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Precision calculations of the energies of P auto-ionization states of He and H are continued,
and calculations of widths and shifts are initiated. The P-wave Hylleraas-type wave function

of a previous calculation (Bhatia, Temkin, and Perkins) is augmented to include 56 terms,
among them the most important powers of r&, r2, and r~2 omitted in the previous calculation.
The associated wave functions are then used to calculate shifts, widths, and q values with ex-
change, exchange adiabatic, and polarized orbital wave functions representing the nonresonant

continuum. It is found that the latter gives the most satisfactory agreement with experiment.
Corrections for nearby resonances are also included. The variational calculation has been
extended to include 84 terms for the P states of He. With inclusion of the shift, the positions
of the first two resonances are within the experimental values of Madden and Codling; however,
the lowest state is about 0.01 eV removed from the central value of the experiment. The mass-
polarization correction is also discussed, but its value is far too small to reconcile the devi-
ation from the mean.

I. INTRODUCTION

The auto-ionization states of an N-electron atom-
ic system lie in the continuous spectrum of scat-
tering states of an electron from the N-1 electron
system. Thus they do not correspond to station-
ary state solutions of the N-electron Hamiltonian, '
and they may auto-ionize by electron emission
leaving behind bound states of the N-1 electron
system. If the auto-ionization states live long
enough, however, they may alternatively decay by
radiation to truly bound states of the N-electron
system. Because the coupling to the radiation
field is relatively weak, one may use this radiation
as a probe of the auto-ionization states predicted
by the Schrodinger equation. One significant as-
pect of this circumstance, which underlies the
calculations in this paper, is the fact that radi-
ative processes, being susceptible to orders of
magnitude greater experimental precision than or-
dinary electron scattering parameters, provide a
means of experimentally testing what are ultimate-
ly continuum solutions of the Schrodinger equation
to much greater accuracy than has heretofore been
possible.

A prime example of such radiatively accessible
auto-ionization states are the 'P (odd-parity) se-
ries of He observed in vacuum ultraviolet absorp-
tion by Madden and Codling. ' For He, being a
two-electron system, is simple enough to enable
one to carry out quantitative calculations of high
precision; in addition the N lsystem (He+), is-
a one-electron system, so that one can construct
a satisfactory Q operator of the Feshbach theory'
explicitly and thus convert the essential part of
the resonance problem to an eigenvalue problem

which can be solved variationally in complete anal-
ogy with bound-state calculations. '

In a previous calculation a Hylleraas variational
form was introduced and the nontrivial problem of
the Q projectixg with such a wave function was
solved. ' The results were sufficiently lower and
convergent looking as compared with previous
calculations to give some confidence that, as in
the low-lying bound states, such a wave function
could be used as the basis of precision calcula-
tions. However, ip our original paper we inad-
vertently omitted the most important triples of
powers of r„r„and ~» from the P-state part of
our calculation; therefore optimum P-wave re-
sults were not forthcoming at that time. Interim
reports' gave initial results with the additional
terms included. In the present paper that calcu-
lation is concluded as follows: Energy positions
of the first three 'P states and the first four P
states of He and their associated widths are cal-
culated. Also the position, width, and energy
shift of the lowest 'P state of H is calculated be-
cause of its experimental observability in elec-
tron-hydrogen scattering. For the lowest triplet
and all three singlet P states of He we have also
computed the energy shifts and q values again in
order to compare with experiment.

Widths and shifts within the Q-operator formal-
ism require a knowledge of the nonresonant scat-
tering wave function. Although a formal equation
can be written down for this function, ' it involves
an infinite series of nonlocal potential terms with
a continuum superposed. The most important dis-
crete terms can be and have been included but the
presence of the continuum poses a nontrivial prob-
lem. In fact it is likely that an exhaustive solu-



A. K. BHAT IA AND A. T E MEIN 182

tion of this problem would be at best as difficult
as a comparable solution of the complete scatter-
ing problem. One of the major potential items of
usefulness of the Q-operator formalism is that one
should not have to know the nonresonant continuum
function to the same degree of accuracy as the
resonant function in order to get results of the ac-
curacy inherent in the resonant part of the wave
function. Because of the uncertainty in the pres-
ent experimental results, it is perhaps the exam-
ination of which continuum functions give the most
satisfactory agreement with experiment which
yields the most concrete conclusions of this in-
vestigation. With regard to our ultimate aim of
providing a precision check of the Schrodinger
equation in its continuous spectrum, it would ap-
pear that the energy positions themselves provide
the presently most rigorous test. The last non-
relativistic correction required to effect this com-
parison is the mass polarization, which we con-
sider in Sec. V. We point out that this correction
is not trivially calculated in the Q-operator for
malism, nevertheless for the accuracy required
we argue that the naive expression should cer-
tainly be adequate. The expression is evaluated
and found to be very small and insufficient to ex-
plain a persistent 0.01-eV discrepancy from the
experimental results in the lowest 'P auto-ioniza-
tion line.

summation limits in Eq. (2.2a). Including only
one term of Eq. (2. 2a) in Eq. (2. 1), we presently
have

4~ e '+ ' [cos(28»)(r, ar, )a),
+

+sin(-,'8»)(r, + r, )u, "] . (2.3a)

Using the explicit form of S,'+ and the connection
between our Euler angles and spherical angles of
r, and r2, ' we find (for y = 1)

C R (r )R (r )r (n)+(1=2). (2.4a)

This is the explicit form of a (2s2p) wave function
which is well known to be the dominant configura-
tion of the lowest doubly excited P state. On the
other hand, with the choice in BTP the lowest
term corresponds to

4~ e y '+ ' [cos(-,'8»)(r, ar, ) S,

—sin(-,'8»)(r, v r,)$, ] . (2.3b)

The difference between Eqs. (2.3a) and (2; 3b) is
simply the opposite sign of the second term. How-
ever, on rewriting Eq. (2.3b) in spherical co-
ordinates we find

II. EIGENVALUES OF Hgg
4"R2 (r1) Flo(01)R2 (r2)k(1= 2) (2.4b)

The most general P-wave function can be wz it-
tenv, 8

4(r„r,) =-cos(28»){faf ) &,'+(8, 4, g)

—sin(k &»)(f+f ) &,' (8,4, 0), (2. 1)

x Q g Q C r r rl". (2.2a)
l&1m~0m&0 ™I

where the S are the rotational harmonics, de-
pending on symmetric Euler angles 8, P, g. ' The
trial wave function is said to be of the Hylleraas-
type when the radial functions, f=f (r„r„r»),
are written as positive power expansions in terms

-y(r, +r,) xe (r )F, (g )S,(r )/r, (A. 1O')

where

In this form it is seen that the angular factor is
now associated with the 2s radial function and thus
has no obvious physical significance. It is not sur-
prising therefore that Eq. (2. 2a) leads to im-
proved results (and convergence), but it is inter-
esting to note that Eq. (2. 4b) is a completely ac-
ceptable ansatz from the mathematical point of
view.

The alteration of the wave function causes no
difficulty in the formal evaluation of the Q pro-
jection. ' Specifically the term (4HPp) becomes

(4HP,4) ~ jjd'r, d'r, 4(r„r,)H

in Eq. (2. 1) it is understood that

f (r„r„r»)=f(r„r»r»), (2.2b)

EI (r2) =jjrldrlrl dr12@O(r )

x[coss (f+f )] . (A. 8')

and the upper (lower) sign in Eq. (2. 1) refers to
the singlet (triplet) state.

It is of interest to compare Eq. (2. 2a) with the
choice of terms that was inadvertently made in
BTP. ' There we had m& 1 and l& 0 inplace of the

The function in square brackets in (A. 8') is remi-
niscent of the radial functions as they arise in
Breit's form of the odd-parity P-wave function. '
In fact it follows from Eq. (2. 1) and Appendix III
of Ref. 8 that they are essentially the same.
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The actual calculation requires the evaluation
of

(2. 5)

The definition of Q and the decomposition of the
right-hand side of Eq. (2. 5) are given in BTP.
For f given by Eg. (2.2a) one encounters one new

type of integral over what was needed there. The
integrals in question are of the form

1(Z, , m, X; a, f ) = gje
L M Nxr, r, r» r,drpmr, gr»,

where now M can be as negative as -4. Although
the various integrals can lead individually to ex-
ponential integrals involving a and b, they can al-
ways be recombined such that the noncancelling
terms reduce to a form containing at most a tran-
scendental factor

in[(a+ 5')/(a+5)],

which is readily evaluated by the machine IBM 360-91.
In Table I we present results as functions of the

Pekeris numbers" for P states, i.e. , the number
of terms

47

N(ar. ) = Q n((o ), .
(d. =1

z

where n(ef ) contains all terms r, r,~r,p such
that l+m+s=&o&--1, 2, ..., V. For example N(V)
= 84. In each case the nonlinear parameter given
has been optimized for the 56-term expansion cor-
responding to the state in question. The entries
for the lowest singlet and triplet states of He rep-
resent typographical corrections to previously
given results. ' The apparent convergence is ob-
vious from the table, however in view of the lack
of knowledge of the extent of long-range potentials
in the variational problem associated with H@ we

have refrained from making any extrapolations.
In Table II we have collected our lowest results

and compared them with previous calculations
using the same Q operator. The results include a
reduced mass correction; effectively this amounts
to multiplying the Rydberg for infinite mass by a
reduced mass factor which is given in the caption
of the table for both He and H . The He results
for the two lowest states of each symmetry given
are seen to be the lowest calculated. However,
the 'P results for H are blatantly absent; not
only have we not calculated values lower than the
two reported by O' Malley and Geltman, ' but we
have found no auto-ionization states in this sym-
metry at all. This indicates that these states
must be of enormous size"; however, we know
that they must exist in the nonrelativistic approxi-
mation. "~" The reason that some eigenvalues do
occur in Ref. 5, for example, is because the trial
functions contain a sufficient number of exponential
parameters which can become small enough to al-
low for the requisite range.

The only nonrelativistic corrections that re-
main are in the shift and the mass polarization.
These are discussed in two of the succeeding sec-
tions.

IH. VHDTHS, SHIFTS, THE NONRESONANT
CONTINUUM

The position of a resonance is usually defined
theoretically as that energy at which the phase
shift attains the value of & r plus its preresonant
value. " This point can be written'

where 4q represents the shift of the eigenvalues
computed in the last section. The definition
makes it clear that one is dealing with a scatter-
ing phenomenon, nevertheless if the coupling of
the auto-ionization state to the continuum is weak,
one can expect to deal with this aspect of the prob-

TABLE I. gq (in Ry) versus the number of terms N in the Hylleraas expansion.

g)
N(~) q= 0;85

ip
$2

y= 0.65

—$3
y= 0.60

He

g~
y= 0.95

-g2
y= 0.60

P
$3

y= 0.60
$4

y= 0.55

H
3p

—Bi
y= 0.40

10(3) 1.380 936
20 (4) 1.385 634
35(5) 1.385 739
56(6) 1.385 781
84(7) 1.385 789 5

1.169403
1.173 689
1.193 095
1.193341
1.194 1707a

1.021 734
1.099 652
1,107 076
1.125 733
1.126 398 5

1.520 980
1.522 924
1.522 968
1.522 980

1.125 315
1.157320
1.160317
1.169163

1.071363
1.127 209
1.154 845
1.156 144

0.993 597
1.072 777
1.089 824
1.095 434

0.283 064
0.285 077
0.285 139
0.285 194

aWe have noticed the peculiar convergence pattern engendered by this result; however, it is not a typographical
mistake.
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TABLE II. Comparison of g q in eV with other cal-
culations. These results include a reduced mass cor-
rection in converting to eV. This implies an effective
rydberg of 13.603 50 eV for He, and of 13.57940 eV for
H . In helium the energies are given relative to the
ground state of He, whereas in H the energies are
relative to the ground state of H.

BTP OG

System n Present (Ref. 6) (Ref. 5)

He ('S) 1 60.1500
2 62.7567
3 63.6787

60.192 60.186
62.777
63.712

AMa

60.340
62.791
63.707

He(P)

H-('Z)

1 58.284
2 63.097
3 63.274
4 64.100

9.707

58.289

9.712

58.300
63.145
63.931
64.123

9.709

58.41
63.18
63.29
64.12

ap. Altick and N. Moore: singlet results from Phys.
Rev. 147, 59 (1966) and triplet results from Phys. Rev.
Letters 15, 100 (1965).

(H' E)—PT = 0, (3.7)

where H' =B (s. sa)

K lC.)(4. lHj j @.(s. sb)E —S.j (~n) n

&PP is the exchange approximate Hamiltonian;
it has a well-known solution of the form"

(ex) (ex)

Y& (0 ) p (r )+ (1=2)
2 - ra

(s. 9)
3 z

with p, (r) = 2Z'e I'00(Q). (s. io)

The function. uf(r)/r is normalized as a plane
wave or its Coulomb counterpart:

PTn(E) is the solution of the optical potential
problem less the resonant term'.

sin(kr+ of —~ l v+ rg)lim u&~x~= k (s. ii)

1 ~ I'(E ')
6'f, dE',

where (P signifies the principal value. In the vi-
cinity of a particular resonance n, the width for-
mula is'

I (E) =2kl(PT IHl Q4 )1'. (3.3)

In these formulas rydberg units have been used
throughout. The width of the nth resonance is
defined as I'n:

r -=r (E ). (3.4)

Q@n is the exact eigenfunction of the Projected
problem, which we have discussed in the pre-
vious section, and En is the total energy at the
nth resonance. Writing the Hamiltonian in the
form

H = Ho+ 2/r, 2, (s. 5)

and noting that P and Q commute with H, and that
PQ = 0, one can reduce 1"n to the much simpler
computational form'

r (E)=2kl(PT (E)l(2/r»)l@~) l'. (s. 6)

lem in some kind of perturbation theory. Under
the usual assumption of a one pole approximation,
i. e. , an isolated resonance, an exact formula for
hq can be written as follows":

where OI is the Coulomb phase factor":

o&
= (1 —6~ ) arg[r(l+1 —ig/k)]+k ln2kr,

(3. 12)

and 0 is the net charge on the target system (0
= Z —1, where Z is the charge on the nucleus).

For the cases at hand 0 is 1 and 0 for He and
H, respectively. The quantity g~ is the residual
phase shift. Since we are dealing with P states,
we have l = 1 in all of the present calculations.
The energy of the scattered particle is k', and
it is related to the total energy E by

E=E +k2 (s. is)

where Eg is the ground-state energy of the target
system (He+ and H, respectively).

PTn(E) has the same asymptotic form as
4(ex)(E). This means, then, that in our plane-
wave normalization

fy(E, ) g*(E,) d'r, d'r, = (m/k, ) 5(k,' —k,'),
(3. 14)

where y is either PT or 4 ex

We now come to the important question of
calculating PT. It is clear that 4(ex) constitutes
the zeroth-order approximation to it. The correc-
tion terms come from the additional potential Q
defined in Eq. (3.8a). It is essential to recognize
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5+(E)=f, f(z')e (E')dz', (3. i5a)

we can readily solve for f(E') with the help of
Eq. (3. 14) and rewrite Eq. (3.15a) explicitly in
the form

that this sum in fact contains an integration over
continuum functions of 4; for which 8j is greater
than (or equal to) the first excited state of the
target. The discrete terms in V present no par-
ticular problem in that a perturbation theory can
readily be constructed and rapid convergence can
confidently be expected. Letting 54 be the incre-
ment to 4(ex) coming from '0, and using an inte-
gral representation for it:

where

= —[e(r, r, )/r, ']

~z vw

and e(r,r, ) is a step function. "
It is important to realize that in all matrix ele-

ments with which we shall be concerned the con-
tinuum wave function must be operated on I', and
that (unlike 0'(ex)) for I = I,

pT-pe~" ~ e p"

x(@ ")(E')lgl@ (E)) . (3.15b)

The increment to the matrix element involved
in I' then becomes

5v=-(5e(z )lz le )

(C. I& l + "
(E ))

6'f dz'k'z -S.
n

1 Z
g(~ n)

(e "(E')la le )(e (E')la le.)
PQ n PQ j

n (3. ie)

The integration over E' for the discrete terms
can be handledjust as it is inthe evaluation of 4Q.

The continuum part of '0 presents a much more
difficult problem. Physically it is by now well
known that the major part of the nonresonant cor-
rections to the exchange-approximation phase
shifts come from the polarizability of the target. "
Vfhereas this distortion of the atom can be de-
scribed by a superposition of discrete as well as
continuum states, "in the manner in which they
are incorporated in the method of polarized or-
bitals, "y" the phase shifts exhibit a strictly non-
resonant behavior. Furthermore the nonresonant
photodetachment cross sections for H and He
as computed in this approximation by Bell and
Kingston~a (in the length formulation) agree
remarkably well with experiment. Accordingly
we shall assume that continuum contributions of
u can be largely included by replacing 4(ex) by
its polarized orbital extension 4 (Pol):

T e =[u (r )/r ] FI (fbi)
(pol)

IV. RESULTS, COMPARISON WITH EXPERIMENT

The width including all the corrections men-
tioned previously may be written

I'=2k) V, + V2)2+BI' . (4. 1)

r=2k~ V, + V, +nV~' . (4.&)

This correction is very small; it comes pre-
dominantly from only the one term in the j sum.
in Eq. (3.16) corresponding to the "wide" reso-
nance in closest proximity to the resonance in
question. To the accuracy required it is suffi-
cient to evaluate 5V using continuum functions of
the exchange approximation.

Finally we compute q values. According to
Fano"

(Q4„l Tl ~,.)
n kv(E )(PT (E )lTl%.)n n n i

(4.3)

where

(PT (E ') l T l 4 .) k '
5q = —(PJ dZ'V(E')

n

V, is the matrix element coming from the exchange-
like part of the continuum function. Inthe exchange
approximation this includes the whole function Eq.
(3.9), whereas in the polarized orbital approxima-
tion it comes from the unpolarized part of Eq.
(3.18) (i.e. , the terms not containing y(poi) .
Differences in the values of V, therefore come
only from differences in the scattered radial func-
tion, u, (r), in different approximations.

The quantity V, is the part of the matrix ele-
ment coming from y(pol). It is present only in
exchange-adiabatic and polarized orbital approxi-
mations. 5I' is the correction due to other reso-
nances. It may be calculated implicitly from Eq.
(3. 16), Eq. (4. 1), and the formula

x [y,(r,)+p (r„r,)]+(1=3), (3.18a)(pol)
x[kV(Z )(PT (Z )ITI+.)] (4.4)
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and V(E) = V, + V, ,

and %z is the ground state of He. T is the transi-
tion operator which we always take in these cal-
culations in the length form:

.60—

.54-

.48-

.42-

.36-

T=z, +z

TABLE III. Width of P (1) auto-ionization state of He
with various approximations for nonresonant continuum.

Nonresonant
continuum

approximation

Exchange
Exchange adiabatic
Polarized orbital
Experiment

0.0288 0
0.0296 —0.0014
0.0306 —0.0014

0.0365
0.0350
0 ~ 0374

0.038 + 0.004 a

aMadden and Codling, Ref. 2.

The actual calculations use the QC„of our
optimized 56-term calculation, the 4f (r„r,) is
the 20-term Hart-Hertzberg" function.

In Table III we give results for the width in
which the rows correspond to the various approxi-
mations for PT+(E„). It can be seen that whereas
the polarized orbital improves the result relative
to experiment, the exchange adiabatic actually
worsens the result. The reason for this can be
seen from Fig. 1. With the radial functions cor-
responding to the various approximations, having
the correct amplitude (normalization) at infinity,
they are as pictured near the origin (which gives
the major contribution to the matrix element) in
Fig. l. From Eg. (3. 19) 4(Pol) is forced to be
similar to 4'(ex) for most small values of x,
[for which x, & r, primarily, so that s(r,r, ) = 0] .
On the other hand, in the exchange-adiabatic
approximation, the exchange polarization terms
are omitted, and, as can be seen from Fig. 1,
this has the effect of slackening this coercion
thereby increasing u, (r) near the origin unnaturally.
This finding is in accord with the nonresonant
photoabsorption results of Bell and Kingston, "
wherein it was also found that polarized orbital
gave improved results.

Table IV contains the collected results using
polarized orbital continuum functions for q as

.24-

.18-

.12-

.06-

o.o"
.04 .16 .32 .48 .64 .80 1.12 1.20

FIG. 1. Singlet P-wave e-He+ scattering function in
various approximations for 0=1.617. All functions are
normalized to have amplitude k at infinity. Lengths
(x) are in Bohr radii.

well as I". The 5q are clearly non-negligible.
The fact that they are positive is in accord with
the qualitative argument of Fano. " The cor-
rection, however, is seen to lower our q value
outside of the experimental range. Qualitatively
it is easy to see that because the correction is of
opposite sign to the main term that the value of
q is a much more sensitive function of the non-
resonant continuum function than either 4 or T'.
A 10/g error in the main term can restore agree-
ment with experiment. However, such a change
in 4 will not alter our main conclusions with re-
gard to the energy position as discussed in the
next section.

Finally, we give in Table V a resume of our
best calculated results together with other calcu-
lated results and experiments. The table also
includes our values of the shift for those states
for which we have calculated them. The con-
tinuum functions in the shift calculations were in
the polarized orbital approximation. The last
column contains new, as yet unpublished, results
of Lipsky and Conneely. They are product hydro-
genic functions which, since they contain no 1s
states and very many configurations, supersede
the results of Lipsky and Hussek" and Altick and
Moore. " Beyond the n =2 states, their 'I' ener-
gies are seen to be slightly lower than our results,
although for the lowest states they are substan-
tially higher. Of particular note among the the-
oretical calculations is that of Burke and Taylor
who used the traditional 3-term close-coupling

TABLE IV. Widths and q values for helium.

State

'a(1)
'Z (2)

P (3)

r-nr
0.037358

1.165 x 10
0.010 028

+0.455 x 10
~ 0

—0.408 x 10

0.037 404
1.17 x 10
0.009 987

q —6q

—2.657
—8.413
~ 2 e 233

0.382
1.567
0.333

-2.275
—6.846
—1.900
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expansion with 20 Hylleraas-type correlation
terms in a direct scattering calculation. Although
differences are slight betweenthe two calculations,
it will be of interest to see which results will turn
out to be more correct, since they represent such
different approaches to the resonance problem.
The various results given in Table V are meant
to be reasonably complete but by no means ex-
haustive.

V. MASS POLARIZATION

The last remaining strictly nonrelativistic
correction is due to mass polarization. All other
corrections (including spin-orbit coupling) are ul-
timately relativistic in origin. In the case of the
bound states of He, the ground state in particular,
the mass-polarization correction is comparable
in magnitude to the spin-orbit terms. It is there-
fore completely justifiable to treat it in perturba-
tion theory. Before doing a comparable thing for
auto-ionization states some justification and res-
ervations are in order.

The Q operator is derived from a P operator
which relates to the asymptotic form of the scat-
tering wive function. If for the moment we re-
strict ourselves to the scattering of electron from
a neutral system (the two-electron case then cor-
responding to the composite system H ), then the
asymptotic form of the wave function in a coordi-
nate system fixed in the center of mass is'4

p =mM/(M+m), P =m(M+m)/(M+2m). (5.4)

The total non-center-of-mass energy associated
with this Hamiltonian is then

E =E +k. '/2P,
P

(5. 5)

The disadvantage, however, is that the residual
potential is now quite complicated in these co-
ordinates. That potential (now in rydbergs) is

2Z 2 2Z 2

(4 +r V/M I g, —r,(1-p/M)(

(5. 7)

In fact the direct evaluation of the increment of
energy

i. e. , the reduced energy of the target plus the
energy of the scattered electron relative to the
target.

The advantage of the $„r, coordinates is, then,
the fact that the asymptotic g is of the usual form
Eq. (5. 1), so that the correct P (hence Q) opera-
tor can readily be written down from

P, =V0(r,.) & & q0(r.')5($.-5'). (5.8)

(5.2a)

ln the above f is the scattered amplitude, and the
coordinates are defined as follows: with p„p„
p, being the coordinates of the two electrons, and

the nucleus in a space-fixed coordinate system,
and p the center-of-mass coordinate of the target
system:

p =(Mp, +mp, )/(M+m),

1 1

g, -r.(1- p/M)( P, r-,
(
&-

x Q@ (5„r,)d'$,d'r, (5. 8)

is a very difficult matter. In bound states there-
fore it is customary to write the kinetic energy
in r„r, coordinates using

we define the relative coordinates: 2p, , 2j r, 2p, r, r,
r, =p, —p„

r2 =@2—~3~

m
and (,= p, —p =r, —

M+ rn

(5.2b)

(5.2c)

(5.2d)

1
~ v

M r, y,
(5.9)

and to compute the perturbation in the form

Clearly Eq. (5. 1) is a solution of the asymptotic
Hamiltonian (5 = 1):

V ' — + ' ~(r), (asym 2p, 2 p

where p. is the reduced mass of the electron in the
target system and p is the reduced mass of the
second electron relative to the target:

LE= ~ f 4(V ~ V )4 (r„r,)d'r, d'r, (5. 10)

which constitutes a very straightforward problem
of integration. It can be shown in fact that Eq.
(5. 10) is equivalent to the counterpart of Eq. (5.8)
for bound states; i.e. , QC'- 4' where 4' is a so-
lution of
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(5. 11)

The proof rests upon similar identities which are
used in the proof of the virial theorem. " Un-
fortunately one cannot prove the equality of Eq.
(5.8) to the projected counterpart of Eq. (5.10)

This is because the projected equation which Q4
satisfies is in reality quite different from Eq.
(5. 11).

In order to get an idea of how much Eq. (5. 12)
and Eq. (5.8) can be expected to differ from each
other, it is appropriate to see to what extent the
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virial theorem is satisfied in the projected prob-
lem. The entries in Table VI give this compari-
son for the lowest 'P auto-ionization state of He.
Differences are seen to exist in the fourth signif-
icant figure, and they diminish as the number of
terms in 4 increases. Thus one can have con-
siderable confidence that the mass-polarization
correction as we are evaluating it, via Eq. (5. 12),
must be very close to the correct expression Eq.
(5.8). The direct evaluation of Eq. (5. 12), which
has proved to be an inordinately difficult task, is
given in the last column of Table VI. It is smaller
in magnitude than the ground ('S) and first-excited
('P) states which are 5. 9 x10 ' eV" and 1.7 x10 4

eV"; we find therefore that the value of 48 from
Eq. (5. 12) does not give the requisite 10 ' eV
necessary to reconcile our lowest 'P energies with
the central value of the experimental result.

Before concluding we would like to remark on
two additional aspects of the mass-polarization
problem. First we are neglecting the energy of
the total center of mass. It can easily be seen
that this amount of energy which is of the order of
what the nucleus can absorb from a photon of mo-
momentum hv/c is of the order of 10 ' eV for the
lowest 'P resonance in He and is completely neg-
ligible for our purposes. The second point is that
we have neglected any corrections in the mass po-
larization due to the P% part of the wave function.
Although the mass-polarization term can be in-
cluded exactly' in the framework of a scattering
calculation (i.e. , with the unprojected Hamilto-
nian), it would seem that for the Q-operator prob-

lem this contribution can be estimated by com-
paring the lifetime of the auto-ionization state
with the transit time of an electron in approaching
the target. Again for the 'P state of He the two
numbers are approximately 1.7x10 "sec and
0.3x10 "sec, respectively, with the latter being
the time for an electron at the resonance energy
to approach He+ from a comfortable 100A distance.
Thus this correction too would appear to be only
a small part of 48 .

Finally relativistic corrections should be even
smaller than in the ground state by virtue of the
fact that the kinetic energy in these doubly excited
states is smaller.

In conclusion we find some satisfaction in the
fact that this is the only calculation which is in
agreement with the experimental result within the
experimental error for the first two 'P states of
He. However, the discrepancy in the position of
the lowest resonance from the mean experimental
value is somewhat disconcerting, and we hope that
this calculation will encourage an even further re-
finement of the experimental error.

I
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TABLE VI. Mass polarization and approximate validity of the virial theorem.

No. of
terms

10
20
32
56

2$
(Ry)

—2.7619
—2.7713
—2.7714
—2.7716

(Qs V@4)
(Ry)

-2.8820
-2.7677
—2.7681
-2.7687

Difference
(Ry)

-0.1201
0.0036
0.0033
0.0028

Mass polarization
(1O 4 eV)

1.04
0.62
0.60
0.59
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Theory of Pressure Broadening of Microwave Spectral Lines
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A theory of pressure broadening of spectral lines is presented which is applicable to micro-
wave spectra. It is an extension of the Anderson theory to the case of overlapping lines. The

interference of neighboring lines is taken into account by the use of a relaxation matrix. The

diagonal elements of this matrix correspond to linewidths and are calculated in the same way

as in previous theories. The off-diagonal matrix elements are also calculated from the inter-
molecular interaction. Application is made to the ammonia and oxygen spectra.

INTRODUCTION

The phenomenon of pressure broadening of
spectral lines has been extensively discussed in
the literature. ' The Van Vleck-Weisskopf' modi-
fication of the Lorentz theory has served as the
standard line shape used in interpreting atomic
and molecular absorption spectra. Foley' and
Anderson4 have shown how one may obtain the
widths and shifts of spectral lines from a knowl-

edge of the intermolecular potential. At low
pressures, where individual spectral lines are
isolated from each other, their theories have
enjoyed much success. At high pressures, where
the lines merge together to form a band, marked
disagreement between experimental data and
theory has been noted.

More recently, by extending Pano's' work on
relaxation phenomena, Ben-Reuven' derived a
general theory of microwave pressure broadening.
He was able to account for overlapping lines by
introducing a matrix which represented a quan-
tum-mechanical interference term between the
various transitions. A first principles calculation
of these quantities has, .not been made, however.

In the present article a theory of pressure
broadening of spectral lines is proposed which is
meant to be applicable at all pressures. Three
crucial apyroximations are employed: the bi-
nary collision assumption, the classical path
approximation, and the impact approximation.
The theory is compared with previous treatments
and is shown to be a generalization of Anderson's4
formalism. Finally the theoretical predictions


