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Fic. 5. Alternative expression for the quantity of Fig. 2.

sion for the quantity depicted in Fig. 2. This expression
is summarized by Fig. 5. This may now be expressed in
renormalized quantities which we indicate by a tilde.
Assuming T's* to be multiplicatively renormalizable by
Zs71, as well as G by Zy and T* by Zy=Z1, we have the
renormalized version of Fig. 5. This is given in Fig. 6.
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Fi16. 6. Renormalized version of Fig. 5.

When Zi/Z; is finite the above involves only finite
quantities.

In lowest-order perturbation theory the quantity in
parentheses in Fig. 6 vanishes, and only the derivative
of the propagator is left. We have not evaluated this
formula.
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An invariant-amplitude expansion is obtained for vertex functions of fields belonging to arbitrary repre-
sentations of the Lorentz group between states of arbitrary spins. The method is based on analysis of the
singularities of the Lorentz-group parameters defining the vertex function. The restrictions due to parity

and subsidiary conditions are also given.

I. INTRODUCTION

HE purpose of this paper is to give an expansion
for vertex functions in terms of functions which
are completely free from kinematic singularities and
constraints. Following common practice, we will refer
to these functions as invariant amplitudes, although
the distinguishing feature is the absence of kinematic
singularities and constraints. The method we employ
is the same as that used in an earlier paper on kinematic
constraints and singularities of scattering amplitudes.!
It is based on an analysis of the singularities of the
Lorentz-group parameters defining the amplitude as a
function of the scalar variables. Since the vertex depends
on only one variable, £, this method allows a complete re-
moval of all singularities and constraints simultane-
ously. ’
The vertex functions we will study are

Fap" (p1,p2) = (P2ySa,ha| drar® | prosiyha).  (1.1)

There are two legs on the mass shell, with arbitrary
spins and masses, and one leg off the mass shell. The
latter is taken to belong to the joo representation of
the Lorentz group.2™* (For the finite, nonunitary
representations ¢sx*¥, jo=a—b and o=a+b41.)

* Work performed under the auspices of U. S. Atomic Energy
Commission.
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There are many reasons for studying the structure of
these functions for such general cases. To cite a few:
(a) One can use them to construct one-particle exchange
or pole terms which correspond to very-high-spin
particles and which satisfy the conditions required by
Lorentz invariance. (b) Many results which are true for
arbitrary o and physical J may presumably be extended
to complex values of J and so be applied to factorized
Regge residues; thus, one could study the behavior of
the Regge residues in a very direct way. (c) The
results may be a useful step in obtaining the kinematic
structure of more complex amplitudes. (d) Further
understanding of the significance of singularities and
constraints, such as those which result from subsidiary
conditions, may be obtained. A number of authors
have studied this problem using a variety of methods
and have obtained rather general results.257 The
method employed here is different from all of the
preceding ones and the results are obtained in a substan-
tially different and, we believe, more useful form.

In Sec. IT, we review the multipole expansion and the
difficulties with it. We then obtain an expansion for
Fxpng"™(p1r,p2), where pigp=(m1,0), in terms of in-
variant amplitudes. In Sec. ITI, we discuss the restric-
tions due to parity conservation. One of the important
features of our expansion is that the form of these
restrictions is very simple. In Sec. IV, we carry out
the transformation to the center-of-mass amplitudes

& M. Scadron, Phys. Rev. 165, 1640 (1968).

¢ M. Bander, Phys. Rev. 173, 1568 (1968).
" M. S. Marinov, Ann. Phys. (N.Y.) 49, 357 (1968).
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Fapg?™(p1e, — P2c)y Prctp2.=0, and discuss their =0
behavior. In Sec. V, we discuss the restrictions due to
subsidiary conditions such as current conservation. The
Appendix gives the relation of our results to those ob-
tained by other methods for simple examples.

II. EXPANSION OF VERTEX FUNCTION
The object that we are studying in this section is
F)\l)\zJM(PIR:PZ) = <S2:)‘ZJeiKzrqSJMjwisl,}\O ’ (21)

where the states |s;,\;) denote states at rest with spin
projection A; in the z direction. K, denotes the generator
of pure Lorentz transformations in the z direction, and
¢ is the parameter of the Lorentz transformation. Its

relation to {= (p1— p2)? is given by
(matms)®—t\ 12
cosh3¢ =(»—-——————~> ,
dmymy
(2.2)
(m1—my)*— I\
sinh%§‘=<-————————> .
4mims
By direct count, if there are no constraints on the
é.27°°, the number of independent amplitudes is found

to be

QJ+1)(2s+1), for J<[s1—ss]

QT+1)2s+1)— (J—|si—=s2 ) (J+1—[51—52]),,
for [s1—s2| ST<s1+s2

(2S1+1)(282+1), for Sl‘*‘SQS]
s=min(s1,s2).

If there are constraints, such as parity conservation,
there will be fewer independent amplitudes.

The usual way of parametrizing vertex functions is
by multipole amplitudes. This was done for scalar
and vector fields by Durand, DeCelles, and Marr® and
generalized to arbitrary fields by de Rafael.” The
difficulty with this is already apparent for the case of
the scalar field. The procedure is to expand e’%# in
powers of K.{. The Wigner-Eckart theorem is used to
reduce the \ dependence of the matrix elements and
obtain an expansion of the form

S1

S2
Fx1Xz°°(P1R,P2)=(*1)“ZI:<)\2 )Mz(t)-

_)\1

This expression is very suitable near {=0 or
t= (my—ms)?. In fact, the amplitudes 91;(#) defined by

My () = M()/ (sinhg{)’

are free from kinematic singularities and constraints at
t= (my—ms)?. On the other hand, at t= (m1+m,)?* they

8 L. Durand, III, P. C. DeCelles, and R. B. Marr, Phys. Rev.

126, 1882 (1962).
9E. de Igafael, Ann. Inst. Henri Poincaré 5, 83 (1966).
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may have branch points and are in general constrained.
Instead of expanding in powers of iK.{, one can just
as well expand in powers of iK,({—éw). One can easily
derive a generalization of the Wigner-Eckart theorem to
matrix elements of the form (ss,\2|e™%2K,}|s1,\1). The
result is an expansion that is useful near = (m;+m,)?
but not near t= (m—m.,)?:

3 1 S1

’ )(aosh%olsr‘rclm,
A 0 —)\y

By (pir,pa) = ;(

with 91;(¢) regular and unconstrained at /= (m;-m,)2.
Thus at ¢= (m1+m,)? all of the M,(¢) are expressible in
terms of one amplitude 9T(o(¢). This phenomenon is well
known in the case of the electromagnetic form factors
Gg(f) and Gy (f) which are equal at f=4m?2 The
problem then is to find functions analogous to the
electromagnetic form factors Fy(¢) and F.(¢), which are
independent for all #. The earlier papers do just this.2-57
This involves going to a spinor basis for the on-mass-
shell particles as well as expanding those amplitudes.
One still has the computational problem of going back
to the physical amplitudes. (Although this step may
be circumvented by trace techniques, one must make up
for that by using projection operators when the complete
density matrix is desired.) In any case, compact
formulas for the general case have not yet been obtained
by these methods.

The procedure we will use is quite different. First,
notice that, according to Eq. (2.2), only the points
t= (myztm,)? are interesting. (In particular, the point
t=0 does not become interesting until we go to the
center-of-mass amplitudes.) We have already seen that
the multipole expansions about these two points are
quite different. Experience!' ™ suggests that we look at
expansions about these two points for slightly different
amplitudes: those quantized normal to the direction of
motion. Thus, consider

(2,02 | €58 12197 [ 51,M1)
= daghy 2(3m)dagar? (3m)dapny 1 (3r)

XExing " (p1r,p2),  (2.3)
and let us combine s; with J to get s3:
snlesslopo= 2 (on(" 7" )

MM M M =)
X{soho|€Eetprariom] sy, A1), (2.4)

Now if we expand the exponential about {= (m1m,)2,
we conclude in the usual manner that

(s2,h2] €72t | 53.05) = (cosh§() »(sinh3¢) "A g’ (2)

10 G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.
(N.Y.) 46, 239 (1968).
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where
m=max(].s'2—.s‘3[, I>\2+>\3l)

and
n=max(]sz—s3| ) I)\2—)\3|).

Axng7#3(2) is kinematically regular at t= (m1z=m,)2. Of
course, they are not independent there. In fact they are
not independent anywhere. It is clear, however, that
A’s with different values of 7 and # are not kinematically
related since they are matrix elements of different
powers of K, when {= (mi2=m,)2. This is a useful guide
in selecting a subset of the 4’s in terms of which all the
others can be expressed for any value of {. When
53<s9, choose the 25341 amplitudes

(52, 52| €Kt | 53, 53—1)
= (coshis) -1 (sinhh) w414 70,

0<I<2s3; (2.5a)
and for s3> s, choose the 25,41 amplitudes
(52, Sa—1| K2t |53, 53)
= (coshj{) 2+~ (sinhg{) s—o2HiA T (),
0<1<2s;. (2.5b)

Rotational invariance alone allows all of the 4,7 (%)
to be expressed in terms of these 4,;7%(f) for all ¢.

The desired expansion formula can be obtained from
Egs. (5) by inverting Egs. (3) and (4). First, for those
terms with s3<s,, look at
(s2,52] €K |53, 53—1)

S3
_1))\3’<
M’ M7 Nl Ng! )\1’ M’ —‘>\3 )
dea——l,)\s'83(%W)FX1’)\2’JM,(P1R7P2)' (2'6)

I>d82,7\2’ o (%7")

Multiply both sides by dsj—i,n,**(37) and sum on all
values of J. This projects out Ag'=Xo=X;" and we may
then divide out

(=)= o) >m
29 \(s3M) ! (s2=Ao)!/

dsg n™(Gm) =
to obtain
> (52,52 | €Kt | 53, 53— U)dsg10s2 (G)
l (saFA2) 1(s2—=A2) I\ /2
( (2s2)! )

S1 J S3
=2 < >(—1)“F>\1)\2JM(1713,172) .
MM \\N M =X

There is an obvious corresponding formula for s3> s,;
the important thing is that the right-hand side is the
same as it is here. Thus if we multiply by the 3 symbol
times 2s;+1 and sum on s3;, we obtain the desired
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expansion :
Faxpne” (p1r,p2)
= 2. A1 Gm)L(L N (L' —Ng) 1]V
83,1
S1 J 53
X< )(cosh%g‘) sotss—l
M M =)\
X (sinh3{)lersslig s (g) . (2.7)

where L=min(s.,s;) and L’=max(s,,53), and we have
absorbed a few harmless factors into the definition of
A7 s(2).

Thus, in this special frame, we have obtained an
expansion of the vertex function for arbitrary spins and
general fields in terms of amplitudes free from kinematic
singularities and constraints. The Lorentz-group prop-
erties of ¢sa%” played no role in this analysis. These
come in when we want the vertex function in some
other frame. The vertex function in any frame is simply
expressed in terms of this vertex function through two
Wigner rotations matrices for s; and s, and the joor
representation of the Lorentz group corresponding to
the transformation from this special frame to the
desired frame. There is no point in writing that expres-
sion here. It is very simple; all the complications come
in the evaluation of the representation functions. We
will do this in the important—and simple—transforma-
tion to the center-of-mass system in Sec. IV.

In the Appendix, we show how these A’s are related
to the invariant amplitudes when tensor wave functions
or Bargmann-Wigner wave functions are used for the
case of scalar or pseudoscalar currents. The result is
surprisingly simple.

III. RESTRICTIONS DUE TO
PARITY CONSERVATION

It will be most convenient to use the reflection
operator in the xy plane denoted by ¥ :

V=¢im/upP, (3.1)

It has the property that!!.? ’
Vlsphiy=ni(—1)* i[5, =N,  (3.2)
Yoru oV 1=nq(—1)M=dsps_sy 0 3.3)

where n; denotes the intrinsic parity of particle ¢ and 7
denotes the “intrinsic parity” of the field ¢sar%°. Only
in the case jo=0 is this » meaningful. When 7,520, it
can always be set equal to 1 by redefining the fields.
Evidently only when jo=0 do we get a restriction on
the vertex functions; namely,

Fap M (prmypo) =mma(—1)*92F 5, 5,7 M (p1r,ps)
i jo=0. (3.4)

1t M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).
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From Eq. (2.6) we get a very simple condition on the
invariant amplitudes:

(—1)'=mme(—1)2=s=7 . (3.5)

One of the main virtues of this expansion is the simplic-
ity of the parity condition.

In many cases, when o540, it is useful to consider at
the same time the matrix elements of ¢y and
3. This is familiar in the case of the Dirac field
which is the direct sum of ¢1/2:3/2 and ¢~1/2:3/2, Parity
then relates the invariant amplitudes in the expansion
of the corresponding two vertex functions:

Az"s3(j°")(t)= (.._ 1)l7]"ll772(— 1)szss=J 4,7 ss(—00) (1), (36)

This is the only restriction due to parity unless there
are additional constraints relating ¢#° to ¢~ #?. See
Sec. V.

A73(t)=0 unless

IV. CENTER-OF-MASS AMPLITUDES
AND ¢=0 BEHAVIOR

Let us now continue the amplitudes Fap,” ¥ (pir,p2)
from negative ¢ to > (mi1+ms)% For definiteness, we
choose the path in ¢ such that sinh{ is negative at the
end of the continuation. Let w be the parameter of the
Lorentz transformation from the rest frame of p; to
the center-of-mass frame, with p; in the 4z direction.
The parameter  is related to ¢ by

coshw= (t-+mi2—ms?)/2mqi2,
sinhw= T'/2mt1?= — (my/1/?)sinh¢ ,
T=~4-{[t— (myt-mz)*J[t— (ma—ma)* [}172.

Then denote Fan, M (p1,p2), so continued and in the
center-of-mass frame, by Fap,”(t). Its relation to the
continuation of Fap,7 ¥ (pir,p2) is

F)\l)‘zJM(t) = <S2,x2| eiKzfeisz¢JMjoue—ing ! Sl,)\1>

=Y dyus®(—w)Fapng” M (p1r,p2) . (4.2)
J'

(4.1)

dyars®°(w) is the joo representation of a pure Lorentz
transformation in the z direction. For the finite-
dimensional representation [@,6] it has the simple form

<a b J ><a b J’)
mamb\tly, My —M/\m, my —

s (—w)= 22
XL(2J+1) (2T 1) J2e (mmmade | (4.3)

The insertion of Eq. (2.7) into (4.2) yields an invariant-
amplitude expansion for Fip,”¥(#). Note that the
kinematic-singularity structure is somewhat different
for Fapn,7¥(f) because dsas?(—w) has singularities
at t= (mi=ms)?. In addition, it has singularities at
t=0. Thus, the expected singularities of the vertex at
t=0 result entirely from the center-of-mass transforma-
tion and depend on the field representation and not on
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the external particles. We are assuming here that
mi#=me. Equal masses will be mentioned later.

The important property of djas#°(—w) near (=0
is that it goes to infinity at a rate depending only on
Jo, 0, and M but not on J and J'.* Furthermore, the
dependence on J and J’ factors into a function depend-
ing on J and a function depending on J’' (Res¥0).
Thus, the behavior of all Fy;»,”¥(f) near ¢=0 is in-
dependent of J. The similarity of this behavior to that
of Regge residues in a daughter sequence is clear.!?
For illustrative purposes, consider a finite-dimensional
representation [@,b]. The precise behavior near (=0
depends on how {=0 is approached and on the ratio
my/ms. Suppose we choose the path such that

e (mb—ma)o~, (t1/2) mg—mb (4.4)
Then the singularity of Fy,»,”#(#) is determined by the
largest value of my—m, compatible with m,+m,= M.
This value is given by

max(my—ms)= (a+b)— | M— (b—a)|
=o—1—|M+jo|. (45)

The maximum value is reached when my=05 for b—a

<M and when m,= —a for b—a> M. The behavior of

Fan,7M(t) is then given by

a J
meo)z(w2>lM+fol—m+1( )(2J+1>1/2
Mg My —

e b T
><2<

J' \tq  mp  —

)(2J'+1)1/2

XFrn” M (p1r,p2) | 10, (4.6)
with m, and m; taking the appropriate values. The fact
that the most singular amplitudes occur for M= — j,
is also very similar to the behavior of Regge residues.!?

Let us look briefly at the case my=ms=m. As't— 0,
w — 137 while { — 0. Then

Fapg™(8) = 2 dpu s (—igm) (1)
J"

><<s 4 s)A,,(O) @.7)
N M=\ T

where we have also assumed s;=sy,=s. Note that for
imaginary arguments, the finite-dimensional representa-
tions become the corresponding O(4) representations of
real argument. Thus the form (4.7), when used to

(1;2617))' Z. Freedman and J.-M. Wang, Phys. Rev. 153, 1596

B R. F. Sawyer, Phys. Rev. Letters 18, 1212 (1967); 19, 209
(1967); G. Cosenja, A. Sciarrino, and M. Toller, Phys. Letters
27B, 398 (1968); Nuovo Cimento 57, 253 (1968); M. Le Bellac,
2bid. 55A, 318 (1968); A. Capella, A. P. Contogouris, and J. Tran
Thanh Van, Phys. Rev. 175, 1892 (1968) ; P. DiVechia, F. Drago,
and M. L. Paciello, Nuovo Cimento 56, 1185 (1968).
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construct a scattering amplitude, will lead to the same
structure as derived by Freedman and Wang.!4

V. SUBSIDIARY CONDITIONS

One frequently deals with matrix elements of
operators which are subject to subsidiary conditions.
The most familiar case is that of a conserved vector
operator. A natural generalization of this condition to
general finite representations [a,b] is that, in the
center-of-mass system, the matrix elements of ¢ 1%
are nonzero only for J=a-+b:

F)‘l)\zJM(t)=0 for ];éd+b=a—1 (51)
This leads to a condition on the invariant amplitudes
by way of

2 Ay s (=) Faps M (p1r,pa) =0
JI

for J#a+b=0—1. (5.2)
Notice that, because of the way the ¢{=0 behavior
factors in Eq. (4.6), such a subsidiary condition will in
general require a less singular behavior of the vertices
as t— 0. This is familiar in the case of photon coupling
to unequal-mass particles. It is also analogous to the
behavior of Regge residues for unequal masses in the
absence of daughters.!® The precise behavior required
by Eq. (4.6) is
P @0 () ~ (12) =11l (5.3)

Probably the simplest way to obtain the desired expan-
sion, which clearly now has a somewhat different
structure, is to introduce a new field ¢’ which does not
satisfy subsidiary conditions. The field ¢ can be
expressed in terms of ¢’ by means of projection operators
which do satisfy the subsidiary condition:

baa P = Crar, g @ (p2) Py’ (p).  (5.4)
[The familiar case, e=b=1%, has ®,,(p) = gu— pups/p%]
One can apply the preceding arguments to obtain an
expansion for the matrix element of ¢’. Then Eq. (5.4)
can be used to obtain the desired expansion for ¢.
Obviously, in the center-of-mass system,

® iz, 730 (P=0)=07 0+ at-b0nar" -

The factor (p?)7~'=% is there in order to have the
behavior of F consistent with Eq. (5.3) as applied to
¢ and Eq. (4.6) as applied to ¢’. (Alternatively, the
projection operators are singular at {=0 when ps<0
and the factor is there to avoid building a /=0 singular-
ity into ¢.) In any other reference frame, the operator
may be obtained by Lorentz transformation. Thus,

4D, Z. Freedman and J.-M. Wang, Phys. Rev. 160, 1560 (1967).
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for example,
FM)\zJM(PlR,?z) = t""l"j"d,_llM'J‘fjo(w)

X [g; Ariar,e—1" (=) P M (p1r,p2) 1,  (5.5)

where F(pig,p2) is the original matrix element of ¢
defined in Eq. (2.1), while F’(p1r,p2) is the analogous
matrix element of ¢’. and should have a expansion of
the form of Eq. (2.7) with regular and unconstrained
A’s.

A condition that is in someways similar to Eq. (5.1)
is the requirement that a pole of Fy»,”¥(f) at some
particular value m? of { be present in only one angular
momentum state. This is obviously less stringent than
Eq. (5.1) since it requires that the field acts as if it
has spin J only on the mass shell. In fact, such condi-
tions can always be satisfied without modifying the
kinematic structure, provided m?>0. For example,
suppose sy=s,=0. Then, with simplified notation,

FI(#)=dyos?(—w)(sinh{) 7' A ;. (2).
Evidently, if we set
dKUJ'jM(wK)/ 1\
t—mx? \sinhg‘z) ’

AJU)=/§,

with wxg and {x the functions w and ¢ with mg?
substituted for ¢, clearly FY(¢) will have a pole at
t=m,? but not at t=m;2, J'5£J. This form fails if any
my?=0, since then the corresponding residue functions
dyor¥(ws) become singular. This obviously results
from the 0(3,1) symmetry which forces any pole at t=0
to be present in all J states belonging to the representa-
tion (fo,0).12

The final condition that we wish to discuss is the
generalization of the Dirac equation. This is the
requirement that for some value of ¢, Fi;,7%(f) has a
pole corresponding to a particle of definite parity.
That is, one of

(t=m ) [Fap ™M () F 0" —(1) ]

must vanish at t=m;2 For jo=0 representations this is
automatic. When 7,70, all that parity requires is a
condition like Eq. (3.6). Thus, we must require, in
addition, that

Fapg” M 000 (1) = £ Fy "M io,0)

-+ terms regular at t=m 2.

This is a condition at one value of ¢ and so, just as in
the last case, will not modify the kinematic structure,
provided 7,2%0. On the other hand, we see immediately
from Eq. (4.6) that it cannot hold for m;2=0 without
changing the =0 structure when jy0. Presumably,
one could also require definite parity off the mass shell
in a way very similar to the way in which definite J is
required off the mass shell. This would modify the
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kinematical structure, but since this does not seem to
be a very useful condition, we have not carried it

through.
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APPENDIX

Here we briefly show how our expansion is related
to two other possible expansions in the simple case of
scalar or pseudoscalar currents between two identical
particles of spin s and mass m. As a first example,
suppose we represent the particles by Bargmann-Wigner
wave functions Uajageags™ (p), @s=1, 2, 3, 4. An invar-
iant-amplitude expansion can be written very simply as

Qo(t)+ Ra(B)vs Vs D+ Qa(8)ys Pys Pys Oy D4+ - -
(scalar)

or
Q1()ys P4+ Q3 ()ysVys Dy O - (pseudoscalar) .

v, denotes the usual 4X4 y matrix operating on the
indices a; and the identity matrix operating on the
indices a;, j5%1. There is no need to symmetrize the v
matrices over all the indices since the Bargmann-Wigner
wave functions are already symmetric in those indices.
Now calculate the matrix elements {(s,s|e*X=$¢|s, s—1).
The wave function for spin projection s—/ consists of
s—1I Dirac spinors with spin up and / Dirac spinors with
spin down. The form of these submatrix elements is

1
N R .

E—4m\ 12
=5>‘.+< > )

2m

(2m)Y?

1
X H((EAm), —"fx(E—m)m)Ya(O)Xx

E—m\ 12
e
2m

@2m)2
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Thus we have

(55l g5, 1)
T ool
=(=1) Z(COShéﬁ‘)“’l(sinh—%g‘)l@l(t)<l>—1/2 )

So the invariant amplitudes in this case are the same as
those used in Eq. (4.7), up to constant factors.

Another basis for expansion has been given by
Scadron,® who uses the tensor wave functions for bosons
and Rarita-Schwinger wave functions for fermions.
There is a direct relation between this expansion and
the expansion just given. (See, for example, Marinov.?)
Let us just do bosons. Then

Uarageeas, (p)=[C1y*1(1/2m) (p"+m) Jaye” * -

I:C—Lyﬂ.v(l/Zm) (Pl+m)]°‘23—l, 372 g5 AR T B
where ¢,...,, 1s symmetric in the four-vector indices
p1- - us. To transform from one basis to the other, all
we need do is evaluate
Tr{[Cy*1(1/2m)(p"+m) Ty o[C7y*1(1/2m) (p+m) T'vo}

= — (1/m®)[gup,(m*+ 9"+ )~ puspi’]
and
Tr{[Cy*(1/2m) (p'+m) yovs
X[C1y2(1/2m) (p+m) Ty oy}

= (l/mz)[gum(mz_PI'?)+Pmﬁn’]-
Thus, in the tensor basis the coefficient of the invariant
amplitude @, is

L(=1)/m** | gup,(m>—p" p)+ puspws”]
X [8upa (M2 =" )+ Puspns’ 1 - -
X [glll+1"l+1 (m2+P,’P)‘_Puz+1Pvz+1,]‘ .
X [gues(m*+p" p)— puspy,’ 1.
These are to be evaluated as
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Evidently, the relation between Scadron’s invariant
amplitudes, the coefficients of terms like guuigugpq: -
Luwer LumPusbr * * * Luewsy €LC., and ours is not so simple
as in the Bargmann-Wigner basis, but it is straight-
forward and it is clear that the relation is nonsingular.



