuity of T is

(-r-1) (1-s)'
df'

( s)-x

(—N —1)!;„(1Vr)! L,(q')—(6.4)

across the right-hand line segment and the negative of
this expression across the left segment. The contour of
integration in (6.4) passes to the left of the poles of

(—r —1), but to the right of all other poles of the
integrand. When 3 is a positive integer, the dis-
continuity vanishes.

In the center-of-mass frame, q =0, the line segments
(6.3) reduce to the point qo =0. It was noted above that,

'5 Although many soluble 6eld equations have this type of
trivial completeness property in a special "frame, " it is not always
associated with the center-of-mass system.

'6The existence of spacelike solutions was noted already by
E. Majorana, Nuovo Cimento 9, 335 (1932).Lack of completeness
of the timelike solutions was 6rst noted by E. Abers, I.T. Grodsky,
and R. E. Norton, Phys. Rev. 159, 1222 (1967). Many author~
remark that "the spacelike solutions are needed for,completeness, "
but nobody appears to have shown that inclusion of the spacelike
solutions makes a complete set.

VI. CONTRIBUTIONS TO THE SUM RULE. CUTS

The representation (4.8) shows that T is a one-valued
function of qo in the complex plane with the exceptions
of the manifold
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~qoq'0(p, p', q) (7 4)
(6.5)n =1, P+X= —mp'. 2' Z pi

Then we get
Here I" is a contour that encloses the two cuts, and the
sum is over the poles that lie outside I".If 1V is a posi-

(6.7) tive integer (finite-component case), then the dis-
continuity (6.4) vanishes and we obtain the sum rule
that expresses the completeness of the states of the
discrete timeline spectrum. If N is negative (infinite-
component case), then the integral gives a finite correc-
tion to the sum rule, except in the center-of-mass
system, q=0, if 7/0.

L,(q') =q'(q' m—p' r)—,

b(q') =q'(q' —mpp),

and a linearly rising mass spectrum

mg mo +r ~

From (4.10) we get

F(p P')

q'(q' —mp') z~ VIII. CURRENT ALGEBRA AND
FIELD QUANTIZATIONXpF1(—Ar, mp' —q'; I+mo' —q'; 1—z) . (6.9)

in the case of noncanonical Lagrangians of the type (3.7) The sum rule (4.14) can be written
with y=0, the poles of the timelike spectrum fail to
saturate the sum rule even in the center-of-mass pt{p)( I

1 I {0)(p)—Oq,
system. We therefore expect to obtain saturation by n. (q)
including the contribution of a pole at the point F0=0.
Let us take

1

Using (4.12), (A11), and (A12), we obtain, if {I=O,

lim qo&0=PP lim qoPT+F
qp~o

Consider the operator product

J(x)Jp(x) =P J(x) [e)(N ) Jp(x) . (8 1)

=F(p,P')D z"—
X2F1( + mo 1+mo 1 z)]. (6.10)

The sum of the residues (5.3) can easily be evaluated
when p =0 and q=0, and is found to equal the negative
of the second term in (6.10). Thus, as expected, the
contribution of the pole at F0=0, added to the contribu-
tion of the poles of the timelike spectrum, saturates the
sum rule (4.14).

VII. COMPLETENESS RELATIONS

I.et us write Ty in the form

00

&0= r. f'"'(P')0 "(q),4"'(q)
t~o L.(q')

X&p(q,p)lP{'&(p). (7.1)

Each term has poles at the values of qp for which L,(q')
vanishes, and the sum of the residues of To at all the
poles is

What is the "complete set of intermediary states" that
is to be used here) The physical interpretation (more
precisely, unitarity) requires that all contributions to
the sum be associated with real intermediary states. If
all the contributions to the Fubini sum rule were due to
singularities of the propagator, then they would be
attributable to real intermediary states. But this is not
the case; the cuts are due to singularities of the vertex
functions. Therefore the sum in (8.1) is not the same as
the sum in the Fubini sum rule (unless 1V is a positive
integer) and we do not obtain a current algebra. If the
sum in (8.1) includes only the discrete states of the
timelike spectrum, then
(P'l~(0)Jo(*)I p) o-o

'q e'(i &)' t(')

4 "(q)4t{'(q)
XZ Io(q P)4(P)

n. (q)

=(P'I J(0) IP)b"'(x)

, 4 "(q)4t{'(q)
Z 4'"'(P') Io(q,p)4"'(P)—(7 2)
v, a n. (q)

1
d3q e (~-~)'

2Ãz p~

dq07'0(p, p', q) . (8.2)

Here p„, p„', and {Iare fixed, while qp is to be evaluated
at the various poles. Hence qp=qp(r, n), where the
index 0, distinguishes the several solutions with the
same v. The quantity

8
n. (q) = ~.(q') =0"'-(q)I0(q,q)f" (q) (7 3)

' qo=qo(~. a)

is the physical probability norm.

If the last term were absent, then we could obtain a
Gell-Mann current algebra in the usual manner. Un-
fortunately the last term does not vanish, not even in
the case of vanishing momentum transfer, nor in the
in6nite momentum frame. An exact saturation of
current algebra is obtained in the two trivial cases only:
when the number of states is Gnite, and when q=0.

Attempts at canonical field quantization leads to the
same difficulty. Quantizing the discrete timelike field
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modes, one obtains a theory that is unitary but nonlocal.
Locality may be achieved by quantizing the field modes
that correspond to the cuts, at the expense of unitarity.
Clearly, the theory is of the type studied by Coleman
and Norton, ' which is characterized by runaway solu-
tions, or ghosts. Let us emphasize, however, the rather
unexpected result that the diKculties are not directly
connected with the existence of spacelike solutions.

APPENDIX

Here we give some details of the calculations outlined
in the text, and begin with the diagonalization of the
operator r defined by Eq. (3.3). In the rest system,
P„=(m,0,0,0), Eq. (3.3) reduces to r =Ctt+Css+Css.
This is an invariant of the compact subgroup SU(3) of
SU(3,1). The set of SU(3) representations that occurs
is precisely the same as in the ordinary three-
dimensional harmonic oscillator, and ~ is the total
number of excitations,

7 =0, 1, 2, , if ps)0.

If p„ is spacelike, e.g. , p„=(0,0,0,ps), then Eq. (3.3)
reduces to r =Co'+Ct'+Cs' This is a. n invariant of the
noncompact subgroup SU(2, 1) of SU(3,1). The spec-
trum is found by noting that Co'+Ct'+Css+Css is an
SU(3,1) invariant and has the value iV, and that the
excitation number C3 is a non-negative integer; hence

and the completeness relation in a fixed-v. subspace is
therefore

ZP~ -~ "(q)P""" '(q)

)cV
2»- ~ ""'

(q)
T

where T(q) is the projection operator for symmetric
transverse tensors with r indices. With the help of (A3)
it is completely straightforward to evaluate the scalar
form factors"—e.g., (4.7) for the case r =r'=0.

To evaluate T we use the completeness relation in
matrix space,

1=2 0 "(q)4"'(q), (A6)

to make a spectral analysis of the propagator,

=2 0 "(q) 4"'(q).
~(q) 1-.(q)

(A7)

~E
L(P' P) (P' q)(P q)—lq'j' (Ag)

We substitute this into (4.3), evaluate the vertex func-
tions, and use (A5) in the form

P A&. . .P A&[K li(A " A
r ())qPt)(r)B& ~ ~ B&jPB ' ' 'PB

r = V, X—1, )V—2, , if p'(0 . (A2)

More details, including the reduction to the harmonic
oscillator in the nonrelativistic limit, may be found
in Ref. 13.

The reduction (3.5) is now recognized as a reduction
of an SU(3,1) representation according to an SU(3)
subgroup In the. rest system, (P»...z„(') has r spatial
excitations (and Ã r temporal excitat—ions), that is,
r indices have the values 1, 2, or 3 and A —r indices
have the value 0. More generally, for any timelike p„,

P~, ...~ "(p)=SR,".~,")~„,. )(~, (A3)

where S is a symmetrizer, X& is the velocity four-vector
of p„, and P( ) is an arbitrary SU(3) tensor, symmetric
in all the indices and transverse with respect to X. The
normalization of (I

(') is not of any intrinsic interest, but
of course we must use a normalization consistent with
(A3) when we derive the completeness relation. The
invariant norm is

0'"'"" (q)4»- ~~(q)

(g -1
yt(r)A1. ~ ~ A, (q)P (r)(q)

» S. Coleman and R. E. Norton, Phys. Rev. 125, 142 (1902).

The expression for T„ in terms of T was obtained as
follows From (3..2) and (A3)

(A9)

Equation (4.11) now follows from substitution of (A9)
and (3.10) into (4.4).

The "kinematical factors" 1(.„and I(.'„' in Eq. (4.12)
are found by direct evaluation of (4.11). Using the
formula

8—Ls'-t F,s(g,b; c; s)j= (c—1)s'—' sFt(a, b; c; s), (A10)
Bs'

one finds

Lp.(p q+q')+-q. (p q+p') j
2(P q)

+[(~p'+~q'+p)(p. +q.) bI"j (A11)—
P'(P q) q.(P.P')—

E.'= (.+—— — (("+( s)) .
2p q (P q)(P' q) —q'(P P')

(A12)


