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Anomalies of the Axial-Vector Current*
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The anomalies of the neutral axial-vector current, of its divergence, and of its commutators ia the presence
of electromagnetic interactions are exhibited. It is shown that it is impossible in perturbation theory to main-
tain minimality of electromagnetic interactions, gauge invariance, and partial conservation of axial-vector
current (PCAC). The departures from gauge invariance or PCAC which are necessitated by minimality are
established. The relevance of the present considerations to ~' —+ 27 decay is discussed.

I. INTRODUCTION
' 'T has been noticed recently' that in the 0. model the
~ - effective coupling constant for ~ ~2y does not
vanish for zero pion mass. However, partial conserva-
tion of axial-vector current (PCAC) and gauge invari-
ance, which appear to hold in the 0- model, predict the
vanishing of this quantity. The reason for this contra-
diction has been traced to the fact that the Feynman
diagram for js& —+ 2y (js& is the axial-vector current)
is ambiguous whenever the above process goes through
the triangle graph of Fig. j., as is the case in the 0- model.
It is found that this diagram cannot be de6ned in a
fashion which preserves both PCAC and gauge invari-
ance. ' Therefore, the PCAC argument' ' cannot be di-
rectly utilized to yield the x —+ 2p amplitude.

Adler4 has also examined the triangle graph of Fig.
1 and has pointed out that, if gauge invariance is im-
posed to give a unique value for the graph, then the
departure from PCAC of this diagram can be repre-
sented by

i8„jss=3 s+ (e'/16rrs)Fs"F».

Here j5 is the naive value for the divergence, calculated
from the straightforward application of the equations
of motion, Ill"" is the electromagnetic field tensor, and
E'I"" is its dual:

fermion fields. We give in Sec. II an operator proof that
when j5& is defined in a gauge-invariant fashion, its
divergence will not in general be given by j5. An addi-
tional term will contribute whenever the matrix ele-
ments of jssF„„are suPerficially linearly (or more)
divergent, as is the case for the triangle graph. In these
instances this additional term has matrix elements
which suggest the form (1.1). It is further shown that
a gauge-noninvariant de6nition of j5& can be given such
that the divergence coincides with the "naive" value j5.
In either case, the current has finite matrix elements;
viz. , the superficial divergence disappears. Furthermore,
the ~'~ 2& decay amplitude is unambiguously deter-
mined, regardless of the definition of the current, and
the invariant coupling does not vanish since either
PCAC or gauge invariance (or both) is lost. ' The ques-
tion of whether (1.1) is valid to all orders in the strong
interactions is discussed, and diferent anomalies are
demonstrated for more general interactions.

Historically, the first derivation of Eq. (1.1) for
external electromagnetic fields was given by Schwinger, '
who recognized that the equivalence between pseudo-
vector and pseudoscalar x-E coupling could be exhibited
in perturbation theory only when additional terms are
present in B„j5&. His technique employed gauge-
invariant differentiation and gave (1.1). It is now rec-

Prov =guvePP (1.2)

The purpose of this paper is to comment further on
the ambiguities associated with the singular nature of
the axial-vector current, when it is constructed from
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FIG. 1. The process jp —+ 2p proceed-
ing through a fermion loop.
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' The value in the 0 niodel for the invariant coupling constant

of ~'-+ 2y coincides with the calculation of this process in m-E
theory by J. Steinberger, Phys. Rev. 76, 1180 (1949), and happens
to be in good agreement with experiment (the numbers agree
within 20%).
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ognized that his considerations are relevant to PCAC
arguments. "

In Sec. III we show that the same anomalous be-
havior of the triangle graph which is responsible for the
breakdown of PCAC or of gauge invariance implies that
interaction pic-tgre current commutators are anomalous.
The divergence of the current in the interaction picture
is, however, not anomalous. [Equation (1.1) holds in the
Heisenberg picture. $ Pion decay is recalculated in the
interaction picture, and the nonvanishing of the cou-
pling is seen to follow Qom the anomalous commutators
and contact terms. The argument demonstrates that
Schwinger terms and seagull terms do not cancel and
that the Schwinger term can contribute to low-energy
theorems, contrary to popular belief. It will be also seen
that whereas the Heisenberg-picture argument requires
point splitting in defining j~t', the interaction-picture
derivation does not make use of this technique, but adds
seagull terms to T products.

Section IV is directed to general remarks concerning
the implications of the above for physical theory.

II. AXIAL-VECTOR CURRENT AND ITS
DIVERGENCE IN THE HEISENBERG

PICTURE

To establish the anomalous Heisenberg-picture di-
vergence equation, we define

j;&(x,e,a) =lt (x+-,'e)y'y pp(x ';-e)—
x+c/2

we set 8 to zero for the present, and we deal with mass-
less fermions which have only electromagnetic interac-
tions (je——0).

iy BP= eA—f. (2.4b)

By virtue of (2.4b), it follows that the divergence of
(2.1) is

iB„je"(x,e, a) =ej ep(x, e, a)

&& A„(x+-',e) —A„(x——,'e) —a8„
x+e/2

A„(y)dy"

=cj eP(x, e,a)e [8.A„(x) art—„A.(x)+O(e)] (2. .5)

The naive result, B„j5&=0, follows if ~ is set equal to
zero in (2.5). This is legitimate when jeP(x, e,a) is well

behaved as e —&0. However, if a matrix element of

j e&(x, e,a)[8 A„(x) ta„—Ae, (x)] is linearly divergent,
then a nonvanishing result may remain as e2 —+ 0. Since
the dimension of je& is (length) ', one may expect a
cubic divergence. However, the pseudovector character
of j5" reduces the divergence by two powers and leaves
a possible linear divergence. We now show that this is
indeed the case for selected matrix elements.

We consider first the case that A„ is an external elec-

tromagnetic field, and determine the singular portion of
the exact vacuum-expectation value of j5&. We have

+exp iea
x—e/2

where A is the electromagnetic potential. When a= 1,
the above is gauge-invariant. The local current is ob-
tained by choosing e to be small, averaging over the
directions of ~, and letting 6 =6„6t"—+ 0: G(x——',e, x+-', e)

= (Q i TtP(x—
p e)$(x+ p e) i Q), ep) 0. (2.6b)

je&(x,a) —= lim j,&(x,e,a) .
q2 ~0

(2.2)

A.(y)dy (, (2.1) (Q[iej„j,p(x, e,a) ) Q)=c(Q( ge&(x, e,a) )
Q)e

)&[ej A„(x)—aB„A (x)+O(e)]
= —e Try'ypG(x ——',e, x+-,'e)e

X[8 A„(x)—aej„A (x)+O(e)], (2.6a)

Similarly, the divergence is given by

et„j ep(x, a) =lim B„j4"(x,e—,a).
@2~0

The equation of motion for P is

The portion of 6 which is singular in e may be calcu-
lated by perturbation theory. It may be verified that (in
the absence of other interactions)

2.3)

G(x —',e, x+-,'e)

iy BP= —eAQ+8$, (2.4a) =S(—e)+ie d'y S(x—y ——,'e)~-S(y —x —,'e)A. (y)

where 8 is some operator containing the mass terms, as
well as other interactions. The anomaly one seeks is in-

dependent of masses. The eBects of the other interac-
tions will be examined at the end of this section. Thus

—e' d'yd4s S(x—y —',e)y S(y —s)yo

XS(z—x—-', e)A (y)Ao(z)+O(lne), (2.7a)
"' After completing this investigation, we received unpublished

reports from C. R. Hagen, Phys. Rev. 177, 2622 {l969) and K. G.
Wilson (to be published); this refers to non-Lagrangian models for
currerft algebra in which some of the topics discussed here are
treated.

S(x)=—i
d4p o iyx-

(27r) 4 P+i rt

(2.7h)
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The momentum representation of (2.7a) is
T""(p q 4 a) — d4yd4s e'" "e'"*p'q'

G(x —',4, x+-', 4) -S(—4)+ie
(2zr)' X(0

~

TA "(y)A "(s)i8„j4~(x,a, 4)
~ »

Xe*'"e "'S(p+ 'q)7-S(p .q—)A-(q)

d4pd4q&d4qz
eze'l)e iZ' (ll+42)P'[p+& (qz+qz)]pa

(2zr)"

XS[p—-', (qz
—qz)]veS[p —-', (qi+qz)])

XA (qi)Ae(qz)+0(inc) . (2.8)

Now when e —+0, the resulting p integral, which is
purely a surface integral, is finite, if we integrate over
angles of p first (or equivalently, if we average over 4

before taking the limit 4 ~ 0). We then obtain, by ex-
plicitly evaluating (2.9) and substituting into (2.6a),

(Q~ za„j,I"(x,a)
~

»= (ez/16zrz)F& [4I.A„(x)—aB„A (x)]
(e'/16zr') X ', (,1+a)FI'~F„—,. (2.10)

When the gauge-invariant de6nition is chosen for j5&,
viz. , @=1,we obtain

(Q~ia„j 4~(x, 1)
~

Q)=(e'/16xz)F~"F (2.11)

which coincides with (1.1). This was first derived by
Schwinger, ' using a method different from ours. How-
ever, gauge-noninvariant de6nitions of jz& will give
other results. In particular, the choice u= —1 gives

(niza„j, (x, —1) in)=O. (2.12)

Thus the naive equation may be regained at the ex-
pense of gauge invariance. We show below that pion
decay in the 0- model is not affected by the choice of u.
It should be emphasized that the present results are
exact, and valid to all orders in the external electro-
Inagnetic field.

Next we consider the situation when the electromag-
netic 6eld is a dynamical operator. We calculate the
two-photon —vacuum ma, trix element of i B„j5I'

For reasons of C invariance, only the contribution to 6
linear in A is of interest. With e 6nite we may compute
e 6 by an integration by parts, so that we find, with the
suitable trace taken,

—Tr[y'y&G(x —', 4, x+-', e)e ],„0

d4p 8
=-,'ze47„A), (x) e"&

(42zr) 4 Bp"

BS(p) aS(p)
X T v'v" v"S(p) -S(p)~"

Bp Bp

+0(e inc) . (2.9)

=ee d'yd'se" &e'4 *p'qz(Q~ TA&(y)A"(s)j 4 (x, e,a)

2'I'"(p, q, c,a) = —e' Try'y"4 e*'&4'+&&

(2zr)4

Xe""[S(r—', q)peS(r+-,'q) (g."ge"P —ag."ge"P.)

+S(r lP)veS—(r+lP)(g "g-"q- ag "g-"q—-)]
+0(e')+0(e inc) . (2.14)

Evaluating the trace and keeping only the most singular
part leaves

7'"(p,q, e,a) =4e'e"e«e

X [qzpaga "ge aqzpa)ga"ge" +pzqage"ga apzq(age"ga~]

d4~ ~je.v

y~ig (y+q) rg+0(4 inc)+0(e') . (2.15a)
(2zr)4 r4

The integral is evaluated as before, by partial integra-
tion. Averaging over e leaves, in the limit e ~ 0,

Tl'"(p q a) = —(e'e'* ~&+&&/4zrz)

X(1+a)e"-eP.qe+O("). (2.15b)

This is equivalent to setting directly in (2.13)

i B„j41'(x a) = (ez/16zr')-,'(1+a)P&"F„„+0(e'). (2.16a)

Thus we have regained the analog of (1.1) for this
matrix element. It is clear that this lowest-order calcu-
lation is equivalent to the external-6eld description.
Note that (2.16a) may be rewritten in terms of renor-
malized quantities

i B„j41'(x,a) = (e'~/Nzrz)Pi4""Fz4„. ,
R2 —g8 (2.16b)

Ppv g 1/2P pv

We now show that the matrix elements of the axial-
vector current and not only its divergence are finite.
We consider only the case of external electromagnetic
field, and calculate

(~l j.(x, ,a) I»= —T» G(x—:,x+! )
X [1+ieae A (x)+0(ez)]. (2.17)

Again, the singular terms are the ones of interest and for
this purpose we may use the Born expansion (2.7a).

X[8 A„(x)—aB A.(x)])»+0(e'). (2.13)

The vacuum-expectation value is calculated to lowest-
order perturbation .theory. We 6nd that
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Since we are computing the axial-vector vertex, only
the terms proportional to A„A„are of interest because
of C invariance. We obtain, by using the technique of
integration by parts as above for the terms of the form
e (slIlglllR1' pR1'ts),

(Q( j,~(x, e,a) ( Q)

e' de q de 2 e-i(m+m) ipse (~1)g&(~2)
2 (2x)' (2n.)'

d4p pl+$2e'"' Tr y'y"5 p+
(2x)' 2

pPg

8
+a»B"VP(p kV~)V'~—(p+2&2)j

Qp ii

We first notice that when a= 1 (gauge-invariant defini-
tion of the axial-vector current) that wi/bout averaging
on e, the limit e —+ 0 is well de6ned. This is because, when
a= 1, the integrand in (2.18a), as p ~~, is of order
1/p' and therefore convergent. When a/1, the inte-
grand in (2.18a) is of order 1/p'+1/p' the contribution
of 1/p' vanishes on symmetric integration, and the
1/p contribution is finite and unambiguous if we sym-
metrically integrate over P (01 Rvelage ovel e). This ls
the only a priari reason for taking the gauge-invariant
de6nition of the axial-vector current, in that it is 6nite
and unambiguous without the necessity of any special
treatment of the parameter ~ as e —+ 0. However, when
a& 1, if we symmetrically integrate over p, the 1/p' and
1/p4 contributions vanish, and again the integral is
finite. Finally, we may reproduce the results of our cal-
culation of the divergence of the axial-vector current
using this form. We 6nd that when we let u~ —1

+ (a+1) that the term proportional to (a+1) may be
calculated exphcitly. The answer is (in the limit e —& 0)

(Q
~ j,~(x,a)

~
Q) = —(ie'/161r') (1+a)F»(x)Ae(x)

+(Qi j,~(x) i Q). (2.18b)

The additional term is independent of a, and its form is

In this form we can show, m @holt the use of a translation
of the variable p, that the traditional form of the diver-
gence of the axial-vector current can be used. That is,
(ppp=0) 8„{Q~j5'~Q)=0. Thus we reproduce our previ-
ous result, namely,

ia„(Q( j;(*,a)
~
Q)
= (e'/16m')-', (1+a)F e(x)F»(x). (2.19)

Evidently g5~ satisfies the naive divergence equation,
as can be seen by comparing with (2.11).

It is seen that the current jqi'(x, a) turns out to be
finite, regardless of whether gauge invariance (a= 1) or
PCAC (a= —1) is imposed. This was already discovered
by examination of the triangle graph. ' Note that even
when gauge invariance is imposed,

j5"(x,a) = (—ie'/16'')(1+a)
XP»{x)A&{x)+j,~{x), (2.21)

ia„j,~(x,a) = (e'/161r')-,'(1+a)
XF»(x)F e(x)+ j~(x), (2.22a)

(2.22b)ia„j,~( )=xj5(x)

(Q~ j,~(x, 1) ~Q)
= ( i /e87r—')F»(x)Ae(x)+ (Q

~
yp"

~
Q). (2.20)

pep' is not separately gauge-invariant, since F»(x)Ae(x)
varies with gauge transformations. Since gpI" does not
depend on u, it is gauge-dependent regardless of choice
of c.

We have discovered the startling result that although
the theory possess two formal symmetries, gauge in-
variance and PCAC, the solution given by perturbation
theory cannot maintain conservation of both of the cur-
rents, but only of one. ' From the formal point of view
there appears to be no way to select which conservation
law shouM be preserved. Consulting nature does not
help since it is not known whether the neN)ra/ hadronic
axial-vector current is observable. However, gauge in-
variance does possess the formal advantage discussed
above, viz. , the axial-vector current is 6nite independent
of e averaging.

It is next shown that the mo~ 2p decay amplitude
does not depend on the choice of e. Let us generalize
the previous considerations to the case j5+0. Evidently
we have

It is, of course, arbitrary which pseudoscalar operator
is used as an interpolating 6eld for the pion. We may
use i8„j5I" or i8„j5I"=j5. However, in order to obtain
useful information about physical pion amplitudes, from
expressions evaluated at zero pion mass, it is necessary
that the operator lead to expressions which extrapolate
smoothly from k'=0 to k'=m 2. We shall now argue
that i8.gp= j5 is the proper operator for this purpose.
First, in the 0- model, j5 is proportional to the canonical

8 Similar incompatibility of conservation of tao currents has
been encountered in two-dimeTIsional model field theories; see K.
Johnson, Phys. I.etters 5, 253 (1963}.

e' d4ggd4q2

(Q i j5 (x) i Q) =— e—'& + ' 2 (ql)Ae(g2)
2 (2pr)'

a e-+P
)&S(p+-,'q2) j+ (2.18c)

gy~g2

(
X ~l p v' — T—re'~u~(p kV2)v'—

2 ap
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iy 8$= —eAQ+&P. (2.24)

8 is a Dirac matrix, which we assume has no vector
component, the latter being already exhibited in A&.

Hermiticity requires that 8=8. (We ignore internal
symmetries. ) The generalization of (2.5) is (we restrict
ourselves now to gauge-invariant deGnition of the axial-
vector current, and suppress a= 1)

iB„j41"(x,e) =j4(x,e)+eej 4"(x,e)F „(x)

+24%(x+24)P-~(x),v'34(*—24)

+0(P(x+-,'eg (x—-,'4) 4') (2.25)

j4(x, e)=ip(x+ 24)[8—(x),p']pip(x ',4)—
g+.e/2

Xexp( ie
g—e/2

pion Geld, which has smooth matrix elements. Second,
i8„j5&leads to a vanishing invariant decay constant. In
those theories which lead to a nonvanishing effective
coupling constant (such as the o model), i8„j4"is mani-

festly not smooth. (Only these theories are of physical
interest. ) Finally, as we shall now see, the choice j4
gives an answer independent of the ambiguities of j5&.

Accepting j5 as the proper interpolating Geld, we see
that according to (2.22a) the pion 6eld is proportional
to the divergence of j4&(x,44) minus (e'/164r2) L(1+a)/2]
XP e(x)F e(x). The current may be written as a gauge-
invariant part, independent of u, plus a gauge-dependent
part:

j 41'(X,a) =j 4&(X,1)+(ie'/164r') (1 44)P»(—X)Ae(X) .

At zero pion mass, the gauge-invariant portion
B„j4&(x,1) does not contribute, according to the stand-
ard PCAC argument. Therefore the only remaining
terms are

i 4t„)ie'/16m'(1 a)P»—(x)Ae(x) J
—(e'/164r')-', (1+a)P e(x)F e(x)

= (—e'/16m')F~e(x)F. e(x) . (2.25)

It is seen that this is independent of a, and leads to a
nonvanishing decay constant; it may be verified' that
it agrees with the direct calculation in the 0 model,
where use is made of the canonical pion field. We stress
that the above calculation is performed in the Heisen-

berg picture, and makes use of the anomalous diver-

gence. The interaction-picture calculation will shed
different light on the problem.

We conclude this section by a discussion of the modi-
Gcations of the above results by other interactions.
These modifications may a.rise in two ways. In the Grst

place the basic divergence equation PEq. (2.5)J may
have additional terms. Also, higher-order corrections
can change the value of the matrix elements of i &„j51".

To study the eGect of the former, let us consider the
more general equation of motion (2.4a):

We shall ignore the 0(4P(x+ ', 4-)f(x —', 4—)4') term; that
is, we shall assume that there are no problems in dehning
the product 8(x)$(x).' Decomposing 6(x) as

n(x) =S(x)+e eT.e(x)+y'y~B„(x)+y'A(x) (2.26)

yields

iB„j4&(x, 4) =j 4(x, e)+ee j4&(x,e)F ~(x)

+4+~(x,e)B.B„(x). (2.27)

Hence additional anomalous terms are present only
when there exists pseudovector coupling. Since the
axial-vector current is not conserved, such coupling
would lead to a unrenormalizable theory. To avoid this
we assume that 8=0. For the same reason we take
T p=0. Therefore, for renormalizable theories without
internal symmetries, the anomalous term in the diver-
gence equation retains the form (2.5).

Next we discuss higher-order corrections to the matrix
elements of iB„j4&(x,e) =j4+eel 4I"(x,e)F „(x) When t. he
electromagnetic Geld is a dynamical variable, we are
unable to make a statement valid to all orders of elec-
trodynamics. However, for practical applications, it is
sufhcient to consider only the second order, which, as
was seen above, is equivalent to treating the electro-
magnetic field as an external variable. We shall now
limit the discussion to the external-field problem, and
work to all orders in the other interactions.

In the presence of other interactions, (2.5) and (2.6)
are still valid. However, (2.7) must be replaced (to order
e, which is sufficient since we seek B„j4' to order e ) by

G(x—,'4, x+-,'4) =G(—4)+ie

d4pd4q
X16 d4y e"4'e 24~ 4e"&—4G(p'+q)

(24r)'

X~ (P+0, P —U)G(P —q)A (y)+0(e'). (2.28)

Here G(p) is the complete, unrenormalized momentuni-
space propagator, and I' (p+q, p —g) is the complete,
unrenormalized electromagnetic vertex function, both
in the absence of electrodynamics. The vertex is nor-
malized by the Ward identity

I' (p,p)= —i~~ '(p)=~ '(p)~ G(p)G '(p) (229)

Since we seek the singular part of the integral as e —+ 0,
only the large p portion of the integrand is needed. We
shall assume that the complete vertex does not introduce

'Ignoring the dif6culties of operator products 8(x)P(x) is, of
course, not satisfactory since these too will be singular. To analyze
these products, one needs to commit oneself to specific interac-
tions, a program which would be beyond the scope of the present
investigation. WVe speculate, however, that these singularities,
which are, of course, those that are handled by conventional
renormalization theory, will not acct our results as long as the
theory and the axial-vector current are renormalizable. Further-
more, in the Appendix we present an alternative approach which
can take into account these singularities in some cases.
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G(x—-', e, x+-,'e) =G( e)—+I'e
d'pd'q

e"I'e '"'~A (q)
(2Ir)'

&('~ G(p)+2IqeL~'G(p)G '(P)~ G(P)

—~ G(P)G '(P)~'G(p)7+lq G(p)P'(P)G(p)&

+O(e')+O(inc) . (2.31R)

We have made use of (2.29) to simplify the above. Note
that the YVard-Takahashi identity implies that the sym-
metric part of I' ~ is zero. The erst two terms in the
curly brackets reproduce the corresponding terms of
(2.7) when use is made of the asymptotic formula

G(P) ~ 1/p (231b)

%'hich ls RCCUI'Rtc foI' oUI" purposes of cxtrRctlng the
singular e behavior. Therefore, instead of (2.8), we now
have

Rny ncw ul«»101«divergences; that is, for large p,

&"(p,p) ~ const,

8
P'(P)—= P (P+q, p q)—

~qe ' @=0 p

Thc 1Dtcgl RDd xnay bc cxpRnded ln powers of g Rs before:

Here p2 is the mass of the scalar and pseudoscalar par-
ticles and h.' is the cutoff. However, e(p') turns out to be
a constant independent of the masses, and

F(p') p 'X0. - (2.34b)

I inaBy, the third answer can be obtained by introduc-

ing the cutoff only in the calculation of F(p') and letting
A' go to in6nity before p'. Then

Whether or not f(0) vamshes is now seen to depend on

the asymptotic behavior of F(p'). Presumably F(p')
satisfies an unsubtracted dispersion relation, since there
ls no dll cct pscudovectol couphng. However) this would

IndIcatc tllRt F(p ) ~ 1/p fol' lRlgc pi Rnd f(0) ls llot
zero unless the proportionality constant vanishes.

Unfortunately, perturbation theory cannot bc used in

coDDcctlon with thc Rbovc foI'mulR, bccausc of divcr-

gcrlccs- Indccd thc above ls ambiguous RDd oDc CRQ gct
any one of three answers, depending upon how one

evaluates the expressions (2.28) or (2.33c). If one intro-
duces a cuto6 and then lets the cutoB go to in6nity in

(2.28), onc Rrllvcs Rt Rll ln6nltc lcsult. , slllcc 'tile uIllc-

normalized quantities occurring in (2.28) are in6nite.
If one introduces a cutoff, and maintains it at a finite

VRlllC, lettlllg p go 't01116111ty6rst) tllC11 (2.30) Rlld (2.31)
are true and F(p') is given (for scalar and pseudoscalar
interactions) by

F(p') ~ e(I")/p' e(A')/P—'.

F(p') /p' (2.35)

vv (, , x+, e)

=(—e/4~')(ee/")F"'L1+f(")7

(0 ( 'B„j ( ) ~
0)

=(e'/16~') L1+f(0)7F~ (x)F„,(z),

$2

(2Ir)'
— e""F(P')P '

PR

(2.33a)

{2.33b)

(2.33c)

e"'" »v'v"p 'P'e(p)p ' (2 31c)
(2Ir)'

Thc vcx'tcx ls decomposed lDto its matrix coIDpoQcDts

& =GI™+vpG2'+&Nba"" +v'vpG4" ~

P'= Gl'+v G "'+~ .G ""'+v'v G4"' (2 32R)

G."'(P)=(~/~q')GI (P—+q, P—q) l,=o,

ctc. Only the induced pseudovector survives the trace:
t

Trv'v~p II"e(p)p 1=—4G,~ II(p)-/p'. (232b)

G4" (p+q, p —q) is given by ci' e"qep~G4(pn, q', p q). .

Therefore,

G4"e(p) =c"»P„G,(p', 0,0)=c~ e~p,F(p'). —(232c)

Inserting these expressions into (2.31.c) leaves

and f(0)WO.
Adler4 has given an argument to the end that there

. cxlst no higher-order effects. Hc 1DtI'oduccd R cutoR,
calculated the divergence, and then lct the cutoff go to
inhnity. This is seen in the present context to be equi-

valent to the second method above. However, we believe

that tlils method IQay Dot, bc lcllablc bccRusc of thc de-

pendence on the order of limits. In the Appendix, we

present a formula of perturbation theory which is free

of divergences, when the axial-vector vertex is multi-

plicatively renormalized by a renormalization constant
whose dlvcrgcDt pR1 t colQcldcs with I'cQoI'DiRllzRtlon

constant of the vector vertex. This desirable state of

affairs occurs when the naive divergence of axial-vector
cuI'lcQt $5 ls multiplicativcly lcnornlallzRblc, Rs ln thc
neutral-vector-meson-exchange model.

III. AXIAL-VECTOR CURRENT, ITS DIVERGENCE,
AND COMMUTATORS IN THE

INTERACTION PICTURE

Section II demonstrated how the anomalous behavior

of the axial-vector current modiies the derivation of

K ~ 2p ln thc Heisenberg plctux'c. HowcvcI', thc study
of electromagnetic effects is conventionally carried out
1Q tlic clcctI'OXQRgDctlc-lntclactlon plcturc, so that thc
operators are governed by equations of motion which do

not involve electrodynamics. %c Qovr carry out the



ANOM:ALIEN OF THE AXIAL —VECTOR CURB ENT

analysis of the axial-vector current, its divergence, and
its commutators in the interaction picture. The electro-
magnetic Geld will always be considered external.

We consider the vacuum-expectation value of the
axial-vector current. To order e' this is given by

XA.(y)A, (s) (3 &)

The left-hand side involves the Heisenberg-picture
vacuum and current, indicated by the subscript II,
while the right-hand side involves interaction-picture
operators. Using intuition based on simpler cases in
electrodynamics, one usually ignores the seagull terms
which are defined to be the difference between the T
product and the T*product in calculating divergences.
That is, one ignores Schwinger terms in the commutators
of the currents, trusting that they will cancel against the
divergence of the seagull terms. In the present instance,
we Gnd that this cancellation does not occur. Thus we
must find the explicit form of these terms. Ke have

(j;(~)) =—',e' d'yd's&fll q'j "(~)j (y)j'(s)
I
fl)

&(A.(y)A, (s)+S (x), (3.2)

where S& is the seagull term. The T product is neither
gauge- nor Lorentz-invariant. Let us first require that
the axial-vector current be gauge-invariant: invariant
under the interaction picture transformation A, (y) —+

A.(y)+ B.A.(y). The seagull term is uniquely determined

by requiring that summing it with the T product yields
a gauge-invariant T* product.

To exhibit the effect of these transformations, we
need to know the anomalous commutators of all the
currents. These may be determined by the method of
Johnson and. Low. io We define

~IZZp(p q)
—

Z pl@' (Z $)pZQ' (Z Z)

x(& I
&j "( )j'b) j'( ) I

~)d'yd' .
~o K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto}

Suppl. Nos. 37 R 88, 74 {1966);we warn against a misunderstand-
ing which might arise from the form that these equations take.
When one computes the divergence of (3.2}, the time differenta- .

tion is applied to the resllt of doing the double time integrations of
the T product; The form of the answer in terms of commutators is
correct only if the equal-time commutators are deGned as in (3.4a)
and (3.4b), rather than from canonical commutation relations.
The canonical rules would lead to vanishing commutators. Even
when care is taken to yield the Schwinger term, no operator
Schwinger term can be obtained since the currents are free-Geld
currents. The anomalous commutators arise from an additional
contribution which comes when the other time integral gets
"pinched" between the two currents which form the "equal"-time
commutator written in (3.4a). This contribution is included in the
momentum-space calculation which is performed below, since
when q is kept Gxed the full eGect of the other time integration is
retained. More discussion of this point is given in the above-
mentioned paper by Johnson and Low.

TAsx,z I. Elements of the current commutator tensor.

p=O
p=k

p=o
p=l
p=0
p=l

& ""(u,q)

(ie2/27r2) p.q -g&7 P

(—ie'/4qr2)P;q;e'&~

(—ie'/4'') qoP.c'~'+ (—ie'/4z') qoq c'~'

(—ie'/47 ')P;q~'~'
('"/4 zleP, e"'
~'" (~,q)

(ie'/2~')Pjq. ~""
(—ie2/4qr2) P;q c"~

(—ie'/4x') qoP;c& '

The quantity

lq'ipzp(p q) = s—zy. (x—y)ezz (z—zi

&&(foal

q'Lj'(s) j b)j*.=z.j5"(*)I
&&d'y&'s (3.4b)

is given by the coeKcient of l,/p' in the asymptotic
form of ~""(pz —p —

q) as po ~~.M""has been cal-
culated by Rosenberg. "From his explicit form we may
determine E~& I' and 3?2&'&. Some components of these
objects, relevant for our calculation, are summarized in
Table I.

The unique seagull term which makes the T~ product
gauge- and Lorentz-invariant is

So(g) = —(e2/g7$2)A (g)P (g)ezj~

S"(x)= (e'/Sir')A;(x)Fio(x)e"&".
(Z.5&

We are now in a position to calculate the divergence of
(jsz(x))&. The contributions to this are of three kinds.
First, there is the divergence of B„j5&which for simplic-
ity we take to be zero in the interaction picture. Next,
there is the contribution of the commutators C(x) aris-
ing from taking the derivative through the T product.
Finally, there is the divergence of the seagull term. Thus

(a„j;)~=C(x)+a„sz(x) . (3.6a)

C(x) is evaluated from Table I and B„S"(x)from (3.5).
%e Gnd, as expected, that

'i(&„js')rr= (e'/16~')I'z"P' „. (3 6b)

It is seen that the Schwinger terms arising from the
commutator do not cancel the seagull term. See the
Note added in proof for details.

~' L. Rosenberg, Phys. Rev. 129, 2786 (1963).

&&(ill &Lj~"(*),j b)jl.,= oj'(s) I
fl)d'yd's (3.4a)

is given by the coefficient of the 1/p' term in the asymp-
totic form of M""(p,q) as po —+~. Similarly, the
quantity

g Z,op(p q)
— &-zy (r z)&z'q (—z—z)
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We may now also understand the gauge-noninvariant
definitions of jp which preserve PCAC. In the present
context, they manifest themselves as additional sea-
gull terms which are Lorentz-invariant but not gauge-
invariant. For example, if we add to St" the term—(e'/8~')Pl""A.

&
then PCAC is regained.

In conclusion, we demonstrate how pion decay is
calculated in the interaction picture. We seek the inter-
action-picture matrix element

«I T*~( )j.b) je()
I
Q)

=(Ql T4(*)j"b)j'( ) I Q) (3 7 )

There are no seagull terms since the T product is already
gauge- and Lorentz-invariant. Use is now made of the
interaction-picture equation

to write the above as
Q j5&ccrc (3.7b)

(Q I Ty(x)j (y) je($)
I Q& (Q I Ta„j5 (x)j (y)j ~(x)

I Q)
= ~.(QI Tj '(x) j"(y)j'(s) IQ&—C'(xy s) (3.7c)

Here C e(x,y, e) is the contribution of the commutators,
and is related in an obvious fashion to the C(x) function
introduced above. We now rewrite the above again:

(Ql T~(x)j.b) j'(e) IQ) - ~,L(QI Tj (x)j"(y)je(s)
I Q)

+S~ e(x,y, s)]—a„S~ e(x,y, s) —C"e(x,y,s). (3.7d)

Here St" t' is the seagull term, related to the St" intro-
duced previously. The term in square brackets is gauge-
and Lorentz-invariant, and hence it does not contribute
to the invariant ~o —+ 2y coupling constant at zero pion
mass. The only surviving terms are the BS+C, which, as
we have seen, do not sum to zero. Thus the low-energy
theorem for x'~ 27 crucially depends on Schwinger
terms and seagull terms.

TPA (x,x')B(0,0) j=—8(x')A (x,x')B(0,0)
+0(—x )B(0,0)A (x,x'), (N1)

where 9(0)= —,', so that 8(x')+ tt (—x )= 1.By hypothesis,

and

A (x,0)B(0,0)—= lim LA (x,x')B(0,0))

B(0,0)A (x,0)=—lirn B(0,0)A (x,x') .

The present investigation shows that vector-current-
conservation symmetry, chiral symmetry, and minimal-
ity of vector interactions are mutually incompatible, at
least in perturbation theory. In a previous investigation
of the problem, minimality was abandoned and both
symmetries were preserved. ' In the present instance, we
maintain minimality, and abandon one of the two sym-
metries. We note that analogous results will hold when
other renormalizable vector couplings of the fermions
are present, but the explicit form of the additional
terms in the divergence of the axial-vector current will

depend upon these couplings. In conclusion, we also
mention that the present considerations are not modi-
fied if the field-current identity is assumed. The point
is that the divergence of the field-current operator is
formally proportional to the divergence of the current
constructed by Noether's theorem. Hence if the diver-
gence of the latter is anomalous, so is the divergence of
the former.

Pote added irl, proof. We wish to expand upon the re-
mark in Ref. 10. The definition of the T product of
operators requires special care when the operators do
not commute at equal times. However, when the equal-
time operator products "exist" (have a finite, well-
defined Fourier transform), one may most reasonably
define the T product of A(x,x') and B(0,0) to be

IV. SUMMARY AND CONCLUSION

We summarize our results. It has been demonstrated
that the Heisenberg equation of motion for the fermion
axial-vector current contains terms which are not given

by straightforward application of canonical reasoning.
These terms depend on the nature of the interactions of
the fermions, and on the method chosen to define the
singular product of two fermion fields. In a definite
model the nature of the modification can be determined,
but in general only to lowest order in interactions. The
decay of the pion into two photons, which can be cal-
culated directly and unambigously in the 0. model, is
found to be independent of the choice of definition of
the current.

In the electromagnetic-interaction picture, it is found
that the time-ordered product of an axial-vector current
with two-vector currents is singula, r, and that the re-
moval of this singularity which is eGected by the addi-
tion of seagull terms modifies the divergence equation
for the T* product.

The operator products needed here exist in this sense.
Accordingly, the function

«IT(j"(*)j.(y)~ ())I0&

exists and is unambiguous, since quantities such as

(oI j~"(x)j'b)j'(s)l o&

(0l T{Lj(x),j'(y)7"="j(s))I0) (N2)

vanish identically. LThis is not in contradiction with
(3.4) since the limit pa~~ is taken for fixed g, thus
retaining the full eGect of the s integration, in particu-
lar when s' gets "pinched" between x and y. See

for x'&y'&2', may be Neunsbiguolsly calculated from
the appropriate Feynman diagram because the ambigu-
ous terms of the diagram are local in time and vanish
when x'&y &s'. With this definition for products of
operators it may be seen that quantities of the form
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and by using the standard method to evaluate the limit
e ~ 0 and the entries in Table I, we obtain finally :(3-

bT'(x) = (e'/8n') 84 (x)F7,(x)e""
eT~($) = —(e'/8x') a A($)F (s)e ~' (N8)

If we compute with (3.5) we find that b(TI'+Si') =0.
Next we compute the divergence of T&(x). The calcula-
tion proceeds exactly as above, yielding only an
anomalous contribution when the perturbation becomes
pinched between the axial current and vector current
in one term. This contribution again may be evaluated
with the aid of Table I. We And

Fro. 3. Bethe-Salpeter equation for
axial-vector and vector vertices.

(2.28) can be written by integration by parts in the
form

( ) ( Q/164r2)e'jlC(3F p +2+ F +g F ) (N9)
lim d'p 4 e""Trr'r"G(p+q)p"(p+q, p —q)G(p —q)

and when we thereby evaluate 8„(TI'+S&) we obtain
(3.6b).

We are grateful to Dr. S. L. Adler for ending a sign
error in an earlier version of this calculation.

=lim i —d4p e"& Try'7"G(p jq)
e~0 Bp»

XI'"(p+q, p —q)G(p —q)
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= lim i d'p e"" [Try "yI'G(p+q)
e —&0 Bp»

XI'"(p+q p —q)G(p —q)j

APPENDIX

We present here an alternative formula for the
vacuum-expectation value of the divergence of the axial-

=i d4p P'rv'7'G(p+q)

XI'"(p+q p q)G(p —q)]. (A1)

&a

FIG. 2. Diagrammatic representation of Eq. (Ai).

vector current in the presence external electromagnetic
interactions which may be useful in perturbation theory.
It does not have the compact form of (2.33c); however;

t may be free of ambiguities. The relevant integral

Diagrammatically this has the representation shown in
I'ig. 2. We now assume that both the axial-vector and

vector vertices satisfy a Bethe-Salpeter equation dia-

grammed in Fig. 3. From Fig. 3(a), we have the result
shown in Fig. 4. The equation of Fig. 3(a) has been used

in passing from the second equality to the third equality.
The momentum p with respect to which we are differ-

entiating must be routed so that it follows the charge.

By use of the equation in Fig. 3(b), we obtain an. expres-

a' v = a'

(3-
)(~~ FiG. 4. Manipulation of

Fig. 3(b).

&a
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FlG. 5. Alternative expression for the quantity of Fig. 2.

Z5

FIG. 6. Renormalized version of Fig. 5.

sion for the quantity depicted in Fig. 2. This expression
is summarized by Fig. 5. This may now be expressed in
renormalized quantities which we indicate by a tilde.
Assuming I"&& to be multiplicatively renormalizable by
Z; ', as well as t by Z& and I'& by Z2= Z&, we have the
renormalized version of Fig. 5. This is given in Fig. 6.

When Zi/Z5 is finite the above involves only finite
quantities.

In lowest-order perturbation theory the quantity in
parentheses in Fig. 6 vanishes, and only the derivative
of the propagator is left. We have not evaluated this
formula.
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Kinematic Structure of Vertex Functions*
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An invariant-amplitude expansion is obtained for vertex functions of fields belonging to arbitrary repre-
sentations of the Lorentz group between states of arbitrary spins. The method is based on analysis of the
singularities of the Lorentz-group parameters defining the vertex function. The restrictions due to parity
and subsidiary conditions are also given.

I. INTRODUCTION

'HE purpose of this paper is to give an expansion
for vertex functions in terms of functions which

are completely free from kinematic singularities and
constraints. Following common practice, we will refer
to these functions as invariant amplitudes, although
the distinguishing feature is the absence of kinematic
singularities and constraints. The method we employ
is the same as that used in an earlier paper on kinematic
constraints and singularities of scattering amplitudes. '
It is based on an analysis of the singularities of the
I.orentz-group parameters defining the amplitude as a
function of the scalar variables. Since the vertex depends
on only one variable, t, this method allows a complete re-
moval of all singularities and constraints simultane-
ously.

The vertex functions we will study are

P),,i„(pi,p2) = (p2,s„x2I4'J~" I pi@i,"i) (~ &)

There are two legs on the mass shell, with arbitrary
spins and masses, and one leg oG the mass shell. The
latter is taken to belong to the jog. representation of
the Lorentz group. ' 4 (For the finite, nonunitary
representations $g~' t, j a=a band a=a+6+1.)—

*Work performed under the auspices of U. S. Atomic Energy
Commission.

~ T. L. Trueman, Phys. Rev. 173, 1684 (1968).' H. Joos, Fortschr. Physik 10, 65 (1962).
~ J. Strathdee, J. F. Boyce, R. Delbourgo, and A. Salam,

Trieste Report, 1967 (unpublished).
4 A. Sciarrino and M. Toiler, J. Math. Phys. 8, 1252 {1967).

There are many reasons for studying the structure of
these functions for such general cases. To cite a few:
(a) One can use them to construct one-particle exchange
or pole terms which correspond to very-high-spin
particles and which satisfy the conditions required by
Lorentz invariance. (b) Many results which are true for
arbitrary 0- and physical Jmay presumably be extended
to complex values of J and so be applied to factorized
Regge residues; thus, one could study the behavior of
the Regge residues in a very direct way. (c) The
results may be a useful step in obtaining the kinematic
structure of more complex amplitudes. (d) Further
understanding of the significance of singularities and
constraints, such as those which result from subsidiary
conditions, may be obtained. A number of authors
have studied this problem using a variety of methods
and have obtained rather general results. '—7 The
method employed here is diferent from all of the
preceding ones and the results are obtained in a substan-
tially different and, we believe, more useful form.

In Sec. II, we review the multipole expansion and the
difhculties with it. We then obtain an expansion for
Fi,i, (piii, p2), where piii=(mi, o), in terms of in-
variant amplitudes. In Sec. DI, we discuss the restric-
tions due to parity conservation. One of the important
features of our expansion is that the form of these
restrictions is very simple. In Sec. IV, we carry out
the transformation to the center-of-mass amplitudes

~ M. Scadron, Phys. Rev. 165, 1640 (1968).
6 M. Bander, Phys. Rev. 173, 1568 (1968).
7 M. S. Marinov, Ann. Phys. (¹V.) 49, 357 (1968).


