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We distinguish two fundamentally different types of superluminal (group:velocity&c) behavior. One
type, called causal, is shown not to conflict with the usual condition that a signal originating in a region is
felt only in the forward light cone of that region. This type of mode occurs as small oscillations about an
unstable equilibrium configuration of high energy density. The second type of superluminosity, called non-
causal, violates the causality conditions of conventional theory. It is shown that the noncausal superlumi-
nosity occurs only for field theories which are singular in the sense that there does not exist a unique one-
to-one relationship between the momenta and the velocities. The field equations of such theories do not
present a good Cauchy problem for arbitrary data on spacelike hyperplanes. They thus lead to ambiguous
and/or singular solutions. An interesting feature of our first model is that it leads to tachyonlike behavior
without one's having to introduce negative energies.

I. TWO SIMPLE EXAMPLES OF
SUPERLUMINAL BEHAVIOR

" 'NTKRESTING examples of systems admitting
~ ~ wave modes with tv, ~)1, where s, means group
velocity and we take the speed of light to equal 1, have
been given by Bludman and Ruderman. ' Their argu-
ments are based on the general relations between sound
velocity, pressure, and energy, thus making it somewhat
difIicult to visualize the mechanisms leading to v, &
and their relation to the question of noncausal behavior.
For purposes of elucidating these properties we have
constructed two simple analyzable models.

Our models are unquantized field theories subject to
the following requirements.

(i) The equations of motion are Lorentz-invariant
and follow from a local Lagra, ngian.

(ii) The energy shall be positive definite.

A. Causal Model

Consider a one-dimensional "lattice" of identical
pendulums suspended from equally spaced fixed points
along the s axis, each free to swing in the sy plane. Each
pendulum bob is connected to its nearest neighbor by a
spring. The entire system is in a gravitational field g in
the —y direction. Thus, for 0;—0; «((m. the Lagrangian
ls

2=+ u0, 2—b(0; —8; i)'—c(1—cos0,),

where 8; is the angle of the ith pendulum with respect
to the vertical, and a, b, and c are related to the moments
of inertia, spring constant, and g.

If we take the continuum limit of Eq. (1) in the
usual manner, the Lagrange density becomes

0+0=0
For 8 near ir (unstable equilibrium), if one defines

@=+—0,
sine = —sing )

Eq. (3) becomes

O'P/dt2 —d'P/dx' —sing= 0,

(4)

thus yielding the imaginary-mass Klein-Gordon equa-
tion for p sma, ll.

(We can note at this point that we have tachyonlike
behavior, ' although it is easy to check that the corre-
sponding Hamiltonian is positive definite. ) The dis-
persion relation for Eq. (7) is

and the group velocity is

i' did/dk =k/id) 1. ——

where we have chosen u, b, and c so as to give unit
coefficients in (2). We regard Eq. (2) as a relativistically
invariant Lagrange density for a scalar field 0(x) con-
taining, in addition to the usual free term 0, a non-
linear self-coupling (1—cos0).

The pendulum-spring interpretation is only used to
help visualize the meaning of the solutions that we shall
discuss.

The equation of motion resulting from this
Lagrangian PEq. (2)j is

d'0/dP —d'8/dx'+ sin8= 0. (3)

For 0 small, i.e., all pendulums near the vertical stable
equilibrium position, Eq. (3) is the usual Klein-Gordon
equation with positive (mass)' equal to 1.

dg 2 1 d8 2

Z (s) =—————(1—cos0),
2 dk 2 ch

Thus the system is superluminal for modes oscillating
about the point 0= m. This point is the unstable vertical
position for each pendulum. However, as long as k is
chosen so as to make co real, small stable superluminal*Supported in part by U. S. Air Force Once of Scientific
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oscillations about 8=x occur. The instability occurs
when the perturbations involve k'&I, thus making ~
Imaginary

B. Nonce. usal Mod, el

Consider a scalar field cf (x) with a Lagrangian
oC = 2 LP (S)= tPPcctc jc wllel'c P Is R nolllllMR1' I cRl fllllctloll
and S=rlc"cf„ctc,„(,I1.„„is the Minkowski metric. ) The
canonicR1 momentum 18

Ylic H~lltonlRQ 18

con6guI"Rtlon thc 6cld coURtlon bccGIDcs

d'4 d'4
s—incfc =5(x)h(t)

dI2 dh

To dlstlQgUlsh thc SlgDRl frolTl thc bRckground wc seek
a solution of Eq. (15) which vanishes for t(0. Such a
solution exists and, on general principles, must vanish
outside the forward light conc.' Thus, even though the
theory is superluminal, it is causal in that small dis-
turbances propagate with v= c.

In order to bcttcx' UlldcIstRnd how this occUI'8, lct Us

approximate Eq, (15) by

Evidently thc chR1 RctcI'istic llQcs foI' 'tIlc second-GrdcI'
equation (13) are not the light cone but are the null
gcodcslcs of thc metric C . If thcsc charRctcristics
lie outside the light conc then small perturbations of a
Solution QI'lglnRtlng froIQ thc Rctlon of R so'UI'cc Rt R

point will propagate outside the light cone and will be
supexluminal. For example; choose as an initial con-
dition /=const=A and /=8=const. Then C, is the
matrix

pre (+I}
+28'

F'(8') '

(14)
0

Clear'ly„ if Ii "/Il' is negative the characteristics are
Outsid thc light cQnc.

VVC shall now-analyze the implications of our models
fol thc qUcstloQs of CRUsRIlty; l.c., whcthcr lnforInatloQ
can be transmitted with e&c through the superluminal
Inodcs.

Lct Us coQsldcx' pccrturbing thc cquRtlons of thc Inodcl
in Sec. I A by the addition of a point source at the
origin. In the neighborhao'od of'the unstable-cquilibriuln

fl See Appendix A for a more general and detailed discussion of
this Question.

a=re Z=-(aI/aE:, )y ',~(S)+ ',~q-. (11)

We guarantee B&0 by choosing F(5)&0 and BIi/BS& 0
for all 5.

Prom z we obtain the equations of motion

BE B5 BE;+ a..)--a=a
B5' BxI' 85

or

which in "momentum space" becomes

ct (k)+ (k'—1)y(k) =8(/) .

For 3&0 thc solution is

y(k) —(eccacca 'e—Sec)/I'

with Rc= (k' —1)'".
Now for k'&1, P(k) has normal oscillatory motion.

Thc cxcltatlon of 8Uch modes docs Iiot IcRd to Rn Un-

stable motion. However, for k'&1, Eq. (18) gives an
exponential growth for ct (k). Since the local perturbation
b(x)|c(t) has all Fourier modes k, the response will
involve Rll Inodcs, lD pRI'tlcU1Rr, thc exponentially
growing ones. Hence any local disturbance will set O6
an instability. Of course, the field @ will not really grow
indefinitely. As soon as @ is no longer sma11 the non-
linearities of sinqb become important and damp the
increase of @. What is actually happening is that we
have set OG a motion in which the pendulums are falling
over~ doITllDQ fashion~ into 1Rlgc osclllRtlng swings) thc
fall spreading out from the source. . Although the field
contRlns thc supcrlumlnal stable Diodes k Q I thc
Cauchy-Kowalewska theorem and the Holgrexn theo-
rem, 4 which assert that a solution is uniqudy deter-
mined exclusively by the Cauchy data subtended by
the backward characteristic cone, assure us that the
sum of superluminal and unstable (k'&1) modes cause
the fR11 to spx'cad with 5+c.

Contrary to certain claims made. in the hterature,
tllclc cxlsts R Gl'ccn s fullctloll fol tile llcgRtlvc (n1Rss)
Klcin-Gordon equation which 18 stI'lctly CRUsRl. Ho%'-

ever, it is exponentially divergent in Rny timelikc
direction. If cxponcDtlRlly growing 1Tlodcs Rrc cxcludcd
(k&1), then no retarded Green's function exists and
the field cannot couple locally to a source. In our non-
linear model there is no reason to exclude such ex-
ponentially divergent modes since the growth is soon
damped. Furthermore, because of the QOQ1incarity,
the unstable modes (k'&1) and superluminal modes

See, e.g., I'ur6et Lbgerelfiel X:,qNaAONs, Fritz-John, Chap. II.
For the linearized case (tachyons), we explicitly demonstrate this
property in Appcn(4x 3.
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(kn&1) are coupled once we leave the small oscillation
approximation.

On the other hand, if we turn to the noncausal model
of Eq. (12) the effect of a source at a point will spread
to 611 the region between the characteristics deGned by
C„„which in general could be outside the light cone.
Such a theory would then not be causal.

III. NONCAUSALITY AND CANONICAL
FORMALISM

We shall now show that the noncausal theory is
necessarily singular and exhibits anomalies in the
canonical formalism. Let us examine the relation
between II& and $ given by Eq. (10):

IIp ——F'P.

The condition that the time derivative be a single-
valued function of 0 is necessary for an unambiguous
transition from the Lagrangian formalism to the Hamil-
tonian formalism. Thus it is required that

or
BII/O jxo

2P"j'+P'~0,
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which, for a general Ji, need not be satisfied. In fact,
points at which 2F"qP+F'=0 have a simple inter-
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characteristics is tangent to the t=const lines and
hence Cauchy data for the Euler-Lagrange equations
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More generally, if for any Lorentz-covariant Geld

theory, a portion of its characteristic surface lies out-
side the light cone, there exists a Lorentz observer
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evident that Cauchy data assigned on such an initial
surface cannot propagate uniquely oG it, for if such
were the case it would not be possible to insert singu-
larities, sources, or nonanalytic discontinuities on the
characteristic surface.

We conclude that whenever truly noncausal behavior
occurs, it is linked to a peculiarity in the equation of
motion such that the solution at later times is not
always determined by initial data. This in turn indicates
that the Lagrangian of the theory is singular, or,
equivalently, that the relation between canonical vari-
ables and Lagrangian variables must necessarily be
singular.
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F(8)= exp[-,' arctan-,'s'jds'.

APPENDIX 8
We offer a proof here that the retarded Klein-Gordon

Green's function differs from zero only inside the
forward light cone, even when the sign of the mass
term is negative.

Let 4(x,t) be the solution for Q'4 —nPC =b(x)8(t)
which vanishes for t(0. Defining f(x,t)=4(x, t)a ~',

APPENDIX A

If we consider for a moment the most general
Lorentz-covariant Lagrangian for a real scalar field
satisfying second-order Geld equations,

L=F(S,y),
the necessary and sufFicient conditions for the resulting
fieId equation

(2F'q~"+4F"y'@ ")y = aP/ay

(the prime denotes differentiation with respect to
s=it""p,„p,,) to have normal hyperbolic form requisite
for a stable Cauchy problem can be stated Lorentz-
covariantly as follows:

(a) F'&O, (b) F"&O, (c) 2SF"/F'& —1.
If we let q„be the surface normal to the characteristic
surface of this Geld equation, it must evidently satisfy

(~ "+(2P"/F")~"e")~,~,=0
or, equivalently,

~'= —(»"/P')(~"~.)'
Thus from inequalities (a) and (b) alone, we find that
e2&0. That is, g„ is either spacelike or null, and con-
sequently the characteristic surface lies entirely within
the usual Minkowski light cone, the theory being
causal in the usual sense. These two inequalities ensure
that we always have a Cauchy problem, or, equivalently,
a nonsingular transition to the Hamiltonian formalism.
Inequality (c), which greatly restricts the class of
Lagrangians analytic in its arguments, assures the
stability of the Cauchy problem —that is, small changes
in the Cauchy data cannot produce large changes in the
solution arbitrarily close to the initial surface. In-
equality (c) also assures us that the energy is bounded
from below and can therefore be effectively made
positive definite. It can be easily seen that apart from
the Klein-Gordon class, for which F"=0, all other
analytic Lagrangians consistent with the above three
inequalities cannot be finite polynomial functions of s.
One of the simplest such analytic Lagrangians is
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where for the retarded solution we require m&0, the
equation that f satisGes is

Cl'12 ma fiat =8(x)8(t) .

e '&~O'-~'dko&k

f(x,t) — — (modulo factors of 2m.).
koo k'+—2imk

Letu=ko+k, 8=ko k, xq———t+k, andxo ——t—x. Then

ei-(uxg+exI)

dude.
u8+2im(u+8)

The future light cone is characterized by x&&0 and
x2&0. Thus we would like to show that we can deGne

f so that it vanishes when either x~(0 or xo(0. Let us

choose xi&0. If we perform the 8 integral first by
closing the contour of integration on the upper half
of the complex 8 plane, we see that f vanishes, for there
is no pole for N real and Im8&0. To prove this, let
8=8~+i82, where 82&0. The condition for a pole,
u8+2im(u+8) =0, becomes, upon separation into real
and imaginary parts, u8~ —2m8o ——0 and u8o+2m(u+8~)
=0. Eliminating 0& from these last two equations, we
obtain u'(8o+2m)14m'8o ——0, which, in view of our
assumptions m&0, 82&0, cannot be satisGed. Thus all
the poles are in the lower half of the complex 8 plane.
Similarly f=0 for x& t x(——0 —since the integral is
invariant under interchanging x2 and N with xI and 8.
Thus we have demonstrated the existence of a Green's
function for our equation with support only in the future
light cone.
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( onjectures on the response of currents and the stress-energy tensor to variations of external gravitationaj,
fields have led to important statements about equal-time commutators (ETC's). We consider the case where
only gpp is varied and prove that those conJectures are reared by the general covariance of tensor fields.
Although currents are known to be limits of nonlocal expressions, these limits may be taken before we vary
g00, and our theorem is applicable. However, physical properties of the vacuum preclude T'& from behaving
this way. To resolve this inconsistency, we conjecture that T ' is the limit of a nonlocal expression, {A re-
formulation of Lagrangian Geld theory may be necessary. ) We also discuss possible dif5culties arising in the
derivation of the ETC's using Schwinger's variational method, and show that our theorem ensures that
these difhculties are not present for ETC's of T"with tensor fields.

I. INTRODUCTION

A N elegant method for obtaining equal-time com-
mutators (ETC's) results from Schwinger's vari-

ational method. ' The extra, terms arising in ETC's of
currents (Schwinger terms) are relevant to any attempts
to formulate a theory of currents. In order to prove
various properties of Schwinger terms, Gross and
Jaclow' have assumed a form for the commutators of
currents with the energy density. They have indicated
the behavior of the currents, as the metric tensor is
varied, which would lead to this form (employing
Schwinger's variational method). Conjectures have also
been made about the behavior of the stress-energy
tensor as the metric tensor is varied. '

' J. Schwinger, Phys. Rev. 130, 406 (1963).' D. J. Gross and R. Jackiw, Phys. Rev. 163, 1688 (1967). For
currents associated with gauge fields, Jackiw has verified the ETC
of t with P (with a particular form of F'): R. Jackiw, ibid.
175, 2058 (1968).

In this paper we investigate the behavior of loca~
tensor operators as gop is varied. Ke will prove that th
behavior of any local tensor Geld (which is to be a
tensor under general coordinate transformations), as we
vary g00, is completely determined by the number of
indices which are zero. (The sense in which we use the
word "locaV' may be found in Sec. II.) We argue that
currents other than T&" may be considered local.
Schwinger's variational method, in the presence of an
external gravitational Geld, is discussed in light of the
above. We show that the usual derivation of ETC's
involving T depend upon the absence of Bogof) from the
Lagrangian and the Geld equations. Ke prove that
Bogoo, indeed, does not appear in the Lagrangian or the
Geld equations, thus validating the ETC's of T"' with
local operators. Our results imply that the proof in
Ref. 2 is valid. The validity of the derivations of those
ETC s of special relativity which involve &o (but not
2'&) follows as well.


