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For the p pole, the residue is given by

2%1 4}\1/ 4)\1’
——/Su;bau(ot%“aax) ——TSu(Pz"—POu =+4MSupsups- (p2—p1) —“—,‘SM(PZ"'PI)M- (A10)
(63 [43 a
For the two independent 4pm couplings, we take
(81Supu X g2Supsup sv00) Mo M5 XMs) . (A11)

Using (A11) and (A4), we calculate the contribution of the p pole to 7w — 74 and find for the residue of the p pole

+ 28185 xSu(p2—p1)ut 28280 mnSupsups (P2—p1) . (A12)

Comparing (A10) and (A12), we see that
xl:%gzgpﬂ'ﬂ'a >\1,= "%a/glgpmw (A13)
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Zero-mass pion theories invariant under c-number translations (“chiral transformations”) of the pion field
are studied in a general framework. The operator which induces the chiral transformation is defined in Fock
space (in which it is not unitary) and in von Neumann’s infinite-tensor-product space (in which it is unitary).
The transformed (noninvariant) Fock-space vacuum is recognized as a coherent state in the tensor-product
space. The generator of the chiral transformation—a constant of the motion in gauge-invariant theories—is
diagonalized, and its eigenvectors, the ““chiral states,” are employed in one of two derivations of a low-energy
theorem for zero-mass pion emission and absorption, assuming gauge invariance of the theory. The other
method of derivation is also used to rederive the electromagnetic gauge conditions. Then Lagrangian models
(gradient-coupling, c-number, and operator theory) are studied in which the invariance is realized provided
the current is suitably restricted. Implications of the low-energy theorem are checked (exactly for the c-num-
ber theory, in lowest-order perturbation theory for the operator theory). A larger class of models is then con-
sidered in which, it is shown, the complicated set of transformations under which the Lagrangian is invariant
reduce, by virtue of the field equations and the asymptotic condition, to a simple pion translation when
expressed in terms of the asymptotic fields, and hence obey the supposition of our theorem, which we again

check in lowest-order perturbation theory.

1. INTRODUCTION

N quantum electrodynamics, the invariance of the
vector potential against local guage transformations

Ay in outy(®) = Ay in outy(®)+3,A(x) is necessary be-
cause only then is the theory a Lorentz-invariant
description of zero-mass (spin-one) particles.! A gauge
principal for pion interactions, ¢in (out) — @in (outy+¢,
however, is apparently neither natural nor necessary.
No classical limit exists (as in quantum electrody-
namics) which guides one to such an invariance; more-
over the invariance requires pions of zero mass and is
therefore physically interesting only when it is broken.
However, many theories of current interest may be
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pion gauge-invariant in the limit of vanishing pion mass.
We have in mind the various phenomenological Lagran-
gians of the past few years, which are invariant under
a set of transformations (of the interacting fields) which
contains ¢ — ¢+c. Thus, we expect amplitudes calcu-
lated from such Lagrangians to obey pion gauge con-
ditions in the limit of zero-pion mass. Since the Lagran-
gians (which appear to incorporate the current algebra
results) include many ingredients beside pion gauge
invariance in the zero-mass limit, it is interesting to
determine which if any of their predictions are due
solely to the pion gauge conditions. The Adler? con-
sistency condition, for example, requires that the =NV
forward scattering amplitude vanishes when one of the
pion’s four-momentum goes to zero. This result is
essentially based on the hypothesis of partially con-

( 2 Stephen .. Adler, Phys. Rev. 137, B1022 (1965); 139, B1638
1965).
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served axial-vector current (PCAC), which demands
m-7#0. It is tempting to regard this condition as the
remnant of a guage condition imposed upon the theory
at an earlier stage (before symmetry breaking) when
m.=0. We cannot make this connection precise without
a dynamical framework which prescribes the depen-
dence of the amplitudes on the pion mass. However, that
the Adler consistency condition formulated for zero-
mass pion theories is connected with pion gauge in-
variance is already apparent in the early work of
Nishijima,® where the vanishing of amplitudes at a pion
threshold was essentially derived from the pion-trans-
lation invariance of a massless field. Recently both
Hamilton and Martinis* have studied low-energy theo-
rems from the pion-gauge point of view and come to
the same conclusion, i.e., that any transition matrix
element involving connected zero-mass pions must
vanish in the limit of zero pion four-momentum if the
S matrix is pion-gauge-invariant. Thus, we are moti-
vated to study the underlying nature of the invariance,
which, unlike most symmetries (which are homogeneous
linear transformations) does not leave the vacuum in-
variant and is not implemented by a unitary Fock-
space operator. By considering the commutator of the
S matrix with the generator X of the pion gauge trans-
formation and by expanding the .S matrix in improper
(“chiral”) eigenstates of X, we are led to two proofs of
the gauge condition which we believe are more trans-
parent than existing derivations and which exhaust the
implications of the pion gauge invariance.

The chiral states which emerge in this approach are
interesting in their own light and are related to the co-
herent states® first applied in the context of quantum
optics. Our investigation of thedisplaced vacuums (which
are coherent states generated from the Fock vacuum
by the action of the operator e which implements the
gauge translation) has been made possible by recent
advances in the same context.® To make the pion gauge
condition more plausible we apply the same methods
to the derivation of the gauge condition in quantum
electrodynamics.

We do not consider here the second main result of
the current algebra, the Adler-Weisberger consistency
condition, which is a statement of the universality of
the constant multiplying the leading power of » in an
expansion of the amplitude for #X — #X. This uni-
versality is certainly not a consequence of pion guage
invariance alone. In fact, nowhere do we assume that
the amplitude for zero-mass pion emission or absorption
has an expansion about k=0. In a true zero-mass pion

3 K. Nishijima, Nuovo Cimento 11, 698 (1959).

4 J. Hamilton, Nucl. Phys. B1, 449 (1967); M. Martinis, Nuovo
Cimento 564, 935 (1968).

5J. R. Klauder and E. C. G. Sudarshan, Fundamentals of
Quantum Optics (W. A. Benjamin, Inc., New York, 1968), Chap.
7 and the references quoted in this book.

6 J. R. Klauder and J. McKenna, J. Math. Phys. 6, 68 (1965);
J. R. Klauder, J. McKenna, and E. J. Woods, 7bid. 7, 822 (1966);
T. W. B. Kibble, ¢bid. 9, 315 (1968).
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theory this point is above a real or virtual threshold and
such an expansion probably does not exist. In this
respect, we find the results of Hamilton* unsatisfactory
because they depend on an artificial distinction between
zero-mass ‘‘external” pions and massive ‘“internal”
pions. Some of the extrapolation procedures of current
algebra calculations may suffer similar defects although
they are more adroitly concealed. We can say nothing
from gauge invariance alone about the functional nature
of the approach to zero of soft-pion amplitudes; this is
a detailed result of the behavior of the current for
vanishing four-momentum. In this context we remark
that the gauge invariance does place a limit on the
strength of any singularities in a model for the effective
current; without this restriction, for example, the inter-
action term 9%pj.(x), where j.(x) is a prescribed ¢-
number current is only formally gauge-invariant. One
must be careful, therefore, when applying the gauge
conditions to effective Lagrangians in which the current
is essentially approximated by a perturbation calcula-
tion which may not satisfy this restriction. It is, of
course, impossible to say, in the framework of these
Lagrangians, if the “exact” current obeys the restriction
since this requires a knowledge of the current in terms
of the asymptotic fields which is tantamount to a com-
plete solution to the problem (in which case gauge
conditions would be unnecessary).

Finally, we remark that many zero-mass pion theories
are not invariant against gauge translations of the pion
interpolating field alone but require simultaneous trans-
formations of the other interpolating fields in the theory
(unlike thegradient couplingmodels of pion interactions,
in which, for example, the nucleon fields are not trans-
formed). The invariance in these theories is analogous
to electromagnetic gauge invariance of the second kind
in which the vector potential undergoes the inhomo-
geneous transformation and the charged fields the homo-
geneous transformations. However, for some of these
zero-mass pion theories, the set of transformations
reduce, when expressed in terms of the asymptotic
fields, to a simple translation of the asymptotic pion
field, all other fields going into themselves, that is, the
generator of the transformation when evaluated in terms
of the asymptotic fields contains only a pion part.
These theories also obey the suppositions of our proof
and hence obey the low-energy theorem for zero-mass
pion processes.

2. PROPERTIES OF GAUGE TRANSLATIONS OF
THE FIRST KIND

We consider theories invariant against arbitrary in-
dependent c-number translations of a set of pseudo-
scalar fields ¢q:

¢a'—')¢a+ca:¢‘a,- (21)
Examples are the field theory of free zero-mass pions

and the gradient coupling model of pion-nucleon scat-
tering [in which the ¢, (@=1, 2, 3) are the Hermitian
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pion fields with zero mass] and the interaction of zero-
mass pions with a c-number four-vector current.
Counter examples are the gradient coupling model
with pion mass terms, the ys-coupling model of pions
and nucleons, with or without mass terms, and the
usual electromagnetic interaction of charged pions,
which is invariant against electromagnetic gauge trans-
formations of the second kind but not against pion
gauge transformations of the charged pions whether or
not they have zero mass. This is not to say that pion
gauge (translation) invariance is in conflict with charge
conservation or isospin invariance; these depend only
on the invariance of the theory against charge and
isospin transformations of the first kind. For example,
the charge- and isospin-conserving-gradient coupling
model has pion gauge translation invariance, for the
charged as well as the neutral pions, as long as they
have zero mass.

For definiteness we concentrate on pion gauge trans-
formations. Then the translation (2.1), restricted to
asymptotic pion fields, is implemented by the formally
unitary, linear but inhomogeneous transformation

Ut (ca)pa(2) U(Ca) =¢al(®) Fca,
U(ca) =eXp<—ica/d3x 60¢a(x)>z gicaXa | (2.2)

where the generator X, is the space integral of the
current 9,¢q(x). Since

0| U'(ca)pa(*)U(ca) | 0)= (0] $alx)+ca|0)
=ca (0| $a(x)|0), (2.3)

U(c.,) does not leave the Fock vacuum invariant. The
translated vacuums |c.)=U(c.)|0) are “orthogonal”
(in a sense to be made precise in the next section) to the
Fock vacuum and lie in a continuum of spaces in each
of which there is a representation of the commutation
relations unitarily inequivalent to the Fock representa-
tion. [There is, however, a larger space (than that which
carries the usual Fock representation) on which U(ca)
is unitary, namely, the nonseparable infinite tensor
product space of von Neumann.”] These assertions
will be justified in Sec. III. It is clear by now, however,
that the gauge translation invariance is not a symmetry
in the usual sense.® (In the usual terminology it is
“spontaneously” broken, although this language seems
to us misleading.) Nonetheless, the invariance, an auto-
morphism of the field algebra, has physical consequences
that can be extracted much the same way as results of
the usual symmetries (which are unitarily implemented
and leave the vacuum invariant) are extracted, that is,
by expanding the external states in eigenstates of the
conserved operators and demanding that the S matrix
be diagonal in this representation. To this end we shall

7 J. von Neumann, Compositio Math. 6, 1 (1938).
8 R. F. Streater, Proc. Roy. Soc. (London) A287, 510 (1967),
and references therein,
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in Sec. 3 diagonalize the generators X, and establish an
expansion of Fock-space states in terms of their eigen-
vectors. First, however, we recall the following well-
known properties of the X,:

[meﬂ:|= 0’ (24)
[Ta,xﬂ]: ieaﬂ'yx'y ) (25)
{(P:Xa}-l‘: Ov (26)

where T, is the generator of isospin rotations and @ is
the parity operator. We shall call X, the pion chirality
and refer to its eigenstates as chiral states. (Since
chirality is often associated with the commutation re-
lations of “chiral” SU(2), [Xe,Xs]=t€agyXy, We repeat
that we are for the moment treating only pion chirality
and theories invariant against c-number displacements
of the pion field; for such theories the X, commute and
may be simultaneously diagonalized.) It is clear from
these commutation relations that the transformed vac-
uums U(c,)|0) are not charge states (except when a=3)
and do not have definite parity. As we shall see, they
are degenerate ground states composed of coherent
combinations of zero- four-momentum pions.

In what follows we shall use covariant normalization
for the annihilation-creation operators, that is,

d3k
o(0)= f o eta@oer, 27)

[2(27)%]v2
[a(k),af (k) J=kod*(k—k'),

where we drop isospin indices for the time being. Since
the gauge translation (2.1) induces on the annihilation
operators the singular transformation

a(k) — a(k)+4c[2(2m)* ] *Rod* (k) ,

it is a mathematical convenience to use, instead of
sharp momentum states, a complete set of orthonormal
solutions of the Klein-Gordon equation

sz(x) =0,

(2.8)

(2.9)

(2.10)
(fi,fi) =1 / dx f. ,-*(x)gofj(x) =i

with Fourier transform

2 o
)= / % 60RO+ T) (2.11)

and momentum-space orthonormality and completeness
relations

a3k _
/ 009 =6,

3 FFW) fulk') =kod* (kK. (2.12)
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Then
¢(@) =% [fuw)aitfFx)ai], (2.13)
where B
2 filk)ai=a(k),
Laia]=0i;. (2.14)

Then the transformation corresponding to (2.9) is
a;— ait3c[2(27)3]2f,(0), (2.15)

where from now on we assume (without loss of gener-
ality) that the f;(k) may be chosen to be real. We thus
have the following representations of the chirality
operators

X =/d3x dop(x) = (2m)3/%[a?(0) —a(0)]/V2, (2.16a)

X= (27!')3/2 Z 1,f~,(0) ((l.’f —_ a;)/\ﬁ

=22 % Fi0)xs, (2.16)

where
X;= i(diT—di)/\/j. (217)
Now we consider a theory in which the 7' matrix,
T=i(1-S), is invariant against the transformation
U(c)=e%x, Then, if the states (f| and |7) contain no
zero-four-momentum pions, we have

SITD)={fUN)TU@)|i)=fIT|i)e
E(f,'lrcl Tli,r;) ’

where |i)e=U(c)|9)={3}U(c)|0)={i}|c), [c)=m.|0)
= |r.), {i} represents the product of operators which
create the state |4) out of the vacuum |0), and |7.) is a
coherent state of zero-four-momentum pions to be de-
fined in Sec 3. By hypothesis {7} contains no zero-four-
momentum pions and hence is invariant under U(c).
Therefore, when calculating 7-matrix elements between
states with no zero-four-momentum pions,it is irrelevant
which of the transformed vacuums we use; or, equiv-
alently, a coherent state of zero-four-momentum pions .
may be added to the initial and final state built on the
untransformed vacuums without altering the matrix
element.

If the initial or final state contain a zero-four-mo-
mentum pion (in the limit), then the equivalent result is

{fIT|i,a"(k))= o f| T|1,a" (k) )o —3c[2(27)*]*/2ko6 (k) -
X fIT|1)e
= (fIT'|4,a" (k) ye—%c[2(27)*]*/2k08% (k)
X{f|T]3y, (2.19)

where we have used the result of (2.18). To investigate
(2.19) we construct a normalized wave packet of pion

(2.18)
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states

)
8:0)=lgn)= / d3k§/(-k—a(k)10>,

[ergmr=1= Glgd=1. @20
Then, we have
fITi,gxy = (| T |4,gx)e —c[2(2w)* ]/ f| T |5}
XE}I;(\/ko)g(k)- (2.21)

Hence, the absorption matrix element for a pion state
with wave function g(k)/+/ko is independent of the
vacuum used to build the external states, provided
limy .o(v/ko)g(k)=0. Such states are not gauge-in-
variant but are the result of gauge-invariant operators
acting on the noninvariant vacuum. If we restrict the
space of allowable pion wave functions to those which
have the property limy.o(rv/k0)g(k)=0, then in this
subspace (which specifically excludes pions with mo-
menta sharp about k=0) the results of pion gauge in-
variance are trivial: Matrix elements are independent
of the vacuums |0),; the mathematically inequivalent
vacuums are physically equivalent. The invariance is
therefore interesting only for pions in the limit of vanish-
ing four-momenta. We show below that the pion gauge
invariance implies that all transition matrix elements
vanish when such zero-four-momentum pions are in-
volved as external states. We shall do this in two ways,
first by an expansion in momentum space of the .S
operator in terms of #-point functions of the pion fields
and second by an expansion in terms of chiral states of
the initial and final pions. For this purpose we devote
Sec. 3 to the diagonalization of X.

3. CHIRAL EIGENSTATES

We initially restrict ourselves to a single mode
X;=i(a'—a;)/V2Z and diagonalize X; in the subspace
H; of pions with momentum distribution f;(k). Since
the X; mutually commute, the finite tensor product
[A)|A2)- - - |\w) is an eigenvector of

N
26X
in the space
N
HgV =H H;®
with eigenvalue
N
2 Cikg
B

if X;|As)=2Ni[\;). The nontrivial extension to a system
with infinitely many degrees of freedom (for example,
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a field theory) will be considered at the end. For the
moment, then, we drop the mode index (z). Most of the
results of this section are, in one context or another,
well known.

For generality we consider the two combinations

Xe=(a"+a)/V2, Xp,=i(a'—a)/V2. 3.1)
Then we have
[mep]: i:
[N;xq]: "ixm

where the purpose of the notation is to suggest the
result, namely, the eigenvectors |\,) and |X,), with

X9|>‘q>=)\ql>‘q>»
Xp[)‘p>=)‘pl)‘p>y

are simply the coordinate and momentum eigenstates
of a harmonic oscillator with a single mode. In terms
of the number state |#)=(a")*|0)/4/(n!), we have

e M 2H ()

N=d'a=306%7),

[Z\T,Xp] = in ) (3-2)

(3.3)

MI=ZInlh=E T, G4
P, 0)
=S nala) =S =", (40)

(2nnin/m)

where H,(\) are the Hermite polynomials with nor-
malization Ho(\)=1. From the classical theory we
know we have orthonormality and completeness in the

improper sense
(N =s(—N),

/dk[k)(k[=1,

where, when statements apply to both the |A,) and
[\g), we drop the subscripts. The states |\) form an
improper basis in the Hilbert space of square integrable
functions defined on the real line with scalar product

3.5)

Uw=/%ﬁ0MM. (3.6)

In this space the expansion coefficients (z|\)= fa(\)
form a (proper) orthonormal basis. The sets (f|\,) and
{(f|\) are Fourier transforms of each other. In the space
of f(Ng), X4 is represented by multiplication by A, and
X, by the operation —id/d\,. In short, the representa-
tion space f(\) in which the chiral eigenstates form an
improper basis is simply the usual Schrodinger repre-
sentation space of the canonical commutation relations
of a single mode.®

To study the displaced vacuums, which we have
asserted are coherent states of zero-four-momentum

9]. von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Dover Publications, Inc., New York, 1943).
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pions, it is useful to define a general Hermitian linear
combination of the annihilation and creation operators

Xo= (e*%at+ e %a) /V2=cosh X,+sind X,. (3.7)

An elementary calculation yields the eigenvector |\
of Xo,

y=X eIH , (M)e N2 (), (3.8)

n (27»”1,\/ )1/2

which reduces to |\,) and [\,) when 6=0 and 3w,
respectively. There is a close connection between the
general chiral eigenstates |\g) and the coherent states

|a)=|pe?®)=|x,y) defined by
ala)y=ala), (3.9)
=g 6.10
= v

The coherent states are generated by the action of the
unitary displacement operator

D(a) = exp(aa’ —a*a) = exp(—ipV2Xp1xs2), (3.11)
where
DY a)aD(a)=a+ta (3.12)
and
|a)=D(a)]0). (3.13)

Hence the chiral states [Neyn/2) are eigenstates of
the displacement operator D(p,) with eigenvalue
exp(—pV2N\eyr/2. The X, and X, generate imaginary
and real displacements, respectively,

#9%4[0)= [0, —p),

e #55]0)= | 50)
and X, is invariant against displacements along rays
with phase 843, e.g., [D(#,0),X,]=0. An elementary

calculation yields the expansion of the |\) states in the
coherent-state representation, e.g., for |\,) we have

(3.14)

1
1x»=;/ﬁmMXMx»
and
_%Az;) .

1
(ozl)x,,)"—‘—\‘/— exp(i\,V2a* —1 || 2—3a* (3.15)
T

Finally, we note that the chiral states can be represented
by integrals over the real and imaginary parts of the

coherent states:
Ag
VZ’ >’

)\p>
x,— ).
V2

1
(3.16)

1
I\p) =\721r'3/4e““2/2'/dx
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Thus, within the Hilbert space H; of a single mode,
the gauge transformation has familiar and elementary
properties. A vector | /YEH; can be represented alter-
natively by a square summable function (z| f) defined
on the positive integers, a square integrable function
(| f) defined on the real line, or a square integrable
function (a|f) defined on the complex plane. Within
the subspace H; the gauge transformation induces the
translation (2.15), which is unitarily implemented by
the displacement

U:(Ge[2(27)%]H2f(0)) = exp[ —ic(27)* fo(0)X,], (3.17)

whose action on the subvacuum |0;) (belonging to H)
is to create a coherent state |a)EH; with a;
=¢[3(27)3]12f,(0). In H;, the |\;) are improper basis
vectors which are eigenstates of the translation and its
generator. The extension to a finite tensor-product
space

N
V=] H:®

proceeds (as sketched in the beginning of this section)
without incident. Thus, we have -

LA =D D),
(0310 =ITs0e—07),
fﬁ [d)xﬂl{)x})({)\}[ =1in H¥, (3.18)
IT U:eL2(2r) 144700 [0)

—exp[—ic(2)¥2 ¥ Fi0X|0)=TT ],

where

IR

[

is a unitary operator in HY.

For N — it is well known that complications arise
because of the possibility of divergent products and
sums.®? These problems have been discussed at length
in the literature.>~7 In the following we shall largely
follow the exposition of Kibble. In

H®=H®Hi

a general product vector |¢) is defined by a sequence
{|¥:)} with [¢)=m|¢¥s), where |¢;)EH ;. Two vectors
|¢) and |¢) are defined to be equivalent (denoted by
le)~[¥)), if '

S (eilg)] <o, (3.19)
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in which case their scalar product is defined by

@lv)=TT(&:1v.. (3.20)

If formally divergent products are assigned the value
zero, then inequivalent vectors are orthogonal. Hg, with
scalar product so defined is the nonseparable infinite
tensor-product space of von Neumann.” On Hg, we

have
Ug=exp[ —ic(2m)}/* 3 Fi0)x.7, (3.21)

which is unitary, i.e., the gauge transformation is
unitarily implemented; the Fock vacuum |0)=T].*|0,)
is transformed into the coherent tensor-product state
IT:°|a:) with norm

ﬁ(aila»: 1. (3.22)

However, U® is not unitary on the Fock space, Hg(0),
which is a subspace of H® consisting of all vectors |¢)
equivalent to the vacuum |0)=]]*|0;), that is, all
vectors []:°|¢;) for which

21={0:]ys)| <. (3.23)
Ug in general takes a space Hg(¢) of vectors equivalent
to a given vector ¢ into a space Hg(¢') with |¢’)
=Ug|¢). Only in the special case when Ug|¢)~ |¢’)
is Ug a unitary operator in Hg(¢). In the case of the
gauge transformation, however, > .|1—(0;| U;|0,)] is
divergent, the transformed vacuum Ug|O0) is orthog-
onal in the above sense to |0), it does not lie in Hg(0),
and Ug is not a unitary operator on Hg(0). Nonethe-
less, the transformation is an isometry; the transformed
vacuums are normalized to unity, even though they
do not lie in the Fock space Hg(0).

The [{\}) form an improper basis in Hg and hence
in Hg(0), that is we have the expansion

[mamams: + - )=|m1)|no) | mg)- - -

='/>d>\1{}\1><)\1]n1>'/(i)\gl)\2><)\z|%2> o

- / ILCnT (O3 b+, (328

where {n:} is a sequence of occupation numbers for
pions in mode (). | {#.}) is a Fock-space state provided
2-i| 1—(0;| ;)| < =, which is the case if all but a finite
number of modes are unoccupied, but the expansion is
valid in any case, simply from the property

l”i>=/d>\£|>\e)(>\¢|n,~).
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We shall use this expansion in deriving consequences of
the pion gauge invariance. Specifically, we shall use the
fact that ({A}| 7| {\'}) vanishes unless the total chirality
of the initial and final states (Xinize X i fi(O)A,
Xtin < 3¢ f:(O)A;) is equal, that is,

N TIVE =8 £:O0—N)NA T[N} (3.25)

4. GAUGE CONDITIONS FOR
SCATTERING AMPLITUDES

In this section we derive the conditions which an
arbitrary scattering matrix element (involving con-
nected pions) has to obey to be invariant against the
pion gauge transformation (2.2) introduced in the
previous sections. We shall derive these conditions
employing two different methods. In the first method,
we assume that the general expansion of the .S operator
in terms of in-fields of the pion exists and calculate the
commutator of this expansion of .S with the chirality
operator X,. In order that the .S operator be gauge-in-
variant this commutator must vanish, which yields con-
ditions on individual S-matrix elements. In the second
derivation, we start from chiral eigenstates and demand
that the S-matrix elements for arbitrary states be diag-
onal in the chirality quantum number. We then arrive
at the same result as with the first method if in addition
we assume the usual crossing symmetry.

We shall also apply the first method to quantum
electrodynamics to show that this derivation of gauge
conditions is quite natural and leads to the familiar
result in this case also.

As already mentioned, in the first method we assume
that the scattering operator .S has an expansion in
normal ordered products of pion in-fields ¢in,o(%):

1
S= Z —_ d4x1/d4x2

n=0 7!

Z Sax,az"'an<n)(x1;x27' : ':xn)

e
a1, a2 dn

X :¢in,a1(x1)¢in,a2(x2) . '¢in.an(xn): . (4-1)
The expansion coefficients S are operators which
may be expanded in fields corresponding to all the other
particles stable under strong interactions. We note that
S yields only the connected part concerning the pion
lines in a scattering process involving # pions.

The commutator Cs between the chirality operator

Xg= S d*x dops(x) and S,
Ce=[%s,5],
10 This is basically the method suggested by Nishijima (Ref. 3)

and recently elaborated upon by Hamilton and by Martinis
(Ref. 4). .

(4.2)
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is calculated using the following formula!:

6

[pins(®),S]=1 | d¥'A(x—o')——S, (4.3)
in, (%)
where, for example,
0ba(y)/00p(%) = 8ap0*(x—7). (4.4)
The result for Cg is
1
Co=Y — d%/d“x’/d“xl
n nl
.. '/d4xﬂSa1--~anﬂ(n+l)(x1;' . -,xn,x')
X :¢in,a1(xl) . '¢in,an(xn): . (4-5)

To obtain the final result it is more appropriate to
express Cg by the Fourier transforms of the S™, de-

fined by

Saperean™ (@1, * *y20) =——— | d%;

(271.)5n/2
.../daknei(m-m.~+kn-.rrn>§a1.__an(kl,...}kn)' (4.6)
We have then

1
Cs=>_ __' A4k - ./d‘ikn&ul“_amﬂ(n)(ki’. k)
n nl

X :éin.al(kl) o 'éin,an(kn):é(kP) v 6(kn2) ) (47)
with
5’a1...an,g(")(k1,' . ,kn)
— (—i) (232 / %k Roe(R)5(2) 55 (k)
XSpan g by - k). (4.8)

By taking repeated commutators of Cg with ¢in,a,(21),
“++, ¢in,an(2n) and taking expectation values in a state
without pions, we can express all ¢®(ki,---,kn) by
these repeated commutators with Cp.

Because of pion gauge invariance Cg= 0 and therefore

&al-az"-an,ﬁ(")(kl' : 'kn)=0' (4.9)

After evaluating the integral over & in (4.8), we see
that (4.9) is equivalent to
Hm (Saperan,s ™0 k1, - - knykyv/K2)

k[0
+-Sagerean g™V (b, + ke, —k, —v/k2))=0. (4.10)

11'S, Schweber, An Introduction to Relativistic Quantum Field
Theory (Harper and Row Publications, Inc., New York, 1964).
We use the metric and y-matrix convention of this text,
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In (4.10) the matrix element S@+D(- .. k+/k?) is the
S-matrix element for an ingoing pion with momentum
k, whereas in S@™+D(. .. —k, 4/k?) the pion is outgoing
with momentum k. For k — 0 both functions approach
the same limit and the condition finally is

Hm Seyecan g @O (k, - - ki, v/k2) =0.

|k| >0

(4.11)

Therefore, we have the theorem: Any scattering matrix
element involving pions is gauge-invariant only if its
connected part vanishes for vanishing four-momentum
k of any pion selected.

The rather complicated derivation above isequivalent
to iteration of the following rather simple exercise.
Let | f) and |4) be states containing no zero-mass pions.
Then the matrix element of the commutator Cg between
these states is

(f1Csl ) ={f|[Xs,ST|5)
=(21r)3’2é(fl[(a"(O)—a(O)),SJIi> (4.12)

and from Cg=0 we have

(fa(0)| S| 8)+(f1S]a"(0)i)=0,

which is equivalent to (4.10).

As an illustration of the method outlined above we
derive the well-known condition for photon gauge in-
variance. Gauge invariance for photo processes means
that the .S operator is invariant against the transfor-
mation

(4.13)

Apin(®) = A, in(2)+0,A(x) , (4.14)

where A, in(x) is the ingoing photon field and A(x) is
a c-number solution of the Klein-Gordon equation.
That S be invariant against the transformation (4.14)
requires

Cr=[Xxs,S]=0, (4.15)
where

Xp=— /dsx[(')oAa“A 4,in(%) —A(%)000*4 4in(x)]  (4.16)

is the generator of the gauge transformation

e" A, m(w)e M= A, m(0)+0,A(x).  (4.17)

It should be noted at this point that the operator X has
the same peculiar mathematical properties as the pion
chirality operator X,, as discussed in Sec. 2.

In close similarity to the pion case we assume that
the scattering operator S can be expanded in normal
ordered products of the ingoing photon field:

S=3
n=0

iy - -/d“an(")"l"'"”(xl,- %)

XA, im(@1) Ay in(xa): . (4.18)
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Then the commutator is calculated with the same
methods as in the pion case. The result is

1
g2 fatme o [
n

XA (%)80%0,7A(x—5") — 3p"A (%) 9, A(x — ") ]
X Snt1yp- "“""(xl, - ,xmx')
X :Am,in(xl) . 'Aun,in(xn>: )

which we express by the Fourier transform of A(x)
and S defined by

(4.19)

Al)= /d% S(k)ei*aK(k),  (4.20
o | PEER®), @)
N ! d*k
LY ERRY 7Y GV —_
(xl xn) (2,”.)511/2/ !
. ./d4kn5‘(n)u1-"ﬂn(kl’- * ',kn) . (4:.21)

Then we obtain

1
Cr=Y —
n n!

X :Jnx,in(kl)‘ Ay in(kn): 6(k12)- - -6(ka?) , (4-22)

dthy - - ./d‘ikng-(n)#x“-nu(kl,. < Fa)

with
g(n)m...u,,(kh. . ',kn)=/d4k/d4p 5(]32)6(]3)5(?2)3(?)

XkuS(vﬂ-l)nr chnb(Ryy - kayk) (Po—Fo)

Xei(po~ko)»‘£0§3 (p—-k) . (423)

Since Cy=0, we have
5’"1"'""’"0&1,' . .,kn)=0. (424)

By evaluating the integral in (4.23), we get from this
condition

ok .
/ Zg_{eziwwoﬂ(k)kns(n—kl)m-"/m,#(kl’ .. .kn’k) ] kom—ook
ke _l_e—-ziwkzox*(_k)kug(n.{.])m...,L,M,
X (kl) e )kn:k) l ko=+wk} =0 , (425)

where wi=+/k?and A(k) = A(%) for k>0, A*(—k) =K (%)
for ko<0. This last condition (4.25) must be fulfilled
for any complex function A(k), which is possible only if

kyg(n-{-l)m-"ﬂn,lt(kl,. o Eak)=0, (4.26)

where ko=zw;. Equation (4.26) is the familiar gauge
condition in quantum electrodynamics. It is well known
that this condition ensures the right Lorentz transfor-
mation properties of .S for massless vector mesons.! A
simplified version of this derivation for particular
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processes along the lines of the method (4.12) and (4.13)
has been carried out by Rollnik.2

In the following paragraph we shall prove the pion
gauge condition using chiral eigenstates. In this method
the assumption that the scattering operator has an
expansion in normal products of asymptotic states is
not needed. Only crossing symmetry and properties of
the chiral eigenstates constructed in Sec. 3 are employed.
To make our presentation transparent we shall not de-
rive explicitly the result for the most general case of a
finite number of zero momentum pions in the initial
and final state. Instead we derive the theorem for three
examples with one or two zero-momentum pions in the
initial or final state. That the most general case can be
derived with the same methods will then become ob-
vious. We denote by |7), | f) states with no pions; ¢ and
f stand for operators creating all the other particles.
A state with one zero-momentum pion is, in terms of
the wave packet expansions

li @ @)= Fi(O)]d,+-1;+).  (4.27)

The wave packet functions were introduced in Sec. 2,
and |4, -+,1;---) stands for the following Fock-space
vector: [4,01,0z,- - ,0,-1,1;,0;41," - - ). As outlined in Sec.
3, we can expand such vectors in eigenstates of the
operator X;. The general formula is

li7n1n2!' ’ )=/ IE:I [dklﬂo‘k'nk)]li))\h)\?;' : >

= / 1°:1[dxk<xklnk>]li,{x}>. (4.28)

This formula is used to decompose the matrix element
{f,"+*,1;--+|T|%) of the T operator T'=1i(1—S) with
one pion in state j in the final state:

(fyre 5Ly [ T]0)
- [ [ T Etonpotnsing
XTL LN O 0000 T3N3

>y / T1 N0 M T [an (0 10)]

X)\j(f,{)\} [ T“’{)‘l}>- (429}

In this last step, we made use of the relation (1,;[\;)
=14v2(0;|\;) following from (3.4b). Similarly, but with
an essential sign change stemming from the fact that

12 H, Rollnik, Z. Physik 161, 370 (1961).
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(1;]1Ny=—{N|1,), we have
fIT[d, 150 +)

=—iV2 / IkI L0k \e)] III LaN/ (N[0 DN

XAMTNY) . (4.30)

We now form the sum:
(f,a(0)| T]0)+(f| T14,a" (0))
=% O L+ 1T+ Tl 1))

=iV2 / IT Can(0 ) TTT Lan/ (V' 10)]
XEZ HOO—MXANTNY). (431)

However, since the total pion chirality X « ¥, f;(0)X;
is conserved, (f,{\}|7]i,{\'}) is proportional to
8(X; £;(00(\;—\/)) and the right-hand side of (4.31)

vanishes:
(f a0)| T|3)+{fI T]4,a"(0))=T1¢/*+T0r/*=0.

Because of crossing symmetry we have for zero-mo-
mentum pions 7'1o*= T'p1/* and hence the desired result,
T10/= T /*=0. We remark that the crossing property
for k=0 is an additional assumption in this method of
derivation. In the first method it came with the assump-
tion that the .S operator can be expanded into asymp-
totic fields, that is, the field-operator expansion is
manifestly crossing symmetric.

This method of using chiral eigenstates can be ap-
plied to general connected amplitudes in which there
are a finite number of zero-momentum pions in the
initial or final state or amplitudes in which there are a
finite number of pions at least one of which has zero
four-momentum. We illustrate how the proof goes by
the following two concrete examples. First we consider
the product state

R PRSI PR
=V28;] -+, 25 )H(1=0)] -+

(4.32)

>1i,"';1j7"'>

=V25;; / ;LI Canene [ 06) TN N 2,0 T{N))

+(1—=6;) k£1_ LaneNe 06} JdNN| 1)
Xan (A1) [{N))

- / ITLntul 0930512001 0). (439

To derive this representation we used the following
properties of the coefficients (\;|#;), which follow from
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(3.4h): o
] 20)=2712(1 =202 (N[ 05).

Therefore, we have
(F1T]4,a(p)a’(0))
=Z. fw(p)]3(0)<f] T(h: : ';1i:' : >| v '71.'/'1' . ))

-5 7070 [ T [ TTEul00]

X8 =2NN)SNHT (A (4.35)

and, similarly,

(Ge®| 7110 (0)
=5 £i0) [ TILNOINITT Eanute]00]

XN NG TTi,{N) . (4.36)

Forming the sum and using the completeness relations
for f(p), we obtain

(f,a(@) | T|4,a"(0)+<f|T']4,a" (p)a’(0))
=2 fileNZ O =2 f:(0)] / III AN/ (0 N) ]

XIT L0 0 HE /@) [ TN 0)]
LT Lanehe 001N | 71,0

= pod* (0){f1 T1),

where we used again the conservation of the total pion
chirality. To interpret this last result we recall that | f)
and |4) are arbitrary states containing no pions (of any
momenta). When, in addition, there is at least one pion
in the final and one in the initial state, then disconnected
amplitudes are possible in which one or more pions go
straight through without interacting,

(f a(p)| T14,a%(0))=(f,a(p)| T*>|4,a"(0))
+ pod*(D)(f] T'|4).

As we already observed earlier, the gauge conditions
constrain only the connected part of the amplitudes.
Generally in this context it is convenient to decompose
T into its connected (7°*) and disconnected (74%)
parts (with respect to pions only). When disconnected
pions are not possible, we define 7°*=T and T%i*=0.
Then (4.37) reads

(fra(@)| Teon|4,a1(0)+(f| Teo»|4,a (p)a’ (0))=0. (4.39)

(4.37)

(4.38)
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We may now take the limit p= 0, with the result
Tllcon: _.Tozcon.

(4.40)

From the crossing property we have I'j;°0n= T,
whence

Tyeon=Tpeon=0, (44.1)
Quite analogously we derive
(£,0(0) | Teon|4,a"(p))+(f] Teo" | 4,a" (p)a’(0))=0. (4.42)

Again, using the crossing property for zero four-mo-
mentum pions, this implies that both amplitudes vanish
separately, even when only one of the two pions has
vanishing four-momentum, another special case of the
general theorem. In the above derivations (using chiral
states) we have, in the interest of simplicity, dropped
the isospin indices, proceeding as if only one species of
pion appeared in the initial and final states. Since the
X, are separately conserved, it is clear that the method
can be generalized to include arbitrary pion isospin
configurations in the initial and final state.

Presumably, this method of diagonalizing the
chirality operator can also be pursued to derive the
gauge conditions in quantum electrodynamics by diag-
onalizing the operator Xs. But we shall not do so in
this paper which is primarily concerned with pion
guage invariance. Finally, we remark that despite the
fact that the chirality X connects the Fock space with
spaces orthogonal to it and therefore cannot be diag-
onalized in the Fock space, it nonetheless can be
diagonalized in a larger space which has the Fock space
as a subspace. Then as the derivation outlined above
shows these eigenstates can be used to infer physical
consequences of the symmetry. Thus, it does not ap-
pear to us necessary to invoke such notions as weak
conservation of chirality as has been advoctated by
Nambu and Lurié.'?

5. APPLICATIONS

In the previous sections we showed that the in-
variance of the S matrix against the transformation
¢n — ¢inf-¢ generated by X=_f"d*x dop°Ut, implies the
low-energy condition for zero mass-pion theories. The
framework so far has been the usual general assumption
of an S operator defined on a Hilbert space of asymptotic
free-particle states, sometimes augmented by the as-
sumption that S has an expansion in terms of the
asymptotic fields. In this section we outline the con-
ditions which the gauge invariance imposes on the =V
scattering amplitudes and total cross sections. Then we
look for Lagrangian models in which the invariance is
realized and check the vanishing of scattering ampli-
tudes for soft-pion emission or absorption processes.

Let us consider mg(q)+ N (p) — ma(q’)+ N (p') scatter-
ing with the momenta and isospin indices of the ingoing
and outgoing particles as indicated. Then in Sec. 4 it

13Y, Nambu and D. Lurié, Phys. Rev. 125, 1429 (1962).
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was stated: The scattering amplitude Tw5(p’,7',¢ ;0,7,9)
for this process is gauge-invariant if
Tﬂtﬁ(p’:/sq’; PJ‘:Q):O (51}
for ¢=0 or ¢'=0 and for any choice of isospin indices «
and 8 and nucleon spins 7 and #’. The condition (5.1)
can be exploited in different ways. One possibility is to
consider the forward scattering amplitude split into the
isospin symmetric and antisymmetric part, defined by
Top= T(+)5a,3+T(‘)%[T,x,Tﬂ]. (52)
T as a function of v=p-g=%(s—u) for {=01is even
in », whereas 7¢ is odd and the gauge principle re-
quires that 7 has no constant terms. In the literature
this result is usually stated in the form that the power
series expansion around »=0 of the two amplitudes
starts with »? in the case of 77" and with » in the case
of 7, using crossing symmetry. But »=0 is a com-
plicated branch point where for zero-mass pions the
unitary cuts of all possible intermediate states coincide.
Thus, we may also have an appreciable imaginary part
near »=0. Because of crossing symmetry we have

ImT®(p)=FImT E(—v)

and
ReT®(y)=ReT ) (—»).

For »2 0 the imaginary part is related to the total cross
section e @ (p)=%[o,-(v)£o,*(v)] by

ImT ® (p) =206 (v). (5.3)

The gauge principle requires that Re7®)(y) and
Im7T @) (») vanish for »=0. This means that the total
cross sections ¢@)(v) are less singular than 1/v as »
approach zero. Of course, in a theory with zero-mass
pions, total cross sections may be singular for »— 0
since in this case an infinite number of pions can be
produced. Using dispersion relations, the conditions on
the real parts can be transformed into integral relations
for the total cross sections. From Re7 ) (»=0)=0 we
infer (assuming an unsubtracted dispersion relation)

v YeO()
lim—P/ dy) ———=0.
0

y—>0 T 1/2_1)2

(5.4)

In (5.4) the integral over » includes also possible dis-
crete singularities like one-nucleon pole contributions.
We remark that in theories with a finite pion mass,
both conditions on Im7™(») and (5.4) are fulfilled
automatically since total cross sections in such theories
approach finite values and the extra factor » in (5.4)
is necessary for crossing symmetry. The conclusions
from ReT' ™ (v) =0 are more interesting. If the dispersion
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relation for 70 (») is also unsubtracted, we have

P )
lm— [ & ————=
v->0 T 0

0, (5.5)

P2y

which is possible only for ¢™(»')=0. From this we
conclude that the dispersion relation for 7V (») must
be subtracted which agrees with the empirical finding
that total cross sections ¢t (v) do not vanish for large
v. Sometimes it is inferred from Re7 ™ (»=0)=0 that
the s-wave scattering length ¢ vanishes.* But this
inference can be made only if it is known that Re7' ™ (v)
for =0 is dominated by the s-wave contribution. In
the forward scattering amplitude 7'(») all partial waves
contribute at threshold if the pion mass is zero. Of
course, in the realistic case of nonvanishing pion mass all
partial waves except the s wave vanish at threshold
g=0. Only if this relation between the s wave and the
higher partial waves is maintained for #,=0 can we say
that ¢ =0.

We now consider simple models which are pion gauge-
invariant. First, we shall consider gradient-coupling
models, that is, those in which the interaction has the
form j,8%¢p, where j, is a ¢ number or an operator func-
tional of fields other than the pion field. Derivative
coupling by itself, however, is not sufficient to guarantee
gauge invariance of the Lagrangian density; one must
impose boundedness conditions on the current j.(x).
Under ¢(x) — ¢(x)+c, we have G(k) — $(k)+cd*(k)

and therefore, in momentum space,

1
o f dh ¢+, () 9% ()

- [awn—rows) — [ansa—rws)
e lim 7, (k—F)ER. (5.6)

Therefore, if the interaction term is to be gauge-in-
variant, limg o &'#7,(k—%’) must vanish for any four-
vector k. This does not prevent 7,(k) from being singu-
lar, that is, one cannot infer that k'*7,(k—k’) is pro-
portional to &’# at k’*— 0. This is precisely the case,
as we shall presently see, in the gradient-coupling model
for =V scattering, where the elastic amplitude in second-
order perturbation theory has a leading term propor-
tional to » whereas if j,(k) were nonsingular, the leading
term would be »?; thus, to determine the exact behavior
of the amplitude near 2,=0 one must make detailed
dynamical assumptions independent of the gauge in-
variance of the theory. The simplest gauge-invariant
model of this kind is a gradient coupling with ¢-number
source. The Lagrangian is

£=+%(a¢>2—j#.a(x)a"¢a(x): (57)
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with a given c-number axial-vector function j,, ()
which depends also on the momenta p and p’ and the
spins of o and ¢’ of the ingoing and outgoing nucleons
producing this source. We assume explicitly that

lim 1#j,,0(k) =0, (58)
where j,. (k) is the Fourier transform of 7, a(x), de-
fined below. This problem is similar to the problem of

S= d3kk' k (k) =k, *(k k
—exp{ f e ORI R AT )J},

which can be transformed into
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the quantized radiation field interacting with a classical
current density and can be solved exactly. The S oper-
ator can easily be expressed by the Fourier transform
of the current density, defined by

a*kV20(k)

W(j”'“(k)e—ik'x+_7.p,a*(k)eik"’) . (59)

Ju,a(®)=

It has the following form:

(5.10)

S=exp{/ d—;?k”j“,,,(k)aa,;n‘"(k)} exp { —/ (—l]"::kk“ju,a*(k)aa,in(k)}

We assume that j,(k) is chosen such that all integrals
exist. We have explicitly [X,5]=0 because of the as-
sumption (5.8). It is clear that the .S matrix in this
model is itself a displacement operator which induces
the ¢c-number translation

aa,out(k) = S_laa,in(k)S: aa,in(k)'*‘k“]'ﬂ*(k) . (5 12)

Thus, the c-number source radiates coherently, that is,
pions are produced in coherent states. S is unitary in
Fock space if

d*k
/k_[k“jﬂ.a(k)lz< ». (5.13)

From the general formula (5.11), it is easy to calculate
the matrix elements for particular pion scattering and
production processes. For example, we obtain for the
production of # pions with momenta &i, ks, * + -, ko and
isotopic spin quantum numbers a1, ag, ‘-, o'

(kyya; ko + + - kny 0t 0ut|0in)

= <0°“‘ l 0i“>{k1"ju.al(kl)kfjﬂ,az(kz)
o kntfu,an(kn)}  (5.14)

or for the production of # pions from one incoming pion
(connected amplitudes only)

(k1,013 =+ - knyan out| g,B in)eon
= <Ooutl 0in>k1"j“,al(k])kz"j“,a,(k2)
ot ‘kn"jnyan(kn)("‘ql‘]'u,ﬂ*(Q)), (515)
with

1 dk _
<Oout|0in>=€xp{“‘5/k_k“]“,a(k)kv]y,a*<k) . (5.16)
0

1 ask
€Xpy—=— —(k* e Y Iy, . .
X { : / G D) (k))} (5.11)

(Oous| Oin) is the transition matrix element without ab-
sorption or emission of pions which stands in a realistic
theory for the elastic scattering of say protons caused
by virtual intermediate pions. Although we admit that
this simple source theory has many unrealistic features,
there are some properties interesting enough to be
pointed out. As to be expected, the final results (5.14)-
(5.16) are pion gauge-invariant. The matrix elements
vanish if any of the pion four-momenta go to zero.
Second, the formulas (5.14) and (5.15) can be used to
say something about threshold behavior of the matrix
elements in a theory with nonzero mass pions. We add
a mass term —3im.2(¢q)? to the Lagrangian in (5.7).
Then it follows from (5.14) that the matrix element for
production of # pions is proportional to ()" if all the
pion momenta k; (=1, - - -, n) are zero.

We now consider simple models which have been
studied in the past in connection with PCAC and more
recently as substitutes for SU(2)XSU(2) current-
algebra schemes. We shall show that all these models
are pion gauge-invariant although the transformations
of the interpolating fields differ in the various models.
The simplest model is the gradient-coupling model of
pions and nucleons defined by the Lagrangian

L=1(88)2 —P(— iy, 04+ m+ifyyee 04@W. (5.17)

This Lagrangian is formally invariant against the
transformation

$a— datc. (5.18)

The current associated with this symmetry has the form

Aya=—Ju,at 0uPa, (5.19a)
where

Jue=t vyt (5.19b)
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The axial-vector current A4, .(x) is conserved as can be
seen explicitly from the equation of motion for the pion
field

9*0upa= 0* 74, a- (5.20)

The operator
=/d3x Ao,a=/d3x (604),1—-]'0,”) (521)

generates the transformation (5.18) by virtue of the
canonical commutation relations. In the following we
shall assume that, although the gradient-coupling model
has such undesirable properties as unrenormalizability,
asymptotic fields in the usual sense exist for this model.
Then the asymptotic pion field ¢q,im(x) undergoes the
same transformation,

¢a,in_)¢a,in+5; (522)
as the interpolating field ¢,. The generator of the trans-
lation of ¢g,in is

Xa,in=/dsx a()fba,in- (5.23)

Since X, is independent of time, X, should be equal to
X4, in. This is the case if the space integral

[t

converges to zero as a weak limit for { — == co. That this
may happen is already plausible from the old “adiabatic
switching” hypothesis. In the context of electrodynam-
ics Killén!* has imposed this property by the formal
device of a damping factor e=®®! a procedure which is
applicable in the pion theories also. Instead we give
the following formal derivation based on the Yang-
Feldman equation for the pion field in the usual for-
mulation?®:

a(5) = b in(8) + / 0 Ap(5—3)5ualy). (5.25)

(5.24)

Using this equation, we substitute for depa in (5.21)
the time derivative of (5.25). Then we have

Xa=xa,in+/d3x /d4y anAR(x—y)a“]'m.in(y)
- /d% Jo,e(x). (5.26)

We evaluate the second term in (5.26) in momentum
space, disregarding all complications which evolve from

4 G, Killén, in Handbuch der Physik, edited by S. Fliigge
(Sprmger-Ver]ag Berlin, 1958), Vol. V, Pt. 1.
15 See, for example, S. Schweber, Ref. 11
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interchanges of orders of integration:

/riﬁx/d“y A" AR(¥—¥)0* ju,a(y)

fonfon et

r
'—‘(21!’)3 / (lkoe"ik"‘”ojo,a(ko,())=/d3x jo,a(x). (527)

J

e * whok# Ju, o (k)
(kotie)?—

Thus the second term in (5.26) is equal to the last term
and we have Xo=Xg,in.

Then solutions of the gradient-coupling model, under
the condition that they exist, are obviously pion gauge-
invariant in the sense discussed in the previous sections.
Therefore in this model all elastic and inelastic =-V
scattering amplitudes should vanish if the four-momen-
tum ¢ of one of the pions goes to zero. It might be inter-
esting to check the specific behavior of these amplitudes
for ¢— 0 in one simple example. We shall do this for
elastic w(q)+N(p) — m(¢')+N(p') scattering, where g,
$, ¢’y and p’ are the momenta of the participating
particles as indicated. Unfortunately we can do this
only in lowest-order perturbation theory. The matrix
elements 77@®) where (&) stands for symmetric and
antisymmetric isospin combinations, are considered as
functions of ¢=(¢—¢’)? and s= (p+¢)>.

For g or ¢ — 0 we have t — 0 and s, » — m?. There-
fore, part of the information about the behavior in the
limit ¢ or ¢’ — 0 is apparent from the form of the for-
ward scattering amplitude To(»)=7) (y, t=0) with
v=p-q. In lowest order of f the amplitudes 7 (»)
have the following form:

ToPw)=0, T¢@)=2f%/m. (5.28)
Thus both amplitudes vanish for g= ¢’ — 0 as expected.
It is difficult to calculate pion-production amplitudes
in this model. A first step in this direction has been
taken by Perrin.!® But as far as we can see, his result
is not pion gauge-invariant, presumably because of the
approximations necessary to derive his final result.

It appears that in the gradient-coupling model, the
asymptotic pion gauge invariance is realized in the most
simple way. The free and the total Lagrangian have the
same symmetry ¢.— ¢q.+c.. Therefore, the axial-
vector charges Xo()=fd*x Ago(x) are translation
operators obeying [X,(#),Xs(t)]=0 for all ¢ and not just
for t — == . The situation is different in some of the
models considered recently in connection with SU(2)
XSU(2) chiral symmetry. An old example of such
models is the familiar “linear” ¢ model studied by Gell-
Mann and Lévy.17 For our purpose we are interested
only in a limiting case of this model, namely for zero-

16 R, Perrin, Phys. Rev. 162, 1343 (1967).
7 M. Gell-Mann and M. Lévy Nuovo Cimento 16, 705 (1960),
and older papers quoted therein.
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mass pions without symmetry breaking. Then the
Lagrangian of the ¢ model is

=40 H1(90)—dm 20 —J (=i Dyt mp
+ fBlo-rss W —Hme/2m) 2o+ 40
+m/2m) folt 44, (5.29)

where ¢ stands for the scalar field with I=0. This
Lagrangian is invariant under the following gauge
transformation which we write in infinitesimal form?$

¥— [1+(f/2m)yse-c ¥,
T 0'+(f/m)¢cr
¢ — ¢+c—(f/m)oc.

The current generating this transformation has the
following form:

Apa=0,pat (f/m)‘pi'Y#'Yﬁ(%Ta)‘l’
+ (f/m) (d’aaﬂo' —‘Ta;td’a) .

Equation (5.31) specifies the transformation for the
interpolating fields ¥, ¢4, and ¢ at finite ¢ Again it is
plausible from the adiabatic hypothesis that the trans-
formations of the corresponding asymptotic fields y¥in,
@a,in, and o, are the following:

llbin d ¢in )
Oin — Cin,
¢a,in - ¢a,in+6a )

and similarly for the outgoing fields. This means the
o model above has the pion gauge invariance of the
asymptotic pion field considered in the previous sec-
tions. To support this statement we show (following
the procedure in the gradient coupling model) that the
generator of the transformations (5.30), namely,
Xo=fd% A¢,o With Ao, given by (5.31), is equal to
Xa,in, the generator of the transformations (5.32). For
this purpose we write the axial-vector current (5.31)
in the form

(5.30)

(5.31)

(5.32)

A;a.a= au¢a_ju,a, (5.33&)
where
Jua= = (f/mW¥ivavsGra¥
: —(f/m)(@adur—00,upa). (5.33b)

Because the axial-vector current is conserved, 0#4, =0
or equivalently, from the equation of motion for the
pion field, we have

(5.34)
Then, ¢a(x) obeys the Yang-Feldman equation (5.25)

and X, has the same form as (5.26) with the only differ-
ence that j, (%) in (5.25) and (5.26) is now given by

343, 0= .

18 Usually this transformation is written with a variation param-
eter vo=(f/m)ce and the current A4, o is divided by f/m. The
symmetry is then interpreted as a dynamical SU(2) transforma-
tion. But in this form no limit to the noninteracting system can
be performed.
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(5.33b) instead of (5.19b). As before (5.27) leads to
Xo=Xa,in. On the basis of these considerations we must
conclude that the theorem derived in Sec. 4 is valid
also for the o model. Just recently, in a study of an
extended o model including vector and axial-vector
mesons, one of us found that the amplitude for forward
7-N and w7 scattering vanishes if the pion mass is
zero.'® Obviously, these two special examples are reali-
zations of the general condition for pion gauge invari-
ance in the o model.

It is clear that the same statements we make about
the “linear” ¢ model defined by the Lagrangian (5.29)
can be made for the nonlinear ¢ model in Ref. 17, the
Nishijima model as studied by Nambu and Lurié'
and similar models investigated by Chang and Giirsey.?°
Also the models of Wess and Zumino?! and Weinberg,??
where interactions with vector and axial-vector mesons
are included, belong to this category. In some of these
models?*22 and also in the models constructed by
Schwinger?® the authors prefer to express the chiral
transformation not in terms of isospin matrices and
vs’s, but in terms of isospin matrices and the pion field.
In this way the coupling of the pion with the nucleon
field appears from the beginning in the form of nonlinear
derivative coupling. It is usually agreed that the two
methods of constructing ‘“chiral symmetric” Lagrangi-
ans are equivalent. Nevertheless, in order to make our
statements about the asymptotic form of the gauge
transformations more transparent for this class of
models, we shall discuss one particular example, the non-
linear model proposed by Schwinger.?* The Lagrangian is

S=4(1+ fR4) (04) — P —imudrt-m—(1+ [24)
XLifroves: 9% fitvue (4X ) T (5.35)

This Lagrangian is invariant under the gauge trans-
formation

¥ — [1+ifee (6Xe) W,

¢ — ¢tct f?[2(4- )¢ —¢%c]. (5.36)

The axial-vector current associated with this transfor-
mation is

Apa= au¢a—jﬂ.ay (5-373)
where
jy.a= —fJ’i'Yfr'YyTa‘p'— zfozlp)’u("x d’)a'//

— [0*(2pa: 0,4 —3¢%0uba), (5.37D)

19 G, Kramer, Phys. Rev. 177, 2515 (1969). The vanishing is a
result of the cancellation between the nucleon-exchange and the
g-exchange terms.

20 P, Chang and F. Giirsey, Phys. Rev. 164, 1752 (1967); 169,
1397 (1968), and earlier papers by Giirsey quoted therein.

21 J, Wess and B. Zumino, Phys. Rev. 163, 1727 (1967). See also
S. Gasiorowicz and D. A. Geffen, Argonne National Laboratory
Report No. ANL/HEP 6809 (unpublished).

22 S, Weinberg, Phys. Rev. 166, 1568 (1969).

28 J, Schwinger, Phys. Letters 24B, 473 (1967); Phys. Rev. 167,
1432 (1968).

24 J, Schwinger, Phys. Letters 24B, 473 (1967). See also D. B.
Fairlie and K. Yoshida, Ann, Phys. (N.Y.) 46, 326 (1968).
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so that, as before, the equation of motion of the pion
field has the form

049ubpa=0*Ju,a (5.38)
and the generator of the chiral transformations (5.36)
is expressed by

Xa=/d3x (60¢a—-jo,.,). (539)

Under the condition that asymptotic pion fields exist
in this model it can be shown in the same way as for
the gradient and the ¢ model that X,=X,,in. Therefore,
the asymptotic fields for this Lagrangian are trans-
formed as

l//in"_“piny ¢a,in'_)¢’a,in+ca, (54‘0)
that is, by the pion gauge transformation considered in
Sec. 4. Thus, the pion-connected S-matrix elements
calculated with the Schwinger Lagrangian obey the
gauge conditions of Sec. 4. Examples (forward 7-N and
- scattering) were already considered by Schwinger.
His results yield vanishing amplitudes for these processes
if m,=0 and coupling constants are appropriately
redefined.??

These properties of the ¢ model and the nonlinear
pion models might be compared with the situation in
quantum electrodynamics with respect to local guage
transformations. There the total Lagrangian is invari-
ant under the familar gauge transformation

te«A(x)
V) - e (), 540
Au(x) — A (x)+0,A(x),
which reduces for the asymptotic fields to
V=¥ (5.42)

Au,in - Ap,in+ ayA(x) .

We used precisely this formulation of the local gauge
invariance in terms of the asymptotic fields to derive
the electromagnetic gauge condition in Sec, 4. This is
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well known in the literature?*=27 and is derived in dif-
ferent ways depending on the formalism used. In Refs.
25 and 27 the generator of the transformations (5.41)
and (5.42) has the same form as (3.16) with A, in(x)
replaced by A.(x) in the case of (5.41), but the com-
mutation relations for equal times for the asymptotic
field and the interacting fields differ. If the commutation
relations for the interacting and the asymptotic fields
have the same form, the generator for the transforma-
tion (5.41) is

Xp=— / A% (BoA () 844 (%) — A () 309 A ()

—A(x)jo(x)],

where 7.(x) is the current density. But the Yang-
Feldman equation which defines 4,,in(x) is then?8

(5.43)

A,‘(X) = (gnv+Man8V>A inv(x)+/d4y Ap(Xx _y)j(y) )
(5.44)

with a constant M obtained in the renormalization pro-
cedure. By substituting for 9#4,(x) in (5.43) the expres-
sion derived from (5.44), we see that X=X, in in quite
a similar way as we saw that X,=X,,in in the pion
models.

Finally, we remark that it would be interesting to
investigate models which are SU(2)XSU(2) invariant
but are not pion gauge-invariant. We conjecture that
in such a model the low-energy theorem does not obtain.
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