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FlG. 5. Alternative expression for the quantity of Fig. 2.

Z5

FIG. 6. Renormalized version of Fig. 5.

sion for the quantity depicted in Fig. 2. This expression
is summarized by Fig. 5. This may now be expressed in
renormalized quantities which we indicate by a tilde.
Assuming I"&& to be multiplicatively renormalizable by
Z; ', as well as t by Z& and I'& by Z2= Z&, we have the
renormalized version of Fig. 5. This is given in Fig. 6.

When Zi/Z5 is finite the above involves only finite
quantities.

In lowest-order perturbation theory the quantity in
parentheses in Fig. 6 vanishes, and only the derivative
of the propagator is left. We have not evaluated this
formula.
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An invariant-amplitude expansion is obtained for vertex functions of fields belonging to arbitrary repre-
sentations of the Lorentz group between states of arbitrary spins. The method is based on analysis of the
singularities of the Lorentz-group parameters defining the vertex function. The restrictions due to parity
and subsidiary conditions are also given.

I. INTRODUCTION

'HE purpose of this paper is to give an expansion
for vertex functions in terms of functions which

are completely free from kinematic singularities and
constraints. Following common practice, we will refer
to these functions as invariant amplitudes, although
the distinguishing feature is the absence of kinematic
singularities and constraints. The method we employ
is the same as that used in an earlier paper on kinematic
constraints and singularities of scattering amplitudes. '
It is based on an analysis of the singularities of the
I.orentz-group parameters defining the amplitude as a
function of the scalar variables. Since the vertex depends
on only one variable, t, this method allows a complete re-
moval of all singularities and constraints simultane-
ously.

The vertex functions we will study are

P),,i„(pi,p2) = (p2,s„x2I4'J~" I pi@i,"i) (~ &)

There are two legs on the mass shell, with arbitrary
spins and masses, and one leg oG the mass shell. The
latter is taken to belong to the jog. representation of
the Lorentz group. ' 4 (For the finite, nonunitary
representations $g~' t, j a=a band a=a+6+1.)—

*Work performed under the auspices of U. S. Atomic Energy
Commission.
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~ J. Strathdee, J. F. Boyce, R. Delbourgo, and A. Salam,

Trieste Report, 1967 (unpublished).
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There are many reasons for studying the structure of
these functions for such general cases. To cite a few:
(a) One can use them to construct one-particle exchange
or pole terms which correspond to very-high-spin
particles and which satisfy the conditions required by
Lorentz invariance. (b) Many results which are true for
arbitrary 0- and physical Jmay presumably be extended
to complex values of J and so be applied to factorized
Regge residues; thus, one could study the behavior of
the Regge residues in a very direct way. (c) The
results may be a useful step in obtaining the kinematic
structure of more complex amplitudes. (d) Further
understanding of the significance of singularities and
constraints, such as those which result from subsidiary
conditions, may be obtained. A number of authors
have studied this problem using a variety of methods
and have obtained rather general results. '—7 The
method employed here is diferent from all of the
preceding ones and the results are obtained in a substan-
tially different and, we believe, more useful form.

In Sec. II, we review the multipole expansion and the
difhculties with it. We then obtain an expansion for
Fi,i, (piii, p2), where piii=(mi, o), in terms of in-
variant amplitudes. In Sec. DI, we discuss the restric-
tions due to parity conservation. One of the important
features of our expansion is that the form of these
restrictions is very simple. In Sec. IV, we carry out
the transformation to the center-of-mass amplitudes

~ M. Scadron, Phys. Rev. 165, 1640 (1968).
6 M. Bander, Phys. Rev. 173, 1568 (1968).
7 M. S. Marinov, Ann. Phys. (¹V.) 49, 357 (1968).
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F1 ), ~~(pi —pg~) pi~+p2~=0( Rnd discuss tlicll' 1=0
behavior. In Sec. V, wc discuss the restrictions due to
subsidiary conditions such as current conservation. Thc
Appendix gives the relation of our results to those ob-
tained by other methods for simple examples.

may have branch points and are in general constrained.
Instead of expanding in powers of iX',l, one can just
as well expand in powers of iE,(f'—Ar). One can easily
derive a generalization of the signer-Eckart theorem to
matrix elements of the form (s2,4je x*E.'js1,4). The
result is an expansion that is useful near «= (mi+mm)'
but not near f= (mi —m2)':

The object that we are studying in this section is

F....' (P.,P.)=(",&.j
' «~. '"j,&), (2.1)

where the states l s;,X;) denote states at rest with spin
projection A.; in the s directio~. K, denotes the generator
of pure Lorentz transformations in the s direction, and

f is the parameter of the Lorcntz transformation. Its
relation to «= (pi—p~)' is given by

(mi+mp)' —t "'
cosh-', 1 =

4eglm2

(mi —m2)' —t "'
sinh-, l =1

4

4mym2

(2.2)

Qy direct count, if there are no constraints on the
QJ~~0

y
thc DUIIlbcI of 1ndcpcndcrlt amplitudes ls foUQd

to be

This expression is vei'y sliitRblc ncal i =0 oi
«= (mi —m2)2. Iii fact) tlic Rmphtudes N4(«) defined by

~,(t) =31 (/)/(sinh-', 1)'

arc free from kinematic sIDgUlRI'Itlcs RDd constraints at
t= (mi —m, )'. On the other hand, at 3= (m,+m2)' they

8 I,. Durand, III, P. C. DeCelles, and R. 3. Marr, Phys. Rev.
126, 1882 (1962).

9 E. de Rafael, Ann. Inst. Henri Poincard 5, 83 (I966).

(25+1)(2s+1), for J& l~i —s&l

{2/+1){2s+1)—(I—j si—s2 j ) (J'+1—
j si—s2 j),

for Is&
—s2j &J&si+s,

(2si+1)(2s2+1), for si+s2& J
s= min(si, s2) .

If there are constraints, such as parity conservation,
there will be fewer independent amplitudes.

The usURl way of paramctrlzlng vcI'tcx fUDctloQS Is

by multipolc amplitudes. This was done for scalar
and vector fields by Durand, Decclles, and Marrs and
generalized to arbitrary 6elds by de Rafael. 9 The

difhculty with this Is RllcRdy RppR1"cQt fo1 the case of
thc scalar 6eld. The procedure is to expand e'~ & in

powers of iK,i". The Wigner-Eckart theorem is used to
reduce the X dependence of the matrix elements and

obtaID RQ cxpRQs10D of thc form

$2
F. 1 "(pie p2) = (—1)"2 Mi(«).

X& 0 —Xj.

sg E

F1,1s"(pie, pm) =Q (cosh ', 1 )-'OR((«),
0

with OK1(t) regular and unconstrained Rt (= (m,+m, )'.
Tliils Rt «= {mi+m2) Rll of tlic Mi(/) Rlc cxpi'cssiblc 111

terms of onc amplitude 5RO(/). This phenomenon is well
kQown In thc CRsc of thc electromagnetic foITIl fRctoI's
Gs(/) and G~(1) which are equal at /=4m'. The
pI'oblcIQ then Is to And fUnctIOQs RDRlogous to thc
electromagnetic form factors Fi(«) and F,(«), which are
independent for all I. The earlier papers do just this."~

This involves going to a spinor basis for the on-mass-
shell particles as well as expanding those amplitudes.
One still has the computational problem of going back
to the physical amplitudes. (Although this step may
be circumvented by trace techniques, one must make up
for that by using projection operators when the complete
density matrix is desired. ) In any case, compact
formulas for the general case have not yct been obtained
by these methods.

The procedure we will use is quite diferent. First,
notice that, according to Eq. (2.2), only the points
f= (mi+m2)' are interesting. (In particular, the point
5=0 does not become interesting until we go to the
center-of-mass amplitudes. ) We have already seen that
the multipole expansions about these two points are
quite diferent. Experience' "suggests that wc look at
expansions about these two points for slightly diferent
amplitudes: those quantized normal to the direction of
motion. Thus, consider

(&2,4 j
e'x «cg z~'" j s1,4)

d1,1, *(~ir)dis~ (,~)d1,1,"(-;S)
""'(P P ), (2 ~)

Rnd lct Us cornblnc sy with J to gct $3.

sy J $3
(s„X,je'x*«js3,X3}—= g (—1)"3

XI,W N

y(s,z, je'x «y, ~o. js„Z,). (2.4)

Qow if we expand the exponential about t= (mi&m2)',
we conclude in the usual man~er that

(s„4le' *«jsa,&3)= (cosh-,'l) "(sinh-,'l).A,,„,& («),

10 G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.
(N.V.) 46, 239 (j968).
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where
m=m»(l» —»I, I!'p+l'pl)

"=m«(l» —»I, ll'p —l'pl).

expansion:

Fxgxo (pxaypp)

= Q d~~ x '(~gp)L(g'+go)!(g' —l'p) ~7'IP

Ax, ~,s"(t) is kinematically regular at t= (m&~m~)'. Of
course, they are not independent there. In fact they are
not independent anywhere. It is clear, however, that
A 's with different values of m and e are not kinematically
related since they are matrix elements of diferent
powers of E, when t= (m~~m&)'. This is a useful guide
in selecting a subset of the A's in terms of which all the
others can be expressed for any value of t. When
so&so, choose the 2so+1 amplitudes

(s~, s~le'I'*r Iso, so —t)
—(coshlf) so+so l(sinh—1&f)so so+lA—iso(t)

0&l& 2s3 (2.5a)

and for so&sp choose the 2sp+1 amplitudes

(s„s,—tie'~ r Iso, sp)
—= (cosh-', i)'+oo '(sinh —',t)" "+'A~ "(t),

0&t&2s, . (2.5b)

Rotational invariance alone allows all of the Axoxos" (t)
to be expressed in terms of these A~s" (t) for all t

The,desired expansion formula can be obtained from
Eqs. (5) by inverting Eqs. (3) and (4). First, for those
terms with s3&s2, look at

(sp, sple'x'r lsp, sp —l)

s] J $3

(—&)"", d",x*'*(p~)
M', Xq', ) q', Xq'

sy J s3
X (cosh-', f)oo+o"'

M

X(sinh —',f') ~'~"~+'A
~ "(t), (2.7)

where 2=min(so, so) and L'=max(s~, so), and we have
absorbed a few harmless factors into the deGnition of
A(s"(t)

Thus, in this special frame, we have obtained an
expansion of the vertex function for arbitrary spins and
general Gelds in terms of amplitudes free from kinematic
singularities and constraints. The Lorentz-group prop-
erties of @J~&0 played no role in this analysis. These
come in when we want the vertex function in some
other frame. The vertex function in any frame is simply
expressed in terms of this vertex function through two
Wigner rotations matrices for s& and s2 and the joo
representation of the Lorentz group corresponding to
the transformation from this special frame to the
desired frame. There is no point in writing that expres-
sion here. It is very simple; all the complications come
in the evaluation of the representation functions. We
will do this in the important —and simpl- transforma-
tion to the center-of-mass system in Sec. IV.

In the Appendix, we show how these A's are related
to the invariant amplitudes when tensor wave functions
or Sargmann-Wigner wave functions are used for the
case of scalar or pseudoscalar currents. The result is
surprisingly simple.

d " -' F ~ .J~' . 2.6 III. RESTRICTIONS DUE TOXdoo—l, xo' (2~) &a'&o' (P»&pp) ( ' )
PARITY CONSERVATION

Multiply both s&des by doo-i, &o"~p~) an s"m on all ft will be most convenient to use the reflection
values of l. This projects out X3'= X& ——X2' and we may operator in the xy pl.ane denoted by I„
then divide out

( g) s—xo (2s)l ~l/P

d~oxo (2~)
2oo (sp+l p) t(sp l'2) Ij

to obtain

P(s„s,le* *rls„s,—l)d„-~x,'(-', )

g
—ix'JyP

It has the property that» 2

sMio l" 7J( l)- —

(3.1)

(3.2)

(3.3)

(sp+Xp)!(sp —Xp)!) where g; denotes the intrinsic parity of particle i and g
denotes the "intrinsic parity" of the Geld @J~&'0 . Only
in the case jp ——0 is this g meaningful. When jpWO, it

sy J $3 can always be set equal to i by redefining the fields.
(—&)"'»,xp (pin, pp) ~ Evidently only when jp——0 do we get a restriction on

the vertex functions; namely,

There is an obvious corresponding formula for S3&s2,
the important thing is that the right-hand side is the
same as it is here. Thus if we multiply by the 3j symbol
times 2so+l and sum on sp, we obtain the desired

F,; (p„,p, )=~q,~, ( f) F„,, „, (p,„-,p,)— —

if jp ——0. (3.4)

"M. Jacob and G. C. Wick, Ann. phys. (N.Q.) 7, 404 (j959).



T. L. TRUEMAN

From Eq. (2.6) we get a very simple condition on the
invariant amplitudes:

A,~zz(t)=0 unless (—1)'=))))&))2(—1)" " ~. (3.5)

One of the main virtues of this expansion is the simplic-
ity of the pa,rity condition.

In many cases, when jo/0, it is useful to consider at
the same time the matrix elements of pJ~» and

@~~ &6 . This is familiar in .the case of the Dirac field
which is the direct sum of P'~' '~' and p '~2@'. Parity
then relates the invariant amplitudes in the expansion
of the corresponding two vertex functions:

Ai '~()o )(t)=(—1)'qgiq2( —1)' '- Ai 'z-)o (/). (36)

This is the only restriction due to parity unless there
are additional constraints relating p&'0 to @ && . See
Sec. V.

c()sh(d = ()+y),'—m2')/2)))it"',

sinh(g = 2'/2~)) i/'= —(m~/t)/') sinhi',

2'=+{L~—( + )'jLt—( — )'j}"'.
(4.1)

Then denote F)„)„~/)((pi,p2), so continued and in the
center-of-mass frame, by F)„i,~~(/). Its relation to the
continuation of F , ,ii(p», p2) is

F„gM(~) (& y
~

&iKzr()ilrzzzy&~jazzy &Ec
~gi zgzz&)

=Z dz ~~'"( ~)F.,i""(p»—,p2) (4 2)

Ig. CENTER-OF-MASS AMPLITUDES
AÃB t= 0 BEHAVIOR

Let us now continue the amplitudes Fi,i, ~(pig, p2)
from negative t to /) (mi+m2)'. For definiteness, we

choose the path in t such that sinhi is negative at the
end of the continuation. I.et co be the parameter of the
Lorentz transformation from the rest frame of pi to
the center-of-mass frame, with yi in the +s direction.
The parameter co is related to t by

the external particles. We are assuming here that
m~Qnz2. Equal masses will be mentioned later.

The important property of dg ~g&"(—~) near t=0
is that it goes to infinity at a rate depending only on

jo, 0., and M but not on J and J'.4 Furthermore, the
dependence on J and J' factors into a function depend-
ing on J and a function depending on J' (Reo./0).
Thus, the behavior of all Fi,i,~~(t) near /=0 is in-
dependent of J.The similarity of this behavior to that
of Regge residues in a daughter sequence is clear. "
For illustrative purposes, consider a finite-dimensional
representation La,bj. The precise behavior near 3=0
depends on how t=0 is approached and on the ratio
mi/m2. Suppose we choose the path such that

(, (zzz) —zz ) zz —
(~i/2) zzz zzz)— (44)

8 b
xp (2J'+1)'/'

m mg —3l

XF)„i,' (pie, p2) ~ i=a, (4.o)

with ns, and m~ taking the appropriate values. The fact
that the most singular amplitudes occur for M= —jo
is also very similar to the behavior of Regge residues. '3

Let us look brieQy at the case esp= m2 ——es. As"3 ~ 0,
cv —&~ )r while $ —) 0. Then

Then the singularity of Fz„)„~~()') is determined by the
largest value of /))), —))) compatible with m(,+m, =/lf.
This value is given by

max(m), —m2) = {//,+f))
~
iV (b—u) ~—

(4.3)

The maximum value is reached when nsq ——b for b —a
&3f and when m, = —u for b —u& M. The behavior of
F)„)„~~(t)is then given by

/e b
F J/z/{/) (]1/2) [3E+)j)'( z+1

~
(2J+1))/2

kfsg rÃy —zM

s J' s
X iA 0~"(0) (4.7)

3f —lI.,ia b J a f)'"(—)= Z~~) m, m(, —M m m(, —M/
where we have also assumed sj=s2=s. Note that for
imaginary arguments, the Gnite-dimensional representa-
tions become the corresponding 0(4) representations of
real argument. Thus the form (4.7), when used to

X[(2J+1){2J/+1)j i/(2sy zzzzzz)zz (4
—3)

The insertion of Eq. (2.7) into (4.2) yields an invariant-
amplitude expansion for Fi,i,~~(t). Note that the
kinematic-singularity structure is somewhat diferent
for F),,)„~~(&) because dJ'irz)z (—au) has singularities

at 3= (m&&mq) . In addition, it has singularities at
1=0. Thus, the expected singularities of the vertex a,t
f=0 result entirely from the center-of-mass transforma-
tion and depend on the Geld representation and not on

"D. Z. Freedman and J.-M. Wang, Phys. Rev. 153, 1596
(1967).

'3R. F. Sawyer Phys. Rev. I.etters 18 1212 (1.967) 19 209
(1967); G. Cosenja, A. Sciarrino, and M. Toiler, Phys. f.etters
278, 398 (1968); Xuovo Cimento 57, 253 (1968); M. Le Bellac,
ibid. 55A, 318 (1968);A. Capella, A. P. Contogouris, and J. Tran
Thanh Van, Phys. Rev. 175, 1892 (1968); P. DiVechia, F, Draco,
and M. L. Paciello, Nuovo Cimento 56, 1185 (1968).

(Ez,/)iz)'o'(u) is the j00 representation of a pure Lorentz F zir/&~

transformation in the s direction. For the 6nite-
dimensional representation L()zbj it has the simple form
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construct a scattering amplitude, will lead to the same
structure as derived by Freedman and Wang. '4

Fb,bo'M(pi)b, p1) =&' ' )'od. ).M-, Z )o((O)

X~ dz M. ,i "( ~—)F b,
b"o' (pie, po) j, (5 5)

One frequently deals with matrix elements of
operators which are subject to subsidiary conditions.
The most familiar case is that of a conserved vector
operator. A natural generalization of this condition to
general 6nite representations L(b,bj is that, in the
center-of-mass system, the matrix elements of @J~' 't
are nonzero only for J=a+b:'

Fb,bo™(t)= 0 for JW a+b= 0 1. —(5.1)

This leads to a condition on the invariant amplitudes
by wRy of

Z dz Mz' "(—~)Fb,bo'™(pie,p2) =o

for JWa+b =a 1. (5.2—)

F„„a+b(M]) ~,(]1/1)a—1—[M—jo( (5.3)

Probably the simplest way to obtain the desired expan-
sion, which clearly now has a somewhat diferent
structure, is to introduce a new 6cld @' which does not
satisfy subsidiary conditions. The 6eld P can be
expressed in terms of @'by means of projection operators
which do satisfy the subsidiary condition:

oi)JM (yJM, J'M' (P ) ot)J'M' (P) ~ (5 4)

Notice that, because of the way the 3=0 behavior
factors in Eq. (4.6), such a subsidiary condition will in
general require a less singular behavior of the vertices
as t —+ 0. This is familiar in the case of photon coupling
to unequal-mass particles. It is also analogous to the
bchRviol of Rcggc residues foI' uncquRl mRsscs ln thc
absence of daughters. "The precise behavior required
by Kq. (4.6) is

where F(P1)),Po) is the original matrix element of of)

deined in Eq. (2.1), while F'(pi)o, po) is the analogous
matrix elemerit of @'. and should have a expansion of
the form of Kq. (2.7) with regular and unconstrained
A' s.

A condition that is in someways similar to Eq. (5.1)
is the requirement that a pole of Fb,b,™(()at some
particular value m' of t be present in only one angular
momentum state. This is obviously less stringent than
Eq. (5.1) since it requires that the field acts as if it
has spin J only on the mass shell. In fact, such condi-
tions can always be satisfied without modifying the
kinematic structure, provided m2&0. For example,
suppose sg=s =0. Then, with simplified notation,

F (f)=dJ~og)o ( (o)(sinhf—) 'Ag~(().

Evidently, if we set

dxor '"(~x)
Ag(/) =g

e)x1 s—inhl )r)

with a&x and f')r the functions (o and i' with m)r2

substituted for t, clearly F~(t) will have a pole at
I, =mJ' but not at k=mJ', J'&J. This form fails if any
nzJ'=0, since then the corresponding residue functions
dgog 'oa((dq) become singular. This obviously results
from the 0(3,1) symmetry which forces any pole at (=0
to be present in all J states belonging to the representa-
t.1011 (JO)O').

Thc Anal condition thRt wc wish to discuss ls the
generalization of the Dirac equation. This is the
requirement that for some value of f, Fb,~,~M(t) has a
pole corresponding to a particle of definite parity.
That is, one of

)The familiar case, (1=b= —',, has (P„„(p)=g„„—p„p„/p .)
One can apply the preceding arguments to obtain an
expansion for the matrix element of p'. Then Kq. (5.4)
can be used to obtain the desired expansion for p.
Obviously, in the center-of-mass system,

(I'ZM. Z M (P=0)=4,a+b4, a+b4rM"

The factor (p')' ' " is there in order to have the
behavior of F consistent with Eq. (5.3) as applied to
(t and Eq. (4.6) as applied to tt'. (Alternatively, the
projection operators are singular. at t=0 when y/0
and the factor is there to avoid building a 1=0 singular-
ity into Q.) In any other reference frame, the operator
may be obtained by I orentz transformation. Thus,

~4 D.Z. Freedman and J.-M. %'an@, Phys. Rev. 160, j.560 (j.9Q').

must vanish at t= ns J'. For jo——0 representations this is
automatic. %hen jo/0, all that parity requires is a
condition like Eq. (3.6). Thus, we must require, in
addition, that

F JM(1oa) ())—~F jM(—)'o, a)

+terms regular at 3= 1)b~'

This is a condition at one value of t and so, just as in
the last case, will not modify the kinematic structure,
provided m J'40. On the other hand, we see immediately
from Kq. (4.6) that it cannot hold for mg'=0 with()ut
changmg the /=0 structure when jo/0. Presumably,
one could also require definite parity off the mass shell
in a way very similar to the way in which definite J is
required OG the mass shell. This mould modify the
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kinematical structure, but since this does not seem to
be a very useful condition, we have not carried it
through.

Thus we have
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APPENDIX

Here we briefly show how our expansion is related
to two other possible expansions in the simple case of
scalar or pseudoscalar currents between two identical
particles of spin s and mass m. As a erst example,
suppose we represent the particles by Bargmann-Wigner
wave functions U„„,... „+&(p),n;= 1, 2, 31 4. An invar-
iant-amplitude expansion can be written very simply as

01

g (t)y, &'&+01(t)y &'&F512&y5&@+ (pseudoscalar).

y„&" denotes the usual 4X4 y matrix operating on the
indices n; and the identity matrix operating on the
indices n, , j/1. There is no need to symmetrize the p
matrices over all the indices since the Bargmann-Wigner
wave functions are already symmetric in those indices.
Now calculate the matrix elements (s,s(e'x*"Pts, s—t).
The wave function for spin projection s—l consists of
s—1 Dirac spinors with spin up and l Dirac spinors with
spin down. The form of these submatrix elements is

X+t((E+m)"', —0—,(E—m)'&') X&,

(2m)"' 0

t Z+m)
"'

= &&,+(
2m

s —'~'
= (—1)'(cosh~i')' '(sinh1~1")'8&(t)

So the invariant amplitudes in this case are the same as
those used in Zq. (4.7), up to constant factors

Another basis for expansion has been given by
Scadron, ' who uses the tensor wave functions for bosons
and Rarita-Schwinger wave functions for fermions.
There is a direct relation between this expansion and
the expansion just given. (See, for example, Marinov. &)

Let us just do bosons, Then

U,.. .„(p)= LC 'y '(1/2m) (p'+m)), ,
LC 'y"'(1/2m) (p'+m)) „, ,p». ..„„

where pp1 p is symmetric in the four-vector indices
p, ~ p, . To transform from one basis to the other, all
we need do is evaluate

Tr(/C 'y»(—1/2m)(p'+m))yopC 'y"'(1/2 m)(p+m))f70)
(1/m') Lg"—(m'+P' P) P.P"')—

aIld

Tr(LC—'y (1/2m)(p'+m))y, y,
XLC 'y"1(1/2m) (p+m))'yoy5)

= —(1/m')I g..., (m' —P' P)+P„P ')
Thus, in the tensor basis the coeS.cient of the invariant
amplitude 0', ~ is

t.(—1)'/ ")Lg.:( '—P' P)+P. P ')
X Lg„„,(m —p' p)+p„,p„')
xLg.t, 1„(m+P' P) P.&, P.l, ')—

X t& gu:.(m'+P' P) P..P..')—
These are to be evaluated as

X+t((E+m)'&', —0.,(E—m)'&')y, x&,

(2m) "' 0
Evidently, the relation between Scadron's invariant
amplitudes, the coeKcients of terms like F1 1gpg g

~ ~

g„,„„g„,„,p»p„,
'

g„,„„etc, and ou.rs is not so simple
as in the Bargmann-Wigner basis, but it is straight-
forward and it is clear that the relation is nonsingular.


