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The pseudopotential method developed in Paper I is applied to the photoionization of N2. From
the known quantum defects of two Rydberg series of N2, we obtain the phase shifts of the photo-
ionized electron. These phase shifts are used to construct a simple model potential approxi-
mation to the true pseudopotential. The model wave Rnctions are then orthogonalized to the
known Hartree-Fock wave functions of the N2 core. Using these wave functions we calculate
the total and differential cross section for photoionization of electrons from N2 as a function

of the energy of the outgoing electron. The results of the calculation are discussed and com-
pared with some of the more recent experimental measurements of the aforementioned

quantities.

I. INTRODUCTION N ('Z+)+)2V- N+(2Z+)+ e
2 g 2 g

(2)

The photoionization of N, has been the subject
of intensive efforts in a large number of labora-
tories during the past ten years. This work cul-
minated in experimental measurements of the to-
tal cross section for the photoionization of elec-
trons from N, as a function of incident light ener-
gy. ' 4 Quite recently the angular distribution of
the photoelectrons from N, has been studied for
formation of specific electronic states of the ion. '

The electronic structure of the N, molecule
may be represented as

(lg 21g 22g 22g 21 ~ 48g 2) lg+
g Q g Q Q g g

in the molecular orbital picture. The photoion-
ization process with the lowest threshold energy

begins to occur at an energy of 15.58 eV (795.9
A). Using the selection rules for dipole radia-
tion, we find that the only allowed states of the
outgoing electron are jet@ and kg+. The corre-
sponding configurations and states of the e —N+

system may be represented as

(1g lg 2g 22g 21/ 8g yg ) g+
g Q g Q Q g Q Q

(lg '1g '2g '2g 21m 43g km )
g Q g Q Q g Q I

where 0 is the wave number of the escaping elec-
tron. As the energy of the photons is increased,
channels corresponding to excited core N+ states
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(lo 'lo '2o '2o '1v '3o 'av ), 'Z+,
g Q g Q Q g g Q

(6)

(lo 21o 22o 22g 2] v 33o 2/6 ) &D

g Q g Q Q g g Q

We can identify the two continuum states
characteristic of the primary photoionization
process as the limits of two well-known Rydberg
series. The 'Z+ state can be considered as the
ionization limit of the well known Worley- Jenkins
series, while the II state is the limit of a
series recently identified by Carroll and Yosh-
ino. ' The Rydberg series converging to the 'lI„
state of the N, ion are less well known experi-
mentally. It can be established, however, that
the first of the three states listed in expression
(6) belongs to Worley's third Hydberg series. '
There is enough data on the quantum defects' of
these Rydberg series to get information on the
low-energy phase shifts of the outgoing electron.
Consequently we can do a simple pseudopotential
calculation for the wave function of the continu-
um electron.

Before turningto the actual details of the cal-
culation, let us consider some of the more re-
cent experimental measurements of the N, pho-
toionization cross section.

Perhaps the absolute cross- section data with
the highest resolution is that of Cook and
Metzger. 2 Examination of their absorption
curves shows a sharp rise at the 795.9A thresh-
old, followed by a succession of fairly well-de-
fined peaks at shorter wavelengths, down to
about 725 A. Below 725 A, the cross section is
relatively smooth, containing only three or four
clearly resolved peaks. The occurrence of such
detailed structures in the cross section at low
energies can only be explained by the formation
of a long-lived state. Because the structure is
observed in both the absorption and ionization
cross sections, the presumed cause of the struc-
ture is autoionization. It is now well established

are opened. Thus at an energy of 16.69 eV
(742.7 A), we get

N ('g+) + h v -N+ ('ll ) + e
2 g 2 Q

and at 18.76 eV (661.0 A)

N ('Z+)+I v-N+('Z')+e .
2 g 2 Q

Our calculations stop short of the 18.76 eV
threshold for the formation of the ('Z~+) second ex-
cited state of N+, .

The allowed states of the outgoing electron in
Eq. 4 are keg, 4'~g, or k5g. The total configura-
tions and states corresponding to these outgoing
1-electron states are, respectively,

(lo 'lo '2o '2o 'lv '3o 'ko ) 'll
g Q g Q Q g g Q

that the major contribution to the photoionization
cross section of H2-at energies up to 2 eV above
the ionization threshold is from autoionizing
states. ", The autoionization of these states is
a result of the breakdown of the Born-Oppen-
heimer approximation in mokecules. " In effect,
an electron initially excited by light into a Ryd-
berg state of the molecule slowly exchanges en-
ergy with the nuclei. If enough energy is avail-
able in the nuclear motion to raise the Rydberg
electron to the continuum, the molecule may
eventually ionize.

Naturally a comparison of experimental and
theoretical cross sections for direct photoion-
ization depends on the resolution of the experi-
mental curve; only if the autoionization peaks
are well resolved can one distinguish the con-
tinuous background unambiguously. The pub-
lished data of Cook and Metzger' do not allow us
to decide whether the direct and autoionization
contributions are distinguishable. However, re-
cent relative cross-section measurements of
Berkowitz and Chupka, "made with very high
resolution, do clearly separate the peaks. The
relative intensities of the maxima and minima
in cross sections of Cook and Metzger agree
well with those of Berkowitz and Chupka, so that
we have reasonable confidence in the estimated
continuous contribution in Cook and Metzger's
data.

%'hen one calculates elastic scattering cross
sections, one often computes differential cross
sections to be compared with experiment. Photo-
ionization offers no exact analog to the usual dif-
ferential scattering cross section because the
angular distribution of photoelectrons from a set
of atoms or randomly oriented molecules is es-
sentially of the formf(8) =o. +Pcos'8. "~" How-
ever, the coefficients n and P are functions of en-
ergy and of the transition dipole matrix elements
connecting initial and final states. In principle
it is possible to identify final states (and, by im-
plication, initial 1-electron states) by comparing
experimental values of o. and P with correspond-
ing theoretical values for various hypothesized
transitions. It is also possible to determine
phenomenologically the upper and lower limits of
o./P for specific molecular ionization processes.
We have determined o./p numerically from our
theoretical model and have considered the limits
it may have for the formation of N2 in its 'Z+
ground state. These results, at best, are only
in fair argument with the measurements of Ehr-
hardt, Berkowitz, and Tekaat. One reason for
the discrepancy is presumably due to the limita-
tion of our theory at energies well above ioniza-
tion thresholds. A photoionization experiment
is suggested for the energy range for which the

theory is most nearly valid.
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We now apply the pseudopotential method described previously to the problem of photoionization of N, .
Consider a beam of photons incident on a molecule with a fixed orientation in space. We ignore any ef-
fects of the radiation field on the molecular wave function aside from the lowest-order one-electron ab-
sorption process of immediate interest. The total wave function of the continuum eigenstate in the asymp-
totic region of the coordinate r~ of the photoionized electron (electron N) can be written as

lim 4' (r .. .r;R)=k r Q (r . . .r;R)Y (0'' )exp(if )
—1/2 —1

N

S (ql;q'I'm)k r Q, (rl. ..r I,.R)Y&, (r' ) exp(if, &,), (7). Ii -1/2
t~f

l~f

where the matrix S is the adjoint of the scattering matrix in the angular momentum representation. The
other quantities in Eq. 7 are defined in standard fashion as

g &=0 ~N--,'l~-y ln2k ~N+cr&, k =wave vecto~ of the photoionized electron.
ql q N q q N l' q

o =ArgI'(I+1+iyq) =the Coulomb phase shift,

Q (rl. . .r 1,R)=a bound state of the molecule-ion, and R=internuclear distance.1''' N-1'

The primes on the arguments of the spherical harmonics indicate we have chosen a coordinate system
centered at the midpoint of the molecule with its z axis along the internuclear axis. The signs of 4 r in
the asymptotic form of 4q~m are consequences of the fact that we are dealing with a sort of time-reversed
scattering process and must use the 0, rather than the 0+ wave function for the overall state of the sys-
tem. " If we specialize to the one-state approximation we get

lim 4 (r .. .r;R)=k r Q (r . . .r;R)(Y (r' )exp(if )[1—S (ql;qfm)]
q/

-Qf, S (q/;qf'm)YI, (r')exp(g' I,))&Im N

As one would expect for an axially symmetric system, there is coupling among the partial waves. This
coupling is a direct consequence of the form of the molecular potential in the core region of the system
and the boundary conditions placed on the wave function at infinity. It can be shown, however, that at
low energies, the S matrix may be transformed by a real orthogonal matrix to approximately uncouple
the partial waves at infinity. The wave functions obtained by this transformation are approximately eigen-
functions of 2 in the asymptotic region. Within the core, they are still linear combinations of spherical
harmonics. On the basis of the low amplitude of the pseudofunction in the core, as discussed in I, cou-
pling in the inner region should be much less j.mportant to the pseudowave function than to the actual con-
tinuum function. The pseudowave function is kept out of the core to a much greater degree by the effec-
tive potential of the core electrons, and particularly by that part arising. from the exclusion principle.
The molecular pseudopotential method is based on the conjecture that most of the nonspherical effects in
the continuum function are contained in the conditions that this function be orthogonal to the wave functions
of all states of the same symmetry and lower energy. Thus we assume that the model potential has the
form of a constant for a given l, m, and E in the core region,

V =C (E), for r(r; V = —Zr ', for r)r
m lm c m C

(10)

Such a model potential should be almost as good an approximation to the molecular pseudopotential as its
counterpart was for the atomic case, at least for states of low energy. The eigenfunctions of the Hamil-
tonian

X = —(I'/2m )V'+V
0 e m

are quite simple. If we define as case I
K'=k'- 2C, when k'- 2C &0, zero always

Em lm
(12a)
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or as case II

K'=2C —k' when k'- 2C (0,
lm lm

(12b)

we have for x & x,
=A j (Kr) Y (r'), Case I; Q =A I (Kr)Y (r '), Case II;

lm l lm 0 lm l lm

andf r~ c

(Isa)

=8 Y (r ')(kr) [F (kr)+tan5 G (kr)] (lab)

We define jl as the ordinary spherical Bessel function, Il the spherical hyperbolic Bessel function, El the
regular spherical Coulomb function, and Gl the irregular spherical Coulomb function. The short-range
part of the phase shift 5Im is obtained by using the Quantum Defect Method as extended to molecules by
Weinberg. " When a value of r~ is chosen, the corresponding value of k may be obtained as in the atomic
case by applying the continuity conditions

A j (Kr )=8 [F (kr )+tan5 G (kr )](kr ) '

A —j (Kr)
d

lm dr l

-F,(kr)+tan5, a, (kr)-
=8

lm &' kx (Case I); (14a)

C

[Similarly with j (kr) replaced by I (kr)] (Case II) (14b)

Since the normalization constant Blm is quite arbitrary, we choose it to be

8 = k'I'cos(5 )2i exp(- i5 )
lm lm lm

To get the total wave function we orthogonalize our model function to the occupied bound states of the
molecule-ion, . multiply the result by all the other spin orbitals of the system and antisymmetrize the re-
sultant product. The asymptotic form of the total wave function given by the above procedure may be
written as

lim 4' (r ...r;R)=2ik ' r 'exp(-i5 )Y (r')Q (r . ..r 1,R)sin(f +5 )
ql lm

Thus we can identify

=k ' 'r 'Y' (r' )Q (r . ..r;R)[exp(if ) —exp( —if —2i5 )]. (15)
q N lm N q

1' '
N —1' ql ql lm

S (q/; qlm) = exp(- 2i5 )

The function (15) is not the proper wave function to be used to calculate the differential or total photoion-
ization cross section. It does not have the proper behavior at long distances from the nuclei. The cor-
rect continuum wave function for calculation of photoionization must differ from a pure Coulomb wave in
containing only incoming spherical Coulomb waves in the asymptotic region. This is not a difficulty which

need be of much concern because it is a relatively simple matter to construct the correct wave function
from the 4 lm. Since the core eigenfunction and antisymmetrizer play no essential part in what follows,
we shall leave them implicit in our wave functions. Thus, we write

l m lm lm q qlm N

in the molecular coordinate system. Recalling the expansion of a Coulomb wave in spherical harmonics
we have

=(m 2kq) Q i Y* (k')Y (r')(k r ) exp(—icr )F (k r )
C l l q N

=(v 2k ) ZI i FP (k )YI (r&)(k r ) exp( —io&)F (k r )
q l m lm q lm N qN l l q N
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Either form is acceptable of the rotational invariance of the pure Coulomb wave. Letting gN approach in-
finity, we have for the difference of the two waves

lim (4 —4 ) =Q 0 r Yf (k')Y (r&)c l m q N /m q lm
A

x (a [exp(ig ) —exp(- ig —ai6 )] —i v exp(—io )[exp(ig ) —exp( —if )]]..l- 1 —1/2
lm q/ ql lm / ql ql

To make the outgoing spherical Coulomb waves vanish, we choose

a =(av) i exp(-io ) .—1/2. f —1
lm l

This is the desired result. The final expression for the wave function is

e =(av) Qf i exp(-iof)Yf* (u')e
f

(r ) .
t m l' lm q q/m N

In order to transform the description of the photoionization process from the molecular system to the
laboratory system, we use the relationship

Y, (~')=Q,a, (n, P, y)Y, ,(~) .

This allows us to transform the total wave function into

(21)

e =(ao) '
l, m, m'

i exp(-iof)D *, (n, p, y)Yf, ($ )@
fm'm ' ' lm' q qlm' (22)

The D & are the generalized spherical functions as defined by Rose. '4 The orientation of the molecular
axis relative to the laboratory axis is given by the Euler angles n, p, and y defined according to the con-
ventions of Rose. " The formula for the differential cross section for photoionization of electrons diatom-
ic molecules has recently been derived by Tully, Berry, and Dalton" within the context of the Born-
Oppenheimer approximation. The photoionization cross section for an ensemble of fixed, randomly ori-
ented molecules is

o (fl) =(ave a )(m «) 5 (-1) 8 (4~) [(af+1)(»+1)]'&22 2 -1 I -1
q e m Xpm

l, m, X, p, q I q I
(23)

(24+ 1) C(llew
~
m, —m —m, p+m —m )C(11J~00)C(l&J~ 00)C(l&Z~ m, —p)P (cos8),

0 2 q q
t

where mI. is the m quantum number of.
' the initial state, mq is the m quantum number of the residual core,

the C(lAZI mfm&) are the Clebsch-Gordan coefficients, "Pg (cos8) is the Legendre Polynomial of 4th or
der t and

1

= adam ok i (—',) exp(io&)d(fmm m&)
lmm mI e q I

q I
- N

d(lmm m&) = 5 fd rdR4~& r Yl » (r..')4
q I qlm g im g I

q I
The integrations in d(fmm m&) are taken over both electronic and nuclear coordinates. The significant

point to notice about the above expression is its form

o (0) = o. + P cos'8 (26)

which is exactly what one obtains for atoms with randomly oriented angular momenta. Of course n and P
do not have the same meaning for molecules as they do for atoms owing to the noncentral character of the
molecular potential. To obtain the total cross section, we integrate over 0:

o =(ave h )(3m cv) Z (&
~

=(16m e v)(9c) 2 ~d(lmm m )I
q e

l
mm I /

q I
m q I m
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Having derived all the expressions necessary for the evaluation of the wave functions and cross sections
of interest, we can proceed to the details of the calculation.

Using the known quantum defects for the rydberg series converging to the '5&+ state of N,+, we computed
the phase shifts for the ko~ and km„continuum electrons for a number of values of k. The quantum defects
are given in Table II. From the phase shifts and the continuity conditions of Eq. 14, the model wave func-
tions were derived. Explicitly, we have, for ~&x~,

(kv ) =A j (kr)Y =A [(sinkr)/k r —(coskr)/kr] Y
m ~ 22

(27)

(kv ) =A j (kr)Y =A [(sink'r)/k r —(cosk'r)/k'r] Y
Q

and for r&x,

(kc ) =
B IO[F 1

(kr) + tan510GI(kr)] (kr) Yl0Q

(kv )=B [F (kr)+tan5 G (kr)](kr) Y
(28)

This procedure was carried out for the two values of the core radius in order to get an idea of the varia-
tion in the quantities of interest with x~. As we expected from the results given in I, the values of com-
puted properties were relatively insensitive to the choice of x~ so long as it is in the range one would

guess from the core electron density or other similar physical criteria. Having obtained the model wave
functions, we orthogonalized them to the known Hartree-Fock wave functions of the Z+ core of N,+. The
continuum wave functions so obtained were then multiplied by all the orbitals of the N core and the prod-
ucts antisymmetrized.

The same procedure was carried out for the Rydberg series converging to the 'll state of N+. Here,
however, the lack of experimental data on the qua turn defects limited our calculation to the kgg wave
only.

Let us now examine the calculation of the differential and total cross section with our approximate wave
functions. The quantity of paramount importance is the transition dipole matrix element d(lmm mf) de-
fined in (24). In calculating d(lmm&mf), we assume the validity of the Born-Oppenheimer approximation
and the slow variation of the integral over the electronic coordinates with the internuclear distance. This
allows us to separate d(lmm&mf) into a product of an electronic and a nuclear integral. The integral over
the nuclear coordinate leads to the well known Franck-Condon factor which has been determined theoreti-
cally or experimentally' by a number of other workers. The electronic integral can be calculated as
follows'

d(lmm m ):—R [Q. jdr@
&

(rl. . .r&)r YI »(.r'. )4'& (rl. ..r&)] (2S)
q I N j qlm 1''' N j 1m" j I 1''' N m"=m+m —m

q I
where RN is the Franck-Condon factor and CI~ and 4q are the initial and final state total electronic wave
functions at R =Rz. The integral over d r can be performed in standard fashion to yield

R d(lmm m&):—8 [ fd r. g*& (r )r Y». (r. .')p&(r. )]
q I core j qlm j j 1m" j I j m"=m+m —m

q I

= Jdrl. . .dr pl (rl)q (r ). . .q (r )y 1 (r& 1)
F+ I

8core is the ove r lap integral between the core orbital s whic h are not invo lved in the transition. Thus we
get

d(lmm m )=-R e [ fdr g* r Yl . „(r')q.]. (21)
q I N core j qlm j 1m" j I m"=m+m —m

q I
where $&fm is the pseudofunction orthogonalized to the occupied core orbitals of N, in the qth channel.
All the integrals relevant to the calculation of d(lmm&mf) were computed numerically by using either the
trapezoidal rule or Simpson's method on the IBM 7094 computer at the University of Chicago. When the
integrals have been obtained, it is a simple matter to get the differential cross section to any channel q
from Eq. 26. For the 'Z&+ channel of N2+ we get

o( Z+) =(4m e'v/Sc)(Idio l'+2l dll I'+F2(cos&)[4ldlol +12Re(dlod11)+14ldll]']/5j
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= (4m'e' v/15c){l
d10

I'+ I'd11I' —2 Re(d10d $1)+ [2I d10 I
'+ 6 Re(d10d fl) + 71d11I '] cos'8]

147

We have used the abbreviated notation dl =d(Imm&mf), since both m& and mf are zero for this case.
From the definition of d(lmm mi) we obtain

=R 6 fdr g* r Y (r' )p, d =R 6 fdr (I r Y (r' )p, (X=—'Z+), (33)

For the 'E„channel we obtain

o('II ) = (4w'e'v/9c)[A('Il„) + B('II„)P2(cos8))= (4v'e' v/9c)[a('II„)+ p('II„)cos'8],

where

A( 11 )= ld00l'+ ld10I'+ Idl II'+ Id20l'+ Id2 li'+ Id2 2I',

8('ll ) = (-4we'v/15c)[-' , ld10I'+ 3 Idl II'+I id20l'-p, Id I
I'-» Id2 2I'

(34a)

(34b)

+ (2& 5/3) Re(d„d,*o) +2(5/3)'~' Re(d,ada, )'+ 2(10/3)«' Re(d«dp~ ) + 2 Re(d„d,*,)
+ (10& 3/21) Re(d„d,*,) —(20& 6/21) Re(d„d,*,) —(30v 2/21) Re(d, ,d,*,)] . (34c)

The terms of n and p are most usefully given in tabular form, as the numerical coefficients of the d's. To
obtain a('ll+), the sums of products from Table I must be multiplied by 4v'e'v/9c. Note that the expressions
(34a-c) and Table I are general for the angular distribution of photoelectrons from a bound m„orbital. The
coefficients were evaluated indeyendently by hand calculation, and later by a general computer program for
angular distribution coefficients. Because of the center of symmetry in the molecule, d„,dye and dy
vanish. However, we have left these elements in expression (34) so that it can be used for heteronuclear
diatomics such as CO, as well as for N, . As we mentioned earlier, it has only been possible to calculate
the first term in the expression for the II„differential and total cross section because of the paucity of ex-
perimentally determined quantum defects for this channel.

When proper account is taken of the degeneracies of the initial and final states involved in the photoioniza-
tion process, the total differential cross section for a randomly oriented ensemble of N, molecules can be
written as

a(Q) =2a('Z+)+4o('ll ) .8 (35)

In Table II we give the result of our calculation of the photoionization cross sections of N, for each channel

0 6—
N

s 5—
0

03

C0
~~

3
AP
CA

Vl
(A
O
O I—

I

600

( )

cr ('X', )

750 800
I I

650 700

Wavelength (A)

FIG. 1. Cross section for photodetachment of N2 into

Z& and III channels, and the sum of these two; the
uppermost curve is taken from the experimental data
of Cook and Metzger (Ref. 2).

Dipole factor Coefficient in 0. Coefficient in P

l dpp I

id)pl

id) gl

ld2pl

ld2 (l'
Id2 2l'

Re(dood2Q)

Ite(~ood2-d
Ite «ood2*-2)

R«de%*-d
Re(d2pd2 ~)

He (&20d2* 2)

Re(d2 gd2 2)

1
()/3
()/3

3/7
6/7
e/7

1/2

(3/5)"'
(8/3)"'
3/3

(3/7) «2

—3(e«2)/7
—2(2 ) /7

0
-3/3
-3/3
-3/7

3/7
3/7

-3/3«'
-3(3/3) i'

3 (6/5) f/2

—9/5
3 (31/2) /7
6(6' 2)/7
9(2'12)/7

TABLE I. Terms of n and P for photoionization of
a n„electron.
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q, obtained from (26). The calculation was carried out with both the dipole length and dipole velocity forms
of the cross section in order to have a check on the numerical results and to get some indication of the er-
ror inherent in our approximation. In computing the dipole velocity form, we used the experimental energies
rather than the Hartree- Fock. Where it is possible, we have listed experimental values of the calculated quanti-
ties. In Fig. 1 we have plotted the total cross section to each channel q and the experimental curve ob-
tained by Cook and Metzger. It is clear that the pseudopotential method, in its lowest-order form, gives
a useful description of the photoionization cross section near threshold and becomes less accurate at ener-
gies well above threshold.

One of the most interesting aspects of molecular photoionization is the manner in which it differs from
its atomic counterpart. The deviation of the molecular potential from a pure central field should manifest
itself in a photoionization process in much the same way as it would in a pure scattering process. One of
the most direct ways this can be demonstrated theoretically is to calculate the ratio a/P as given by Eq.
25. Comparison of theoretical and experimental values of o./P naturally places stricter demands on both
theory and expex"ament than does the comparison of the values of total photoionization cross section. For

TABLE II. Cross sections for the photoionization of electrons from N2.

Energy of photoionized
(a.u. )

5x10

5 x 10

%'avelength

Q.)

796

789

Length
(a.u. ) Channel

total

0.1594
(0.1147)

0.1599
(0.1187)

total (Tq

(experimental)

0.200

0.225

5x10
0.1477

(o.1o98) 0.225

4x 10

4x 10

0.076

769

700

0.1482
(0.1382)

0.1389
(o.1o68)

0.1109
(0.0940)

0.297

0.297

0.1653

0.1653

618

618

0,0612
(o.o6o1)

0.0799
{0.0719)

5x10

5x 10

737

737

0.1172
(0.1045)

0.1215
(0.0933)

2x 10

2x10

3.125 x 10

719

706

2rr„
0.1204

(0.1009)

0.1132
(o.os6o)

0.1228
(0.0979)

Q.088

0.125

650

2III

0.126
(0.0817)

0.1222
{.O.0701)

Numbers in parentheses refer to the calculation using the dipole-velocity form of transition matrix element;
the numbers without parentheses are based on the dipole-length form.
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the '5&+ channel of N2+, we have from Eq. 32,

&/p = [ Id„l'+Id» I
' —2 Re(d»d~») ]/[2 Id„l'+6Re(d„d,*,)+ 7 ld» I '],

provided we assume that the outgoing wolves are pure Pa and Pm waves. If N, were truly spherically sym-
metric, d» and d» would be equal, and the ratio o./P would be zero. A nonzero value of n/P (for ioniza-
tion of a o electron) is a direct measure of the amount of l spoiling in the molecule. By defining

d&
= ld& I exp(i5& )

the ratio n/P becomes

Id,„l'+Id„l'—2ld, „lid„lcos(5» —5„)

From this expression we find that o./P reaches its maximum when

cos(5»- 6„)=—I, and Id„l/ Id„I=-,' .

Substituting these values into 38, we obtain

(29)

( /p) (4o)

In Table Ili we list the results of our computation of o./P for a number of values of k of the outgoing elec-
tron. The magnitude of o./P indicates that the nonspherical character of N2+ is about halfway between the
central field limit and the limit defined by (39). The recent results of Berkowitz, Ehrhardt, and Tekaat
on the angular distribution of electrons photoionized from N, show a ratio of o./P somewhat larger than
three. The experiments were carried out with the helium 585 A line as an excitation source, so that the
photoionized electrons carried about 6 eV of kinetic energy. There are two possible explanations, in
terms of shortcomings of the theory, for the discrepancy between theory and experiment, aside from any
basic deficiency in the one-electron pseudopotential model. Itmaybe that atenergies 6eVabove threshold,
there are significant contribution& to the partial cross section from states with quantum numbers E W 1, or
that even 6 eV above threshold, long-lived autoionizing states have to be taken into account before any

TABLE III. The ratio of n/P as a function of energy
for the process N2 ('Z&+) + hv N2 ('Z&) + e.

Energy of
photoionized

electron (a.u. )

5x10

5x10

5x10

4x10 '

4x10

0.076

0.1653

0.1653

Well
length
(a.u. )

1.39
(1.25)
1.61

(1.38)
1.50
(1.26)
1.80

(2.01)
1.83

(1.50)
1.45
0.855
(1.17)
1.17

(1.36)

Numbers in parentheses refer to the calculation using
the dipole-velocity form of transition matrix element;
the others are based on the dipole length form.
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meaningful comparison with experiment can be made. Certainly if any intermediate state were involved
in the transition and the autoionizing lifetime were larger than the rotational relaxation time, the ratio of
n/P would go up. However, at the energies which these workers used in there experiments, autoioniza-
tion is highly improbable. It is difficult to estimate the contribution of waves with /~ 3 to the photoioniza-
tion cross section. Calculations of the photoionization 8, indicate" that they should be approximately an
order of magnitude smaller than the /=1 term. At present, we have no definitive explanation for the dif-
ference between theoretical and experimental angular distributions. The fact that the experimental n/P
value is greater than 3 can only be attributed to higher partial-wave contributions or to an underestimate
of the experimental uncertainties. The lower o./P values derived from the microscopic theory may also
reflect inadequacies of the one-electron pseudopotential model as we have used it. In the range of angles
covered by the experiments the ratio

['Z+ (0')/'Z+ (40')] = 1.12,
g g max

while the actual ratio obtained by Ehrhardt, Berkowitz, and Tekaat was about 1.05. The reported experi-
mental uncertainty is 15%%uo. Thus if the error bars were just a little bit larger, the phenomenological the-
ory and experiment would be consistent. At this stage we feel that it would be very helpful if the experi-

0
ment were carried out with the neon resonance line at 743 A, in order to compare experimental and the-
oretical values for n/p in a region for which only the po and pv waves are likely to be very important.

APPENDIX

We wish to make a few remarks concerning the systematic improvement of our model wave functions.
The Lippman-Schwinger integral equation for our one-electron pseudofunction can be written as

+G (E- ie)(V+ V —V )Q
q/m 0 R m q/m

where

(Al)

(A2)

G = —2 Z Y* (f')Y (r) e px(-i6 ')[8 (k r)H (k r')X(r'-r)+8 (k ~')H (k r)X(r —r')],
/m /m /m /m q /m q /m q qm

(As)
and X (r) is the Heaviside step function, and the following limiting conditions are satisfied:

lim 8 (k r) =k 'I'x 'sin(f +6 '),
/m q q q/ /m

(A4)

lim H (k r) =k 'I'x 'e px(-if —i6 '),
/m q q q/ /m

(A6)

and lim Q = lim 2i exp(- i6& ')F (x)R& (k x) .
/m /m /m qf'~ OQ f' 00

(A6)

Substituting (A2)-(A6) into (Al) we obtain

lim &f& = 2ik '~'r ' exp( —i6 ') Y (r) sin(4 +6 ') —2k 'I'r 'Q [Y (r) e (x-pi 6')
q/m q /m /m q~ /m q ~ ~m Xm

Oo

x exp(- ii: —i6 )A ],0 /m

qX Xm Am
(Av)

where A = JA (k r)Y& (x)[V+ V&- V ] p
&

dr .
A.m A.m q A.m R m q/m

(A8)

We have dropped the summation over m', since the axial symmetry of (V+ V~- VM) requires that m =m'.
Thus

q/m q /m q/
lim P = k 'I'r ' F (r)[exp(if ) —exp(- 2i6 ') exp(- it )]/m q/
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2y -»'r-'P [A Y (r) exP(-2i5 )exP(-i0 )] .lm 0

q A. Xypg Xnz ~m qA. (A9)

If we define

S&& =exp(-2i5 ) (5& +22 ),0 Em
(Alo)

we can easily see that Eqs. (9) and (A9) are equivalent.
The above equation for Q&f~ can be solved by the standard iterative technique. By working within the

pseudopotential formalism the convergence should be rapid and only a first iteration necessary. One may
also project each p&fm on to the spherical harmonics to get a set of coupled equations in the single variable

Temkin and Vasavada" have used such a procedure to calculate the phase shifts for elastic scattering
of electrons from H2+ with excellent success. Only a few partial waves contributed appreciably to the cross
section and the convergence was thus rapid. Working within the pseudopotential formalism as we do should
lead to at least as rapidly a convergent expansion as that of Temkin and Vasavada, and thus should prove
an excellent means of solving the integral equation. However, it should be emphasized again that in most
instances one does not have to resort to such complicated calculations. Properly chosen model potentials
and good bound-state wave functions are often enough to produce quite accurate results.
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