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By applying the sidewise dispersion relation to the electromagnetic, m-S, and gravitational vertex func-
tions of the nucleon and E (1470) while dominating the intermediate states by one-particle states, we show
that the magnetic form factor of E'(1470) and the magnetic transition form factor between E'(1470) and
the nucleon are proportional to the magnetic form factor of the nucleon with known proportionality con-
stants. We also show that the electromagnetic mass difference of E'(1470) is proportional to the p-n mass
difference with the same proportionality constant.

I. INTRODUCTION

N studying the electromagnetic properties of the
~ ~ nudeon one ordinarily takes the nucleon electro-
magnetic vertex function with the photon off the mass
shell and assumes the dispersion relation in photon
momentum squared. In some cases, however, it is more
useful to take the nucleon o8 the mass shell in the
vertex function and to study the dispersion relation in
the nucleon momentum squared, i.e., the so-called
sidewise dispersion relation. ' The sidewise dispersion
relation has two major merits in that it is proved
rigorously for the spacelike and lightlike photons and
only I= ~ states contribute to the intermediate states.
This technique of the sidewise dispersion relation has
been used to calculate the anomalous magnetic mo-
ments of the electron, muon, and nucleon2 and the
isovector radius of the nucleon. 3 The same technique
has also been applied to the ~-E and axial-vector vertex
functions to obtain the axial-vector coupling constant
expressed by the low-energy x-X amplitude;4 and to the
gravitational vertex function of the nucleon to calculate
the p-I mass difference. '

In the present paper we shall systematically apply
this technique to the electromagnetic, x-X, and gravi-
tational vertex functions of the nucleon and E'(1470).s
Assuming the dominance of Ã(1470) in the inter-
mediate states, we shall show that the magnetic form
factor of A"(1470) and the magnetic transition form
factor between 1P(1470) and the nucleon are pro-
portional to the magnetic form factor of the nudeon,
and that the proportionality constants can be expressed
by experimentally known strong-coupling constants.
The magnetic transition form factor can be used to
estimate the inelastic contribution to the p-e mass

~ On leave of absence from Department of Physics, Kyoto
Un1vel slty~ Kyoto Japan.' A. M. Bincer, Phys. Rev. 118, 855 (1960).

2 S. D. Drell and H. R. Pagels, Phys. Rev. 140, B397 (1965);
R. G. Parsons, i'. 168, 1562 (1968).

3 S. D. Drell and D. J. Silverman, Phys. Rev. Letters 20, 1325
(1968).

4 H. Suura and L. M. Simmons, Phys. Rev. 148, 1579 (1966);
K. Bardakci, i'. 1SS, 1788 (1967);A. Love and R. G. Moorhouse,
Glasgow University Report, 1968 (unpublished).

~ H. R. Pagels, Phys. Rev. 144, 1261 (1966).' L. D. Roper, R. M. Wright, and B.T. Feld, Phys. Rev. 138,
B190 (1965).For an extensive list of references, see A. H. Rosen-
feld et el., Rev. Mod. Phys. 41, 109 (1969).

difference in Cottingham's formula in the energy range
of the 1P{14'70) formation. r It will also be shown that
the electromagnetic mass difference of X'(1470) is
proportional to the p-e mass difference with the same
proportionality constant as above. The numerical
result is M+—M'~ —0.2 MeV. This value is very small
and it is very di6icult to test experimentally. However,
a more detailed phase-shift analysis of the F11 x-E
scattering may serve to give the experimental measure-
ment of this mass difference.

In Sec. II we shall apply the sidewise-dispersion
technique to the electromagnetic vertex functions of the
nucleon and 1V'(1470). Assuming the dominance of the
nucleon and E'(1470) poles, we shall derive relations
among the form factors of the nucleon and AT'{1470) and
the transiti'on form factor between the nucleon and
E (1470). This technique will be applied to the gravi-
tational vertex functions of the nucleon and E'(1470)
in Sec. III. Again assuming the one-particle dominance,
we shall derive a relation between the electromagnetic
mass differences of the nucleon and Ar'(1470). A sum-

mary and conclusion will be given in Sec. IV.

II. EI,ECTROMAGNETIC VERTEX FUNCTIONS

%e shall erst deal with the electromagnetic vertex
function of the nucleon {E

~ j„(0)~
E).By the use of the

reduction formula, one of the nucleon states can be
taken oQ its mass shell. Thus we define the following
vertex function. '

I' (p p')N(p')=i de e'r ~(—iy 8+m)

((2~)sp t r/s

X&OI 7'8 (z)i.(O)jIX&l (1)

where p„and p„' are the momenta of the left-hand and

right-hand nucleon states, respectively, P(x) is the
renormalized. nucleon 6eld, and N(p') is the free Dirac
wave function normalized as NN = 1.Taking into account
the Lorentz covariance of Eq. (1) and the Dirac equa-

tion for N(p'), we can write the most general form of

' T. Muta, Phys. Rev. 171, 1661 (1968).
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I'.(P P')u(P'):
y P+222

I' (P,P')u(P') = D' (P'»')7 +&' (P' k')i
2m —y P+222

+Ps(P', k')ik„ju(P')+ )F4(ps, k2)y„
2m

+F2(ps, ks)io„„k"+Fs(ps,ks)ik„]u(p'), (2)

where Fi, F2, , Fs are the invariant functions of P'
and k' with k„=p„—p„'. On the mass shell of the left-
hand nucleon (P2=2222), Fi and F2 become the ordinary
electric and magnetic form factors and F3 vanishes due
to the time-reversal property of the vertex function. '
The Ward-Takahashi indentity' further restricts the
general form of I'„(p,p')u(p') and we see that Fi, Fs,
F4, and F6 are related to each other:

P, =e (F, F,—). —
2m

Hence only four of the I' s are independent in Eq. (2).
Bincer' has already proved that for fixed k' (~&0),

F;(p', k') satisfies a dispersion relation in p' with pos-
sible subtractions and so we are free to use the dis-
persion technique. The imaginary part of F;(P',k') in
P' with k' fixed (&~0) is given by the relation

Absl'„(P, p')u(p') =2r(22r)' Q 64(p,.—p)

m
(0~ yt(0) t'ai.') = (m M)gsyR — u(P),

(22r)2Ps

mu 1~2

(&
I i.(o) I &&=, , u(p)LP2R'v(k2)~

(2 )' PoPo'

(6)

+&'2R" (k')& ty/„k "+Fd'"'v (k')ik„j Xu(P') . (7)

Here ~E) is the Roper-resonance state with the mo-
mentum p„, and the transition form factor FiRR(k2) is
related to F2R'~'(k2) by current conservation such that

P RtV(k2) P R v(k2)t
m —M

resonances in the S1~ and E~~ m-lV states, which we have
listed in Table I.' Among them the so-called Roper
resonance 1P(1470) has the lowest mass and the largest
communication. with the elastic channel. Three other
resonances are highly inelastic. Hence, it is quite reason-
able to dominate the intermediate state by the Roper
resonance. In this approximation we obtain"

ImF (p' k') =2rb(P' M'—) (222' M—')gR F Rv(k')
k'& 0 (5)

where m and 3f are the masses of the nucleon and the
Roper resonance, respectively, and gRR and F;Rh(k')
are defined as

Provided that one of the linear combinations of F,'s,

~, ~d~~htt( ~4~ ay, y( ty)h, v ai aehatte'=, theowecanwtitedewn
an unsubtracted dispersion relation in p' with k' fixed
(&o):

where 2)(x) = ( iy 8+—m)tP(x) and P„ is the four-
rnomentum of the intermediate state ~22). The inter-
mediate states are of isospin —,'and nucleon number 1
and so the intermediate state with the lowest possible
total mass is the S~j or E~~ m-E state. The photon is not
included in the intermediate states, since it gives a
higher-order e6ect in the electromagnetic interaction.
In calculating the imaginary part of F;(P',k') by Eq. (4)
we approximate the intermediate states by the S~~ and
P» ~-E states and further dominate these m-X states by
resonances. There are four experimentally observed

TABLE I. Masses and widths of the I=J= & nucleon resonances
which may contribute to the intermediate states in Eq. (4).

Mass

E'(1470)
E(1530)
cV' (1710)
E'(1750)

Wave

PI I

4-) IX

SXX

PXX

Total width I'
(MeV)

210
120
300
330

0.65
0.35
0.40
0.30

I'. J. Ernst, R. G. Sachs, and K. C. Wali, Phys. Rev. 119,
1105 (1960).' J. C. Ward, Phys. Rev. 78, 182 (1950); Y. Takahashi, Nuovo
Cimento 6, 371 (1957). In our vertex function this identity reads
~ ~, (p,p') (P')= v ~ (P').

m' —3P
P(P2 k2) —

g PRtv(k2)
M2 p'—

where P"'v(k') is a linear combination of F,RR's with
the same coefficients as those of F(P',k'). As we have
mentioned, F(P',k') reduces to the ordinary electro-
magnetic form factor of the nucleon on the mass shell
p'=222' i.e., F(222 k')=F' (k') Therefore, we easily
obtain

F~(k') = —gsyRFR' (k') k'&0 (10)

Thus we obtain a simple relation between the nucleon
form factor and the R-E transition form factor under
the assumption of the unsubtracted sidewise dispersion
relation. One may wonder if this relation becomes
complicated when we take into account the contribu-
tion of other resonances. It is easily seen, however, that
FR'v(k') and FR(IP) are still proportional to each other

C. I ovelace, in Proceedings of t$ze Ii'eidelberg International
Conference on L&'lernentary Particles, edited by H. Filthuth (North-
Holland Publishing Co., Amsterdam, 1968), p. 79."If the Roper resonance were stable, the matrix element of
the nucleon current iOt2(0) ~It.') would vanish, i.e., gdyR= 0, as can
be easily seen by the renormalization condition in the presence
of the particle mixing. See, e.g. , T. Muta, Progr. Theoret. Phys.
(Kyoto) 35, 1099 (1966).
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even if these resonances are introduced in the inter-
mediate states. It ls the pIopoI tlonRllty constRnt which
is slightly changed by the introduction of the other
resonances.

As the linear combination F(p', k') we may choose
F;(p',k') itself or the electric and magnetic combina-
tions of F s:

malized coupling constants, respectively":

g(V2(2r'/42r = 14.6, gBB„/42r~2. 5. (18)

Thus we 6nally obtain the following relations, each of
which comes from the different assumption on the
asymptotic behavior of the form factor in the limit
p2-2 20:

GB(p', k') =F1(p',k')+(k2/2222)P2(p', k'), (1l)

G1((p2,k2}=F1(p',k')+2222F 2 (p', k') . (12)

g RN-rr
Jq' B 'V(k2) —. P iV(k2)

gum~
(19)

Let us first try F1(P',k') as F(P',k'); then we have the
relation (10) between F(v(k2) and P(Bv(k2). Now, be-
cause of the current conservation I see Eq. (8)j,
F(BB(k2) should vanish at k'=0 while PP(0)=e for
the proton. Hence, this relation for the proton is in-
consistent. This means that we need at least one sub-
traction in the sidewise dispersion relation for F1(p',k')
of the proton. Therefore, we cannot obtain any mean-
ingful relation between F(2'(k2) and F(B+"(k'), where the
superscript p and 8+mean the proton and the positively
charged Roper resonance, respectively. There is no in-

consistency in the case of the neutron and so one may
impose the relation (10) on F1"(k') and F( '"(k'). On
the other hand, we have no restriction on the magnetic
form factor P2(p' k') and/or GM(p' k') Hence the rela-
t1on (9) for F2(P', k') and/or GB((P2,k2) seems to hold.
In the case of G22 (p2, k2) we have a bit more complicated
relation,

gg g -M —es
G2 v(k') =- G Bx(k.2)

1—k2/(222+M)2 M+2B

2'
G BK(k2) (13)

M+222 (M'+222)'

G Bgv(k2) P B(V (k2)+. P Bx(k2)
%+re

gax~
G Bx(k2) — G w (k2)

gwu~

We already know the functional form of F2B(k2) and
G2r (k') from the analysis of the e-X scattering experi-
ment. In order to test Eqs. (19)and (20) experimentally,
we need to know the functional form of P2BB(k2) and
G2rBB(k2). This can be done by analyzing the experi-
ment of the electroproduction of the Roper resonance.
There has been, however, no experimental evidence on
the electroproduction of the Roper resonance. " At
k'=0, Eqs. (19)and (20) reduce to therelationsbetween
the nucleon magnetic moment and the magnetic transi-
tion moment. The magnetic transition moment between
the proton and 8+ can be measured by analyzing the
photopion production processes in the energy range of
the Roper resonance. The analysis of the experimental
data by Chau, DoInbey, and Moorhousei~ seems to
prefer Eq. (20) to Eq. (19)."Equation (20) can be used
to calculate the inelastic contribution from the Roper
resonance to the p-22 mass difference in Cottingham's
formula and it gives the magnetic contribution of about—0.09 MeV to the difference m~ —m„.'

The same technique as above can be applied to the
electromagnetic vertex function of the Roper resonance
(2(.'t j„(0)~R). In calculating the absorptive part we
dominate the intermediate states by the one-nucleon
state Rnd obtain

G2r» k' =F(BB k' + M+2m F2BB k' . 15
ImF B(p' k') =2(b(p2 —2222)(M2 —2222)gB2VF BB(k') (21}

If we take 1nto R(:co(ljlt tllat (M )/22(2M+ )(2(221 an(1
GBBB(0)=0, we can safely neglect the electric term.
In our crude approximation we can also put 2222/

((M+222) 1 and we have

GB("(k') gBBG2rB (k')——

In order to express the constant g~g in terms of the
experimentally known constants, we have to apply the
sidewise-dispersion technique to the 7r-E vertex func-
tion and dominate the intermediate states by the Roper
resonance, " In this manner we obtain the following
relation:

where gg~ and g~~ are the 7t-& Rnd ~-&-&" renor-

"For details of the calculation, see T. Muta, Nuovo Cimento
51A, I154 {1967);D. H. I.yth, Phys. Rev. 165, 1786 (1968).

where F B(p2,k2) is the form factor of the Roper reso-
nance similar to that of the nucleon„and gg~ and
F( (k ) Rle defrned 111 R s111111R1'111Rllllel Rs before. Tlley
are related to gB2( and F,BB(k2) in the following way:

g»= 1/'g» P" (k') =LF'""(k')3*, (22)

where the second relation comes from the Hermiticity
of the electromagnetic current j„(x).Again we observe
that F(B (p', k') needs at least one subtraction in the
sidewise dispersion relation with k fixed ((&0), while
F2"(P',k') and/or G12B(P2,k2) may satisfy an unsub-

"The first paper cited in Ref. 12.
'4 W. K. H. Panofsky, in I'roceedings of the Heidelberg Inter-

national Conference on E/ementcry I'articles, edited by H. Filthuth
(North-Holland Publishing Co., Amsterdam, 1968), p. 371.

'~ Y. C. Chau, N. Dombey, and R. 6. Moorhouse, Phys. Rev.
163, 1632 (1967).

'6 The second paper cited in Ref. 12.
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tracted sidewise dispersion relation. Taking into account
Eq. (22) and using Eqs. (19),we can eliminate J'2NR (k2)
from Eq. (21). We obtain

invariant amplitudes. From the condition (25) we
obtain

PP2=GN(PP22P0) .

ger~I' R(k') = F N(k')
gNNm.

In the same way we have

gZN~ 2

G2rR(k') = G2rN(k').
gNN~

(23)
Thus, we may call GN(p', k') the mass form factor in
analogy with the charge and magnetic form factors in
the electromagnetic vertex function. The imaginary
part of the mass form factor GN(p', k') in the variable
p' is easily calculated by assuming the dominance of
the Roper resonance in the intermediate states, '

(24) ImG" (p' k') =2rb(p' 3P)—(P)2' M') g—NRG""(k') (30)

III. GRAVITATIONAL VERTEX FUNCTION

As is well known, the physical mass of the nucleon,
m, is expressed in terms of the trace of the gravitational
vertex function with the nucleon at rest":

PP2= (2n.)'(1V I
g""8„.(0) I

A )2=(), (25)

where y is the three-momentum of the nucleon, and
8„„(2;) the energy-momentum tensor. In the same
manner the physical mass of the Roper resonance, 3f,
is given by

cv= (22r)2(EIgP'"8„.(0) IE)2 (). (26)

Here we have treated the Roper resonance as if it
were stable. Zn the following, however, we shall fre-
quently take its unstable nature into account, and then
the transition matrix element of g('"8„„(0)between the
nucIIeon and the Roper resonance will not vanish.

First we shall apply the sidewise-dispersion tech-
nique to the gravitational vertex function of the
nucleon. ' By contracting the nucleon from the left-
hand state by the reduction technique, we can define
the vertex function with the graviton and one of the
nucleons o8 the mass shell:

I' (P,P')u(P') =i d'2; e*" *(—2y. 8+222)

(2~)2p P l/2

x&0IrLSN(*)g "8„.(0)jl&)
m

where QN(x) is the renormalized nucleon field. The
general form of this vertex function is

y P+P)2
(P P')l(P') =

2'
—y.P+2)2

+ ""(P',&'))~(P'), (2P)

where k„=p„p„', and GN (P',k') —and GN (p', k') are two

'7 H. Umezawa, Quantum Field Theory (North-Holland Pub-
lishing Co., Amsterdam, 1956), p. 257. The dispersion-theoretical
treatment of the gravitational vertex function has been 6rst
applied by H. Miyazawa, Y. Oi, and M. Suzuki, Progr. Theoret.
Phys. (Kyoto) Suppl. Extra No. 436 (1965), See also H. R. Pagels,
Phys. Rev. 144, 1250 (1966).

where gNg is the same constant as the one in Sec. II
and the transition form factor G"N(k') is de6ned by

&z I g"8„„(o)I x)

The mass form factor GN(P', k') does not vanish in the
limit P2~ ~ unless the bare mass of the nucleon
vanishes. Hence we need a subtraction in the sidewise
dispersion relation. We make a subtraction at p'=P)22
and obtain

PP22 —P'
GN(P' k') =GN(PP22, k2)+ g GRN(k') . (32)

3P p2—
The same procedure can also be applied to the gravi-

tational vertex function of the Roper resonance. We
define the vertex function for the Roper resonance
similar to Eq. (27) from Eq. (26) by using the reduction
technique, and assume the dominance of the one-
nucleon state in the intermediate states to calculate
the imaginary part of the mass form factor of the Roper
resonance GR(P2, k2). Assuming the once-subtracted
sidewise dispersion relation, we obtain

~2 p2
G"(p' k') =G"(cV2 k')+—

g GN" (k') (33)
m2 —p'

where the gravitational transition form factor GN" (k')
is defined by &S I g"'8„„(0)

I
E) and is related to G"N(k')

such that
GNR (k2) —

t GRN (k2)]2 (34)

On account of Eq. (34) we can eliminate G"N(k') and
GNR(k') from Eqs. (32) and (33) to get a relation
between GN(p'k') and GR(p'k') If we let p' go to
inhnity and put k'=0 in this relation, we obtain a
relation between the masses of the nucleon and Roper
resonance:

2

M —GR(~,0) =
I Pl —GN(~, 0)j. (35)

gNNm

' In the case of the gravitational vertex function we cannot
neglect the y-37 intermediate state. But in our approximation of
the Roper dominance the contribution of this state is partially
included in the Roper-resonance state, since the Roper resonance
communicates with the y-E state.
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Since GN(~, 0) and GE(~,0) are related to the bare
mass of the nucleon, it is plausible to assume that
as Pm~ ~

gaze~
GEfE(k') = GNN(k'),

gee~

G'(p', 0)—G"(p', 0) ~ 0,
G"(P' o)—G"(p' o) ~ o

(36)
(gENs

ME+ JIE—O=~ = — (m~ —m ).
&gNN.

This was the essential assumption made by Pagels'
to obtain any sensible result on the electromagnetic
mass difference of the nucleon. from the sidewise dis-
persion relation of GN(P2, 0). The electromagnetic shift
of the ratio of the strong-coupling constants g~~ '
and gg~ ' is expected to be sma11 compared with the
ratio of the mass shift, '~ and so, in our crude approxi-
mation, we can safely neglect the electromagnetic shift
of the strong-coupling constants. With the assumption
(36) we 6nally obtain the following relation:

fgEN~)
~

(m„—m. ),
&gNN. )

where we have used the charge-independent values for
gg~ and gag . Inserting the experimental values,
m~ —m„= —1.3 MeV, and Eq. (18), we can estimate
the right-band side of Kq. (3'7) and find ME+ —ME~~—0.2 MeV. This value is very small to be observed
experimentally. We hope, however, that the further
development of the m-X phase-shift analysis will give
an experimental determination of this mass diGerence.

We have systematically derived the relations between
the electromagnetic quantities of the nucleon and the
Roper resonance by applying the sidewise dispersion
relations to the electromagnetic, m-X, and gravitational
vcrtcx functions RIll by RssuIQlng onc"partlclc domi-
nance in the intermediate states. With the special
assumption on the subtraction in the sidewise disper-
sion rclRtion wc hRvc obtaiDcd tlm followiDg lclRtions .'

On the mass shell of the photon (k'= 0), Kqs. (38) and
(40) reduce to the relations between the magnetic
transition moment and the nucleon magnetic moment.
We can then compare them with the experimental data
on photopion production from the proton. It seems that
the experimental data fit Eq. (40) better. " Once ex-
perimental data on the electroproduction of the pion
from the nucleon are available in the energy range of
Roper-resonance production, we shall be able to test
the k' dependence of Eqs. (38) and (40). The relation
(40) can be employed to calculate the contribution of
the Roper resonance to the p nm-ass difference in
Cottingham's formula. The estimation has been done
in a separate paper, 7 in which was obtained (Nii, —m„)E
= —0.09 MeV as the magnetic contribution of the
Roper I'csoDRDcc.

Finally, we would like to make a remark about the
quark-model prediction on the photoproduction of the
Roper resonance from the nucleon. "It has been shown
tliRt~ 1f thc 5yy nucleon I'csonRncc ls assigned to RD

octet, the photoproduction amplitude of this resonance
should vanish. Even if we assign it to a decuplet, the
process p+p ~Pii is forbidden. Thus the quark model
seems to contradict our result. Our result fits rather well
to the experimental data on the photoproduction of the
Roper resonance, while the fact that so far there is no
clear evidence of the E'(1470) formation in the electro-
pion production on the nuc1eon seems to prefer the
quark-model prediction. The future experiment will
solve the problem.
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