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Strong-Coupling Solution of the Bronzan-Lee Model'
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An approximate solution of the nonrelativistic Bronzan-Lee model in all sectors is described. By using
Tomonaga s intermediate-coupling approximation and then minimizing a strong-coupling approximation
to the lowest set of energy eigenvalues, a relatively simple strong-coupling solution is obtained which avoids
the restriction to large-source radius inherent in North's strong-coupling treatment. An explicit calculation
is carried out for the special case f=g&&1, in which case one Gnds an isobar spectrum E~ (6g' —1)g ', where

q denotes the total charge.

'N a recent article, ' North has solved the nonrela-
~ ~ tivistic Bronzan-Lee model2 by using the methods of
old-fashioned strong-coupling theory. ' North's solution
of the Bronzan-Lee model is obtained by using the same
method which he previously used4 to solve the ordinary
Lee model5 (OLM). North's solution of the OLM is
valid provided

1«(mg')/(mR)'«(mR)',

where g is the unrenormalized coupling constant, m is
the meson mass, and E ' is the momentum cutoB. In
other words, North's solution should be regarded as a
large-source, strong-coupling approximation.

The present note describes the results of an attempt
to remove the restriction to large source radius which
was required in Ref. 1.The present calculation is based
on Tomonaga's intermediate-coupling approximation'
(ICA), and in principle the method can be used to
obtain numerical results for arbitrary values of the bare
coupling constants f and g.r However, in order to obtain
explicit analytical expressions for the ICA results, it is
necessary to minimize a strong-coupling approximation
to the lowest set of energy eigenvalues (rather than
minimize the exact expression, which can only be done

numerically on a computer). Thus, explicit results are
given below only for the special case f=g))1.

In addition to removing the restriction to large E
inherent in North's treatment, the present method
clarifies the exact nature of the relationship between the
spectrum of the Bronzan-Lee model and that of the
OLM: The two spectra are essentially identical in the

two limiting cases, f +0 —and (g/f) —+0, but for
arbitrary values of f and g there does uot appear to be
any simple relationship between the two spectra. The
present treatment also indicates that the U particle's
bare mass has to be set equal to (fQ)'&o ' in order to
make the physical U, physical neutron, and proton
mass degenerate. Since this choice is Not the same as
North's, eti= (fgQ')'/(3'), our results are necessarily
di6erent from those given in Ref. I, in spite of the fact
that in the static approximation North's treatment may
be regarded as a special case of the intermediate-
coupling approximation described. below.

The Hamiltonian for the nonrelativistic Bronzan-Lee
model may be written in the form

&=IImes+IIint+IIbsryon q

(2)

II;„,=-,'Lg(x —i'm)+ f(X —97)jp ui ai,

+-', Lg(X +iX )+f(X,+iX7)jg u u t, (3)

Hb„,.„——(-',I—', Xs+-,'v3Xs) eiii+ (-',I—',43ZS) equi. (4)

Here. aj,t and aI, are the creation and annihilation
operators of the mesons of momentum k, and

ui, ——(2ir) '"
u(r) 'c"' dr
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Contract No. DA-31-124-AROD-13, at Duke University.' G. R. North, Phys. Rev. 168, 1698 (1968).

~ J. B.Bronzan, Phys. Rev. 139, 8751 (1965).
3 See, for example, %. Pauli, 3Ason Theory of Nuclear Forces

(Wiley-Interscience, Inc. , New York, 1948), 2nd ed.' G. R. North, Phys. Rev. 164, 2056 (1967).' T. D. Lee, Phys. Rev. 95, 1329 (1954).' S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 2, 6 (1947).' The question of whether the ICA represents a valid approxi-
mation to the exact solution of the Bronzan-Lee model for arbi-
trary values of fand g is, of course, a much more dificult question
to answer. This problem will not be discussed here, except to say
that in the case of exactly soluble models, where a detailed com-
parison between the ICA and the exact solution is possible, the
ICA usually yields fairly good results for arbitrary coupling
strengths.

where u(r) is the baryon source function, normalized
according to

u(r)d'r =1.

co& denotes the total energy of a nonrelativistic meson
with momentum lr, a&i, =k'+-'„where energies are
expressed in units of 2m. g is the bare (n. ,I',E) coupling

s The Hamiltonian written down here is identical to the one
given by Eq. (1) of Ref. 1.The traceless, Hermitian 3&3 matrices
X, (i=1, 2, ~ ~, 8) are de6ned in, for example, J. Bernstein,
Elementary I'articles and Their Currents (W. H. Freeman and Co.,
San Francisco, 1968), p. 213.I denotes the 3&3 identity matrix.
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(15b)w:—tV g (oisl,

(15c)

(15d)

(15e)

G—gal/2

F=jlVit',
(7a)I'+sr ~ tV,

1V+7r +-+ U, (7b)
1V=Q ui, '.

kwhere North's convention has been adopted t in
Bronzan's original article, the baryons are called E, V,
U (instead of P, 1V, U, respectively) and the meson is
called ej. It is clear from the allowed processes (7) that
the Bronzan-Lee model conserves the total electric
charge of the meson-baryon system. This corresponds
to the fact that the operator of total charge,

It should be noted that North's strong-coupling
approximation may be regarded as a special case
(namely, f&=1V '"Ni) of Tomonaga's intermediate-
coupling approximation. "

Following the same mathematical procedure as
North, ' we seek simultaneous eigenfunctions of IIyg~
and qK,~ in the formq

=-', (X3+vS&)—P aAta&,

constant, f is the bare (ir, lV, U) coupling constant, and where
e&,& may be regarded as the bare E, U masses.

The only processes allowed in the Bronzan-Lee model
are

tt =(1+c„'+d„') '" c„lt„ i
~~n n—2-

(16)

where the harmonic oscillator functions f„are defined
according to

(17a)

(17b)

(17c)

aiP„=O,

4-= (~') '"(a') Vo,

(9a)ax~ faa,
aAt~ faa' (9b)

The desired eigenfunctions satisfy

commutes with the total Hamiltonian (1).Just as in the
case of the OLM, the eigenvalues of the total charge
operator are restricted to the following integer values:
+1 0 —1 —2 —3) ) 7 7

It can be shown' that Tomonaga's' intermediate
coupling approximation is equivalent to the following
substitution of reduced-space operators in the Hamil-
tonian:

The trial function fq is chosen to minimize the lowest
set of eigenvalues of the reduced-space Hamiltonian,
which turns out to be

IIIGAPn +nPn y

qrcA&4 (ii 1)kn ~

(18)

(19)

Q—=2» fa. (12)

We also note that the reduced-space operator of total
charge is given by

qrcA =-,'(Xs+ v3&8) —a'a, (13)

arcA=~ata+ ,'ggt P„-iZ,)a+—H cj..
+-',fg/(X, —Ap)a+H. c.j+Hb.„.„, (10)

where
6):— Mp Ip &

A:

The matrix equation (18) is equivalent to three simul-
taneous equations:

ego+ ggc„+I=E„, (20a)

gg+e+c P(e 1)io+e~)—+fgd„(e 1)'t'= c„—E„, (20b)

fgc (ri 1)'"+d,[—(N 2)oi+eri5=—d E (20c).
Just as in the case of the ordinary Lee model, e& is set
equal to g'Q'co ' in order to make E& ——0. E&+ vanishes
regardless of the value chosen for the bare mass e~.

Eliminating c„and d„ from Eqs. (20), one obtains the
following cubic equation for E„:

where the normalization condition,

fi2=1,

+a +a2En +ai+n+ao
where

a,=——e(m —1)~r (e—2)~'y.,~—J2Q2j,

(21a)

(21b)

has been taken into consideration.
North's strong-coupling treatment of the Bronzan-

Lee model leads to a static Hamiltonian of the same
mathematical form":

ai=—eoLg'Q'io '+ (2n 1)oij+(—3e~—6m+2)oi'

+ (e—2)g'g' —(e—1)1"g, (21c)

a2—= —3 ('I—1)M—
g Q io —ep.

B'N.,ih ——wa'a+-,'GL(Xi —A,)a+H.c.)
+-,'PL(X,—iX7)a+H.c.7+8'b.,„...

' T. D. Lee and D. Pines, Phys. Rev. 92, 883 (1953).
"Equation (15a) is identical to Eq. (2) of Ref. I.

(15a)
"This statement applies to the static strong-coupling approxi-

mation only, i.e., North's treatment is identical to the choice
f&——E' ~"u& in the ICA if and only if the quasifree fields p' and
@'t are formally set equal to zero. However, this is the usual
meaning of a strong-coupling approximation since the quasifree
fields are of order (1/g) relative to the static field.



182 SOLUTION OF 8 RONZAN —LEE MODEL

g'= g(Q/~)

f'= f(Q/~).

(25b)

(25c)

Expanding the determinant, one finds that the energy
levels of the Bronzan-Lee model are given by

e —y g'Qe
(& 2+f" y)— —

g'Qe e—1+g"—y

—' f"(I—1)(e—y) =0, (26)

where the two-by-two determinant is the same one
which determines the energy spectrum of the ordinary
Lee model (OLM), i.e., the energy levels of the OLM
are given by

n —y g'QN

g'Qn n —1+g"—y
=0 (27)

» In Ref. 1, North states that eg is chosen so that one root of the
cubic equation for E2 coincides with the lower-energy eigenvalue
(here denoted by E2oLM) for the n=2 sector of the ordinary Lee
model. However, the quadratic equation for the energy eigenvalues
of the OLM is easily shown to be E„'—L(2n —1)w+g'Q'u '$E„
+n(n —1)aP=O. Note that the coefficient of eU in Kq. (21a) turns
out to be —E22+Pg'Pro i+3cogEg —2'~ which vanishes if E2
=EmoLM. In other words, one cannot find

aconite

value of 6Q such
I

In particular, for the sector'm=2, one finds

E 3 (3~+g2Q2~ —1+e~)E a+LeU(g2Qs~
—1+3~)

+2m&s —f"QsjEs+2co Q'Q' —epto) =0. (22)

In analogy to the case of the ordinary Lee model
(where the value of the bare mass e& is adjusted so that
the physical neutron has the same mass as the proton),
one may also adjust the value of the bare mass eU to
make the physical U particle have the same mass as the
physical neutron and proton. In other words, the value
of ep is adjusted so that Eq. (22) has one zero root, "
i.e., we set ez equal to f'Q'co '. Then the other two roots
of Eq. (22) are easily found to be

E 6—r (3~+g2Qs~—r+ j2Q2M
—1)

K(3++gsQ2+ 1 JsQ2~ l)a+4(fsQs 2~2)jl s' (23)

Note that if the bare U particle is decoupled (i.e.,
f~ 0), the two roots (23) become identical to the
results for the ordinary Lee model. This is consistent
with our interpretation of the zero root of Eq. (22) as
the mass of the physical U particle.

In connection with the general nature of the relation-
ship between the Bronzan-Lee model and the ordinary
Lee model, it is instructive to note that in the ICA the
energy eigenvalues are given by

n —y g'Qm 0
g'Qe e—1+g"—y fQ(rs 1) =—0, (24)

0 f'Q(e —1) rl, 2+f" y— —
where the notation has been simplified somewhat by
introducing

$—=Ea/~ p (25a)

$—=cos '(—b/2c+c), (28e)

—s&= —s (I—s)f"+K~—
s jg"+ a (~—2)f"

+-:~g"——:(~—1)(f'g')'+ (1/27)f"
+ (1/27)g" —(1/18) (f' g' +f' g' ) . (28f)

At this point we introduce the aesats

(29)

where the n and P are to be chosen to minimize the
lowest set of energy eigenvalues and simultaneously
satisfy the normalization condition (14). Equation (29)
implies the following relation between &e and Q:

(30)

The explicit form of the intermediate-coupling solution
can be determined in the following manner. It is clear
from Eqs. (28a)—(28c) that the lowest set of energy
eigenvalues can be expressed as a function of &o and Q.
We shall henceforth denote the lowest set of energy

that one of the roots will coincide with the lower (or the upper)
root of the OLM. North's choice ez= (fgQ')'/(3') is very large
and represents an approximation to the exact result that eg must
be in6nite in order to make one of the roots equal to E2oLM.

"At the end of Ref. 1 North makes the following statement:". . . we can recover the Lee-model spectrum and renormalized
couplings in either of two ways; (1) decoupling the U altogether,
(2) taking the strong-coupling limit of the U bare Yukawa
coupling. "It is clear from Eqs. (26) and (27) that North's state-
ment about decoupling the U altogether is correct. In the limit
(g/f) —+0, the determinant on the left-hand side of Eq. (25)
becomes

n —y 0 0
0 n —1—y f'Qn
0 f'Qn n —2+J'2—y

which is obviously equal to n —y times the determinant which
characterizes the energy eigenvalues for the OLM (except that n
is replaced by n —1 and g is replaced by f). Thus, for any 6nite
value of g, one will certainly recover the Lee-model spectrum by
going to the hmit f—+ ~.

'4 See, for example, C. E. C. Standard 3IIathematical Tables,
edited by C. D. Hodgman (Chemical Rubber Publishing Co.,
Cleveland, Ohio, 1957), 11th ed. , pp. 344, 345.

&t is clear from Eqs. (26) and (27) that the two spectra
coincide as the U particle is decoupled (except that the
Bronzan-Lee model has an extra set of energy levels
given by y=N —2). However, for nonvanishing values
of the coupling constant f, the presence of the additional
term —f"(e—1)(m—y) in Eq. (26) implies that, in
general, there is no simple relation between the energy
spectra of the two models. "

The exact roots of the cubic equation (24) may be
written in the form'4

y-'= (~—1)+s(f"+g")+2(&c)cosa&, (28a)

y "=(m —1)+s (f"+g")—(Qc) t cossy+v3 sinai' 1,
(28b)

y
'"= (~—1)+-'(f"+g")—(&c)Lcoss4 —~3 sinsll,

(28c)
where

's+'s(~ —2)f"+-'—~g"+ '(f" f's-g"+g—"), (28d)
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eigenvalues by E„(10,Q). Then, using relation (30)
between co and Q, one can easily determine the total
derivative of E„(a&,e) with respect to ~: (dE„/d&o)
= (BE /Bo&)+n(BE /BQ). The minimization condition
(dE„/des) =0, then yields one relation between n and P,
and the normalization condition (14) yields a second
relation. Hence a and P are uniquely determined for any
sector m and for arbitrary values of the coupling con-
stants f and g and of the momentum cutoff R ' (except
that the results cannot be extrapolated to the point-
source limit, R=0).

To see how the calculation goes in practice, let us
consider the special case f=g in detail. In this case
Eqs. (28d) and (28f) simplify to

Hence

c= ,'j,'(e 1)-g"+-,'g—", —

—k&= sg"+6 (~—1)g"—(I/27)g".

(31a)

(31b)

s= cosa/ ~

y=—sin 3$.1

(32b)

(32c)

In the extreme strong-coupling limit, &p
—+ -,'x radians,

and the other two sets of energy levels, E„and E„"',
merge together. In this limit the separation between I
(or III) and the lower set II is easily found to be

E '—E "~3(o+c~g'Q'/co (33)

We also note that z=—cos-', p is related to cosp by the
well-known trigonometric relation

—L1 —(9/2) (I—1)g' '—9g' ']
cosQ = (31c)

L1+6(e—1)g' '+3g' 4]'~'

Expanding the right-hand side of Eq. (31c) in powers
of g' ', one fj.nds

cosy= —1+(27/2) (e—1)g' '
—(27/2)L8(~ —1)'—1]g' '+o(g' ')

In other words, if (27/2)(N —1)(sr/ge)' is very small
compared to unity, then the angle p will turn out to be
slightly less than m radians, in which case the lowest set
of energy levels is given by

II . (11 1)~+sg2Q2~ —1

--.'g e =LI+6(.-»(-/ge)*
+3(co/ge)4]'I'(z+v3y), (32a)

where

Using Eqs. (31c) and (34), one can easily verify that

*='+'( —1)'"( / Q) —-'( —1)( / Q)'
—L(81/16) (11—1)'"—4(11—1) '"](~/ge)'+o(g ')

(35)

After tedious but straightforward algebra, one finds

E„"—2L6 (I—1)'—1]co'(ge)—'. (36)

Note that expression (36) is very similar to the strong-
coupling result for the lower-energy levels of the
ordinary Lee model, namely, '"'

E„M~s(e—1)GP(ge) '. (37)

Minimization of the approximate expression (36) is
identical to minimization of the approximate expression
(37) for the ordinary Lee model. " In the strong-
coupling limit considered here and for the special case

f=g, the only difference between the two models is that
the multiplicative factor 11(e—1) is replaced by
2L6(N —1)'—1].Otherwise the calculation is identical
to the OLM case as discussed in Ref. 16. In particular,
one Bnds

E„"~—3s'L6(N —1)'—1]R'g for R))1
=(27/2)s'L6 (I—1)'—1]R—'g—', for R&(1.

In principle one can minimize the exact expression
(32a) for E„~' rather than the strong-coupling approxi-
mation (36). As already noted for the case of the
ordinary Lee model, " n and p then turn out to also
depend on the isobar state (i.e., on the value of n—= 1—g)
and on the values of the bare-coupling constants f and
g. As one moves away from the strong-coupling regime,
one must also ascertain whether or not E„' remains the
lowest set of energy levels. Although we have not been
able to solve this problem analytically, by using a
modern computer one can easily evaluate the ICA
results for any desired range of values of the basic
parameters e, f, g, and R. In conclusion, we reiterate
that the principal advantage of the present strong-
coupling version of Tomonaga's ICA is that it eliminates
the large-source assumption inherent in North's
treatment.

4$ —3x= costjb )

where cosP is given by Eq. (31c).

(34)
~~ Equation (37) is identical to Kq. (22) of Ref. 4.
1 H. H. NiCkle, PhyS. Rev. 118, 2382 (1969).


