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%'e discuss the Veneziano model for 2i-2l- scattering in connection with the hypothesis of partially conserved
axial-vector current, the SU(2)QXSU(2) charge algebra, the scattering-length ratio ao/o2, and the 6nite-
energy sum rules of Dolen, Horn, and Schmid. Following Dashen and Weinstein, and abstracting from the
model, it is proposed that SU(2)oxSU(2) is a symmetry of the system, and that the strength oi the sym-
metry-breaking interaction is proportional to the deviation of the intercept of the p trajectory from k.

I. INTRODUCTION

ECENTI, "jL, a nmdel for two-body scattering pro-
cesses has been proposed by Veneziano. ' The

model has various defects, all of which we believe are
due to vlolatlons of unltarlty which accompany the
narrow-resonance approximation, and all of which we
ignore here. '

In Sec. II, we define the model, as applied to s+rr -+
rr+s. In Sec. III, we begin with some general remarks
about SU(2)QxSU(2) symmetry and its breaking. We
discuss the Adler consistency condition, the value of the

derivative of the I= j. amplitude at threshold, the
scattering length ratto Go/gs, the Adler ll s sum rule, and
the superconvergent I=2 sum rule, evaluated at 3=0.
In Sec. IV, we brieQy check the superconvergence of the
I=2 sum rules for 5&0. In Sec. V we discuss 6nite-
energy sum rules (FESR) of the Dolen-Horn-Schmid

type, ' for I= 1 and I=2. In Sec. VI, we summarize our
conclusions.

II. THE MODEI DEFINED

We work in the t channel, taking for the isospin
amplitudes'

Ao',
X'= Al' ——g.Ag'.

—-',Fs(n(s),n(N) )+,Fs(n(t),n(s))+s'F s(n(t),n (I))'
Fo(n(t), n(st) )—Fo(n(t), n(s) )

Fs(n(s),n(N))
(2.1)

where n(x)=a+br, and, where

Fs(&a) = I'(1—~)1'(1—2)/I'(1 —a—X). (2.2)

The choice (2.1) insures that Bose statistics, isospin
conservation, and crossing symmetry are properly in-

* Work supported in part by the U. S. Atomic Energy
Commission.' G. Veneziano, Nuovo Cimento 57, 190 (1968).

'This is a rather strong statement in view of the variety of
pathologies involved. Those defects known to us are (a) non-
uniqueness of the choice of amplitude; (b) additive axed poles in
the angular momentum plane, in the I=O and 2 amplitudes, at
negative wrong-signature integers; (c}violation of factorization by
the satellite states lying below the leading trajectory /further,
there is the phenomenological problem that some of these states,
e.g., the p' (1 ) degenerate with fo, do not show themselves in the
data, and that a 2l-+2l- state at =1050 MeV may exist that is not
predicted by the model); (d} the neglect of the Pomeranchon.

With respect to (a), an infinite set of amplitudes of the form

r(M —~)I (X—y)/r yS+X—E—~—y)+ PS ~ Ã),
E&~1, 3I/~&E, Ã~&E'

can be used for 2f-+2r scattering. I See, e.g. , Ref. 1; J. Mandula,
Caltech Report No. CALT-68-178 (unpublished); and S. Mandel-
stam, Phys. Rev. Letters 2I, 1724 (1968).j Except for the term
with 3f=E=E=1,which we use in the text, each individual term
generates negative-resonance widths, and has an angular behavior
of its pole residues which does not match the average Regge be-
havior n(s) ~&'). We expect the nonuniqueness will be removed if all
internal states are considered as external states and consistency is
achieved.

corporated, while (2.2) implies average Regge asymp
totic behavior, in the sense suggested by Veneziano. "
The form of (2.2) leads to the violation of unitarity
mentioned above. %e do not attempt to improve on the

The 6xed poles of (b) are discussed by D. Sivers and J. Yellin,
Ann. Phys. (¹Y.) (to be published), and have been independently
discovered by M. A. Virasoro (private communication to S.
Mandelstam} and G. Veneziano (private communication). See
also S. Mandelstam and L.-L. Wang, Phys. Rev. 160, 1490 (1967).
There is phenomenological evidence that an additive axed pole
exists in the B( ) amphtude of ~E charge-exchange scattering. See
R. Dolen et al. , ibid. 166, 1768 (1968);R. Roskies, ibid. 175, 1933
(1968}.

With respect to (c},we conjecture that factorization cannot be
implemented even with a (convergent) infinite sum, unless one is
willing to introduce new leading trajectories. For example, several
workers have observed that, starting with the 3E=E=E=1 term
Only, fOr 2r23-~2)-2l; COnSiStenCy requireS the eXiStenCe Of an
abnormal C, isoscalar trajectory, degenerate with, and containing
the same spin-parity content as the 2i- trajectory.

As for (d), we have found it impossible to introduce the
Pomeranchon as an ordinary Regge trajectory without accepting
in addition (possibly nonleading) / =2 Regge trajectories.

'R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(1968).' J. Shapiro and J. Yellin, University of California Lawrence
Radiation Laboratory Report No. UCRL-18500, 1968 (un-
publ. ':shed); J. A. Shapiro, Phys. Rev. 179, 1345 (1969).

~ The asymptotic behavior and other simple properties of the
model are considered in great detail by J. Yellin, University of
California Lawrence Radiation Laboratory Report No. UCRL-
18637 (unpublished).
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narrow-resonance approximation here. ' ' However, we
avoid the use of the asymptotic averaging procedure, in
order to illustrate the problems involved in a strict
application of (2.1) and (2.2).

For convenience we de6ne the variables zv, g, r, s', s„,
and s, La=n(s), y=n(sr) j:

7=1—x

n= s(* y)—,
5)= g+7 =

g
—X—p)

s= 2'/r,
s„=1+2r/(y —-';),

s,=1+2r/(a ——,') .

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

(2.3f)

We will constantly refer to the important special case
y—=m =0, b= 1 GeV ', a= ~~, below, as case P.

For case P, r= t, q = r = s (s—N), so= rr(r), s= cos8&,
2', =cose„and s,= cos8„.

We will also need the constants

D =oo+y+w = (s+t+sr)b+3a= 4psb+3a, (2.3g)

X=4p'b, (2.3h)

8= a——', . (23i)

To formulate sum rules, we will use the expansions'

(—1)~i'(K+ r)
Fo(x,y) = Q

I'(K)I'(r)

which follow from the properties of the hypergeometric
Se11es 2Fy.

T(p;) eAr+B—og, (3 1)

where e measures the strength of the SU(2)QxSU(2)
symmetry breaking, and t is a scaling factor such that
for fixed P;, p;= $F;. The constant Bo appears on the
left-hand side of the Adler mm- sum rule, and is the
derivative (d/dr)Ar' Lr =-', (s—N) j evaluated at s=g
=5=0

Bo=1/8rrf '. (3.2)

III. PCAC, SU(2) SU(2) CHARGE ALGEBRA,
AND mm SCATTERING LENGTHS

We assume that the amplitude (2.1) is, up to the
narrow-resonance approximation, a representation of
reality. ' Now let us try and make our model consistent
with a theory in which broken SU(2)QxSU(2) sym-
metry is relevant for m.m. interactions. '

According to Dashen and Weinstein (DW),"such a
theory make sense in the symmetric limit only if the
pion then becomes a Goldstone boson, while the pion
decay constant f, the nucleon mass, and g~, the qs=0
limit of axial-vector form factor, remain nonzero. In this
picture" the oror scattering amplitude T(pr, ps, ps, p4) can
be written, suppressing isospin indices,

and

1
X + (2.4)

ri+ (1 r) K ——ri—+—(—1—r) —K

If we assume how the symmetry-breaking interaction
transforms under SU(2)QXSU(2), we can compute eAt.
If it transforms as (—',,—,'), we get the Weinberg" result

Fo(ro,y)~Fo(to, &) eA t= p /8rrfw =p Bo I (3.3)

I'(K+r+-,') 1 1

= r(r)r( +-;) y —x ~ Ic)—
I'(K+ r+-,')

rr=r I'(K)1'(r+'s)

which leads to the scattering-length ratio ao/as= —sr.

If we choose 5= a——,
' =0 in (2.1) our oror amplitude

vanishes quadratically as P, -+0. We therefore con-

jecture that the strength of the symmetry-breaking
interaction is proportional to 5. Case P is then

SU(2)QxS U(2)-symmetric. At P,=s = t= N =0, (2.1)

X -~, (2.5)—g+-sr(1—r) —K r)+ rs(1 r) K -—— '

9 Details of the calculations in Secs. III—V and a review of the
relevant PCAC and charge-algebra results are contained in J.
Yellin, University of California Lawrence Radiation Laboratory
Report No. UCRL-18664 (unpublished).

'0 R. Dashen and M. Weinstein, Phys. Rev. (to be published).
See also Goldstone's original work: J. Goldstone, Nuovo Cimento
19, 154 (1961);J. Goldstone, A. Salam, and S. Weinberg, Phys.
Rev. 127, 965 (1962). We thank Dr. Dashen for several very in-
formative discussions.

As emphasized by Dashen and Weinstein, though the introduc-
tion of SU(2)OxSU(2) symmetry does not at present lead to new
results, e.g., for 21-21- scattering, it gives, in contrast to previous
formulations, an exact meaning to PCAC, and this opens up the
possibility of computing PCAC corrections in the future. If our
guess about the connections between the intercepts of Regge
trajectories and the symmetry-breaking interaction is correct, th:s
leads to many possibilities in precisely that direction."S. Weinberg, Phys. Rev. Letters 17, 616 (1966);N. N. Khuri,
Phys. Rev. 153, 1477 (1966).Weinberg makes the explicit assump-
tion that the symmetry-breaking interaction transforms like
(q, ~&) under SU(2)oxSU(2).

' What would happen to the correct 2i-2I- scattering amplitude if
one made the narrow-resonance approximation on it is by no
means clear. Three possibilities are the following. (i) Factorization
may or may not be destroyed but one gets the degenerate towers of
resonances of the present model; (ii) large mass shifts occur, in
which, for example, the ~ and p become degenerate; SU(6)w
symmetry is appropriate LS. Mandelstam (private communica-
tion)); (iii) the satellite states arise from continuum in the actual
physical amplitude and should therefore be ignored. K. Bardakci
(private communication).' Some problems involved in an attempt to go seriously beyond
the narrow-resonance approximation are discussed by R. Roskies,
Phys. Rev. Letters 21, 1851 (1968).' These expansions are discussed at some length by D. Sivers and
J. Yellin, Ann. Phys. (¹Y.) (to be published). The series (2.4) is
interesting because both sets of poles are simultaneously exhibited
and each set individually lacks the duality property. The ex-
pansion (2.4) converges absolutely for z(0, while (2.5) converges
for v &—q. We use the discontinuity of these sums here, when we
leave the region of convergence.



tells us that

X&=-- — 0
I"(—28)

QxSU(2), I= 1 and 2 sum rules, if one assumes them to
be saturated with e(0+) and p(1 )."

A. Adler mm Sum Rule

From (2.1) and (2.5),

(3 4)
g-'sf t'(rl, r)

to 6rst order in B.
Furthermore, the derivative relation is

(d/&~)&i'(, =o= gbs. (3.5)

Putting in isospin and comparing (3.2)—(3.5), we have

(«r/&e)nw= p'= (e~i/&o) .e.t= —~/b (3 6)

%'e do not belabor this result further here numerically
except to express our satisfaction that 8 comes out
smaH. We note that (3.6) can be written n(p') s, , w=hich

is the assumption recently made by Iovelacc. "'3
The model gives us two more hints that 8 is small4:

(1) the widths of the satellite states become negative as
b becomes less than —0.007 for physical p; (2) the
derivatives at threshold of the s-vravc amplitudes be-
corne unreasonably large if b&+0.1.

If our identification of case P with SU(2)Q&&SU(2)
symmetry is correct, the case-P mass spectrum should
give us R clue to that cftcct. However all wc know in
advance is that the mass spectrum consists of degenerate
isospin multiplets, since the symmetry generated by the
RxlRl-vector charges is rcali&cd by thc RppcRrRncc of
massless pions. '0 Though there are probably simple
words to describe the spectrum, we have been unable
to find them, and leave this as a subject for future
investigation.

In the next two subsections we show that the reso-
nance contributions to the Adler xm sum rule'4 in the
model are in qualitative agreement with phenomeno-
logical estimates, and that the superconvergent I=2
sum rule, evaluatedat t=Oin the model, yields I', /P,
=-,'. The latter result also follows from the SU(2)
"C. Lovelace, Phys. Letters 28$, 265 (1968).With reference to

Lovelace's Bt of the pe —+ 321- Dalitz plot, we are informed by
Dr. E. L. Berger (private communication) that a more detailed
comparison with the data using Lovelace's expression yields the
result that the zero at v.=0 must be moved to v = —1.8 GeV2. This
tends to cast grave doubts on the validity of mass extrapolations
made in Lovelace's manner.

Our approach is rather orthogonal to Lovelace's in that we
believe the use of the narrow-resonance approximation makes these
results qualitative only. Because of the zero in the model a2 at
a=o, we cannot check the consistency of ~,/a&, in the model, with—-„without additional information, such as our conjecture about
the symmetry breaking.

"M. Ademollo, G. Veneziano, and S. Weinberg, Phys. Rev.
Letters 22, 83 (1969), have generalized the argument about the
PCAC zero in ~2I. —+ ~2I- to all hadronic amplitudes and suggest a
rule which spaces certain Regge intercepts by half-integers. From
our point of view this is a manifestation of the fact that for exact
SU(2)QxSU(2) symmetry the intercepts are precisely integral or
half-integral.

More details of the extension are contained in the work of C.
Goebel, M. Blackmon, and K. C. Wali (unpublished)."5. L. Adler, Phys. Rev. 137, 1022 (1965).

P(s —n+sr)P(s —r) P(s+n+sr)P(-; —r)

P (—v —sr) P (~ s—r)

P (E+r+-', )

rc-i I"(r+-,')I"(lt)

Taking iE/dr)
~ „=o and r =0 in (3.7), we have the Adler

sum rule for case P:
P(E'—', ) 1 3 5

sr= P — — =2+ + + + . (3.8)
it=i P (E)I'(st) (X—~~) 3 20 56

From (3.8) we see that in this model" the sum rule is
saturated 64% by (p, e), 11%by (f,p', e'), 5% by the g
family, etc. According to Gilman and Harari, '~ the
bump at the f' mass contributes less than 10%, and the

g a few percent, to the sum rule, so we are in qualitative
agreement with experiment. ""

B. I=2, 1=0 Sum Rule

Up to factors of m. , the discontinuity in g arising from
As' can be read off from (2.5) and (2.1):

Ds'(«) = & (—1) & '(lt+r)Lb(n+s(I —r) —&)

+(s, —+ s„, r) ~ —r)}. , (3.9)

where 8(a,b) =I'(u)P(b)/P(a+b).

F. J. Gllman and H. Harari, Phys. Rev. 165, 1803 (1968).In
ther'r work the assumption of SU(2)QXSU(2) symmetry breaking
through the (-,', ~~} representation plays an essential role.

"In connection with the derivative of the I= 1 amplitude, it is
interesting that in the model the quantity I.=—,(2a0 —5u2) satis6es
pl. = 2~Kg{1+4.78+1.4X+quadratic terms) for small 8 and X, so
that for b—1 GeV ~, g=1, and 8—0, pI—0.125 as compared with
the charge-algebra result 0.10.

~' See Ref. 15, p. 1823, paragraph 10 and footnote 67.
18 It will be noted that the KSRF relation (Ref. 15, p. 1817 and

footnote 53) reads 0.92—1.0 from experiment (using I'~ „—112
MeV, and fm as given by I' „„)and 0.64—1.0 from our model. In
order to derive the —,

" ratio for I', /I'~ from the charge-algebra
sum rules one needs the KSRF relation Lor the arguments of S.
Weinberg, Phys. Rev. 178, 2604 (1969)g in addition to the I=1
and 2 sum rules. We shed no Hght on this situation here.
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The usual superconvergent I= 2 sum rule reads

vdv Dp'(v)0) =0. (3.10)

=
p Z (2J+1)bp(J,v)I'~(z. ) XzL1+(—1)'j

J=0

From (3.9) it can be seen that for case P, at each mass
corresponding to q=half-integer there is a degenerate
tower of states with spins running from 0 to 2g. For
example, at ri= &—', we have p(1 ) and p(0+), while at
g= +( we have f(2+), p'(1 ), and p'(0+), etc.

Along r= 0, the amplitude A2 and its discontinuity
vanish, and the contribution of each tower to the sum
rule (3.10) is zero, so that the resonances in every tower
cancel each other. The cancellation at s,=0 is explicitly
exhibited in (3.9).

Since there are no I= 2 poles, D2' crosses into

D t Xj+S iDS

Because we have chosen 7.= —S, the sum truncates
at X, and changing variables, (4.1) becomes

+(~—&)I2 Q'v+'I'(X+1)
=0, (4.2)

o—&~—un I"(-,' (Ar+1) —Q)l'( —,
' (Ar+1)+Q)

showing the cancellation explicitly.

V. SUM RULES FOR ~&0 (FESR)

A. I=2 Sum Rules

We now consider the lowest-moment FESR on the
right-hand discontinuity in (3.8),PP

+U

~de 2 (—1) B '(It, r)
2 p E=l

Xb (ri+-', —IC —-', r) =0. (5.1)

Let us check and. see in what sense (5.1) holds. In
(5.1) we choose U so that the highest mass pole included
has %=AT. ( p+1V+pr&—U~& z+E+1+—zr.) The
lef t-hand side then becomes

—
z Q (2J+1)bz(J,v)Pg(z, )zt 1—(—1)~]) (3.11)

J'=1 —' Q (—1)xB '(r K)(2E—1+r)
E'=I

where the u, left-hand discontinuity, has been. sup-
pressed. Assuming that Dp'~ ~=p=0, and that we have
degenerate towers, as in the model, then at the lowest-
mass tower,

'pbp(0, vg) —j'bg(1, vg) =0, (3.12)

dq Q g'v+'( —1)~B-'(—Ar, J)
J=l

Xb(g+ —,
' —J—-,'S) =0. (4.1)

"This situation is interesting because it is in this amplitude that
the 6xed poles in J occur. One can check that they are present by
examining the Schwarz sum rules D. Schwarz, Phys. Rev. 159,
1269 (1967)j. This has been done by Veneziano (private com-
munication). The superconvergence of the x+m amplitude at t(0
has been used by Schmid to construct an amplitude agreeing with
(2.1). See C. Schmid, Phys. Letters 28B, 348 (1969); Xuovo
Cimento (to be published). We thank Dr. Schmid for several very
helpful private communications.

yielding the ratio I', /I', =$. Any model having (a)
degenerate towers with the proper spin content, (b) a
zero in Ap' along 1=0, and (c) no I=2 poles, will yield
the —,

' ratio.
As pointed out by Gilman and Harari, " the —,

' ratio
also comes out of the I=1 and 2 charge-algebra sum
rules, provided one assumes they are saturated by p and
e only.

IV. I=2 SUM RULES FOR v &0

As r gets negative, poles in Ep(x,y) begin to move out
into the unphysical, double spectral region and the s
and I poles cross."

We can check that each sum in (3.9) still separately
superconverges. For simplicity, consider v = —E,
(xV=1, 2, ~ ) and take any odd moment. Then we
should have

= (—1)~B '(r,XP', (X+r)
=z(—1)"2'~+~(r)/I'(&), (5 2)

where T~ (x) =I'(x+E)/I'(z).
Equation (5.2) can be easily proved by induction.

The sum changes sign and grows in absolute value as
each new resonance is included, so that there are violent
cancellations. " If we give a finite width to the reso-
nances, we can always find a point intermediate between
any pair of neighboring resonances such that the sum
vanishes. This remains true for all the moments.

B. I=1 Sum Rules for ~&0 (FESR)

The I& 1discontinuity, &o——m (2.1) and (2.5), is

I'(-', +r+J)
«=»(J)l'(p+r)

XLb(~+-,'——,"—J)+b(—~+-',—-,'.—J)7. (5.3)

Just as for the I=2 case, we take U such that
cV+—,'r —z(U&ItI+1+zr ,', and for the z—er—oth-mo-

"C.Schmid and I. Yellin, Phys. Rev. (to be published), give a
detailed discussion of the FESR in connection with 0 0 scatter-
ing. Further references are given there. Veneziano (Ref. 1) also
discusses FESR for large limits of integration, and in an average
sense.

"This is to be expected because the I=1 and 0 resonance
contributions are opposite in sign and we are going out of the
physical region where the Legendre series diverges. See Ref. 20 and
S.Mandelstam, Phys. Rev. 166, 1539 (1968), Sec. VI, for opposing
views on whether or not one should formulate the FESR at
positive t.

Because of the oscillating behavior the I=2 FESR were not
used for numerical work in Ref. 20. However, in the I=0 case the
oscillations occur about the Regge term rather than zero, and the
resulting relations were used numerically.
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ment FESR we have

PN+1 (&+s )
(5 4)

1(~)(+-:)'

which one easily can prove by induction. If we expand in
powers of E, we have

dg Di'(g, r)

&"'+' (2+r) (s+r)
1+ +0(E ') (5.5)

(r+—')I'(r+ —', ) 2Ã

or, inserting o.(t) =r+ ,', the rig—ht-hand side takes the
familiar FESR form"

E ~'&+' Ln(t)+1jn(/)
1+ +'' (5 6)

Ln(t)+1jI'(n(t) ) 2)V

At n(t) =1 (i.e., at t =m, ') this becomes

'X'(1+1-/E+ ), (5.7)

= P'o(s)+P (s)3(v —' —' )

+sos(s, )+Pi(s,)j5(g —$——',r)+ . , (5.8)

so that the resonances cancel in the backward direction,
as they should. At r= —,', the p and f contributions to
the left-hand side of the FESR are, from (5.8), using
s, = 1+2r/(x —-,'),

4i &(3+s'X11/3=17/8, (5.9)

while the e and p' contribute

4&&1+s&&5/3= s (5.10)

making a total of 3, which checks with (5.4).
Therefore, while the exact relation reads 3=3, the

FESR' at t= m, ', with p and f' on the left, and p on the
right, reads 17/8=2, since compensating errors have
been made.

The I=0 sum rule, which is suspect in any case be-
cause we have neglected the Pomeranchon, " contains

~'For a discussion of FKSR and the Pomeranchon, see H.

so that we commit a 50% error if we choose to keep the
leading trajectory only on the right-hand side of the
FESR, and take X=2. (This means that we keep the p
and f families on the left. ) Let us see what happens on
the left if we keep only p and f Rewritin. g the first term
in (5.3) as Legendre polynomials in s„we have

- I'(s+r+~)
&(~+s —sr —~)

= I'(J)1"(-',+ )

the oscillating object already associated with the I= 2
sum rule. The same calculation as was performed here
for the I= 1 case can be done for I=0, and is left as an
exercise for the enterprising reader. "

VI. SUMMARY AND CONCLUSION

We have shown that the Veneziano model, applied to
ir+m. ~ s.+mr, is consistent with the SU(2)QxSU(2)
charge algebra and with PCAC.

We conjecture that the underlying SU(2)Q&SU(2)
symmetry of the mw system is broken by an interaction
which moves the intercept of the p trajectory away
from 2. We then 6nd that 8=a—

~ is small if one is to
get consistency with the results of Dashen and %ein-
stein" and of Weinberg. "Without this conjecture we
are unable to check the model's consistency with the
scattering-length ratio ao/a2= ——,', because of its great
sensitivity, in the model, to the precise value of the
intercept of the p trajectory. However, if ao/as is to be
appreciably different from +s', the intercept must in
any case be near s (oo/o2= s+6p'b/8 for small 8 and p').
We have also shown that the model has the qualitative
behavior suggested by Dolen, Horn, and Schmid' with
respect to FESR, evaluated at positive t.

We have made no detailed comparison with experi-
ment because we believe the use of the narrow resonance
approximation renders this a futile exercise. '4

In our view, in order to go further than we have done
here, one must attack the problem of including addi-
tional features of unitarity.

Eofe addedie Proof. In making the remarks in Sec. III
about SU(2)QxSU(2)-symmetry breaking, I have im-

plicitly assumed that the difhculties which arise if one
perturbs the SU(3)QXSU(3)-symmetric limit and tries
to compute the mass-squared matrix for the pseudo-
scalar mesons Lsee, e.g., R. F. Dashen, Institute for
Advanced Study Report, Sec. IU 3 (unpub1ished)$ do
not occur here. I am indebted to H. R. Pagels for
pointing this out to me. While I do not believe there is

any problem with respect to mw scattering, the question
is a subtle one, and the reader is referred to Sec. 4 of
Dashen and Weinstein (Ref. 10) for a thorough
dlscusslon.
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