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A slight extension is given of the "no-interaction" theorem, as presented by Van Dam and signer, for a
closed tv o-body system in classical relativistic mechanics. The proof here is simp1e and physical.

l. INTRODUCTION
' "N this paper we extend slightly the "no-interaction"

- theorem of relativistic classical mechanics for a
closed two-body system as presented by Van Dam and
Wigner. The proof given in Sec. 2 is appealing for its
simplicity and physical basis. As Currie has shown,
the theorem only holds for space of dimensionality
greater than 1. In Sec. 3, we present a one-dimensional
model with interaction, the Hamiltonian for which,
unlike Currie's, reduces to the conventional free form
when the interaction vanishes. Section 4 contains a
discussion.

2. ZERO INTERACTION

Relativistic Hamiltonian mechanics has been con-
sidered by a number of people. Currie's zero-interaction
theorem' is based on the precepts that physical positions
are canonical, that transformations of the inhomo-
geneous Lorentz group (IHLG) are canonical, and
that world lines are manifestly invariant. HilP has
attempted to avoid the negative result for a canonical
framework by not demanding that positions be canon-
ical. The presentation we give is kinematical, as is also
the approach of Van Dam and Wigner, ' and a canonical
framework is not assumed.

A minimal definition of a relativistic closed system is
that the total energy E is conserved and the states
form a basis for a physical realization of the IHLG.
We also assume that E is the time translation generator
for the system, so that the space translation generator,
which we call the total momentum P, is also conserved.
We further make the usual but important assumption
for a closed system that P is just the sum of the in-
dividual three-momenta of the particles and that the
individual particle four-momenta transform as four-
vectors. Finally, the condition is made that the orbits
of the particles do not coincide except at a finite number
of discrete points and that the motion is continuous;
i.e., there are no impulses such as, for example, an
elastic collision at a point.

Let the two particles at time t have four-momenta

PJ(/) P2(t) at the space positions xj—= (x&,y&,zr) and
xg= (sg y&,z&), respectively. We now go to a primed
frame of reference via a pure Lorentz transformation

of arbitrary ~efieAesima/ velocity u. There is no loss
of generality if we take u as being in the x direction.

In the primed frame of reference, the total three-
momentum is P'(tc') and the particle mornenta are
P&'(4'), P2'(t2'), the times, which are in general all
different, referring to time t in the unprimed frame.
By hypothesis, we then have in both frames

P(t) =p&(t)+p, (t),
P'(~ )=p '(~')+p '(~')

(2.1)

Putting c=|, the momenta in each frame are by
hypothesis related by

where

P.'(to') =ALP, (t) —NE (r)i,
8'(r, ') =yfZ(t) —uP. (t)j,

P„,,'(tc') =P„,,(t),

v=(1—~') '", ~=lul,

(2.2)

Equations (2.2) then imply

y(P*(r) —P~.(&)
—P~*P)—~L&(t)—&~(&)—&~(t)3)

P., *(~)—P~. , (~) -P2., *(~)

and similarly for the particles.
If xI~x~, the corresponding events in the primed

frame are on a hyperplane with time not equal to a
constant. Since u is infinitesimal, the time difference is
also infinitesimal. We can then find the force F» acting
on particle i:

dpi (/1 ) pl ($2 ) pl (tl )
p$

I (( I ) I)

By three-momentum conservation and Eq. (2.1), we

have
P'(to') = P'(f2') =pg'(t2')+ p2'(t2') .

Eliminating p~'(t2') gives us

P'(t&') —p, '(t, ') —pi'((i')
F~—

(t, ' -t&')
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Thus, by Eq. (2.1),

F,= —yu V/(t, '—t~'),
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V= &(t)—~i(t) —&2(t),

E~,2 being just the energies of particles i, 2. Now

(2.3)

(3.7a)
with

To complete the canonical formalism, one easily Gnds
thc gcnelRto1 of pule Lorentz transfolmations to bc

E =xgEg+x2E2+8'—=E'0+ W,

t~, 2' ——7(t—u x&,2), W=-,'gixP —x,2i. (3.7b)

so that we 6nally get

Fg ———uV/u (xg—xg). (2.5)

Since u is in6nitesimaI, this is the force in the original
frame of reference. It evidently depends on the direc-
tion of u, which is arbitrary, and this is impossible.
Ke must therefore conclude that there can be no force
between the particles. This, of course, does not apply
in the one-dimensional case where -u has essentially
only one possible direction.

This proof RBords a slight extension of the theorem
as presented by Van Dam and signer, since we do
not need their asymptotic condition and we have used
the more general conservation law of total energy.

Pote added im proof. It is simple to see that this ex-
ample Rlso sat186es Cul rlc s wol ld-linc condltlons~
since the Poisson brackets of x; with V and with lV
vanish for this case. However, it must be pointed out
that the criteria of Sec. 2 for a one-dimensional model
are most probably rot equivalent to those of Currie'
"and of Hill, ' since it is our expressed purpose to present
the problem in a simple noncanonical framework. It
might also be noted that the Poisson bracket here of xi
and x2 vanishes, and hence this particular example
does not satisfy Hill's criterion mentioned in the
Introduction. At present, though, we do not know if
there is any ingredient in Sec. 2 which would impIy that
posltlons arc cRnonlcRI.

Upon integration, we have

log( V(=log(x(+const.

(3 2)

(3 3)

where $ is a positive or negative constant, its sign
corresponding to attraction or repulsion. The force is
then

the & sign here corresponding to @~&0.
The orbital equation is found to be

xg(t) =xg(to)+
(~)~

where the motion between t and to does not involve the
particles crossing. To find the position when such cross-
ing occurs, we just add on the paths between the points
of c1osslng.

Since the force in this model is a conservative one,
it is simple to set up the usual Hamiltonian forxnalism.
That is, the Hamiltonian H is just

P= (mp+pp)'~~+(rnpp+pp)'t'+V= HO+V. (3.6)—

3. ONE-DIMENSIONAL MODEL EXHIBITIÃQ
INTERACTION

%e consider here only the special case of conservative
forces. Then, the force on particle j. is

(3.&)

The one-dimensional model is, of course, only of
academic interest. An interesting feature of the above
model is that the force is not only conservative but
constant and either always repulsive or always
Rt tI'RCt1VC.

Ke reiterate the three important conditions under-
lying the proof of Sec. 2.

(a) Conservation of total instantaneous linear mo-
mentum, i.e., the sum of the kinetmatical three-
momenta.

(b) The total three-momentum P and the total
energy E transform as a four-vector.

(c) The kinematical four-momentum of each particle
transforms as a four-vector.

%cnote that, unlike Currie' Rnd Hill ' wc do not use a
canonical formulation, nor do we need to consider the
total angular momentum explicitly. Condition (b)
does imply that the generator of pure I.orentz trans-
formations K is such that (P,E) transform properly.
Currie and Hill do not necessarily have condition (a),
but (c) is equivalent to the world-line condition. The
approach presented in this paper seems, however, to
bc closc1' to R quRntuIQ-IncchanlcRI one~ 1n thRt thc
arguments have been centered more around momentum
rather than position. Evidently, for interaction one or
more of these conditions must be relaxed.

Recently, Currie, 'Hill, "and Van Dam and %igner' '
have constructed formulations for a relativistic dy-
namics with interaction. They are primarily concerned
with thc tI'Rnsformation oI' oI'b1ts Rnd Rt present 1t
is not clear how the ultimate and necessary transition

4 D. G. Currie, Phys. Rev. 142, 81/ (1966}.' R.¹HiH, J. Math. Phys. 8, 201 (1967).
6 H. Van Dam and E.P. Vhgner, Phys. Rev. US, 8157'6 (1965}.
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to quantum mechanics is to be made. There is already
some confusion as to the meaning of "position" in
relativistic quantum mechanics. In their formulation,
Van Dam and Wigner must introduce an interaction
momentum, so that the total three-momentum is no
longer the sum of the individual kinematical three-
momenta of the particles. This is disturbing in that we
would then no longer have the more exacting definition
of a closed system as in nonrelativistic theory. Further-
more, it undermines the usual procedure in quantum
mechanics of being able to write a Heisenberg bound
state vector as simply a linear sum of product state
vectors with total momentum equal to that of the bound
state. If (a) is relaxed, we should, however, expect it to
be satisfied in the nonrelativistic limit.

In relativistic quantum mechanics, it is, so far,
condition (c) which is not adhered to.' This, at least,
allows one to preserve the usual concept of a closed
system and, in particular, of a bound state. Considering
representations, it is possible to understand in a very
helristic manner why it might be reasonable to relax
(c). Upon transforming a physical state, we expect to
describe an irreducible representation of the IHI, G.
However, if we were to "go into" the system and trans-
form each particle separately without regard to the
other particles present, then we might expect to obtain
rather a product of representations, which is then re-
ducible. It is true that for a system without bound
states the representation based on al/ states is equivalent
to the direct product representation. But in that case,
since all states are considered, we also have a continuum
of masses for the c.m. system. However, this is not
true if bound states are present. ' If condition (c) is
relaxed, we are giving up the world-line condition for
world lines under interaction.

In quantum mechanics, the particles in the inter-
action region are off the energy shell or, equivalently,
off the mass shell. This is simply the expression of the
existence of interaction energy. If we introduce also

7R. Pong and E. G. P. Rowe, Ann. Phys. (N.Y.) 46, 559
(1968), especially Sec. V. Other references are given in this paper.

L. H. Thomas, Rev. Mod. Phys. 17, 182 (1945);B.Bakamjian
and L. H. Thomas, Phys. Rev. 92, 1300 (1953); L. L. Foldy,
ibid. 122, 275 (1961);F. Coester, Helv. Phys. Acta 38, 7 (1965).' R. Fong and J. Sucher, J. Math. Phys. 5, 956 (1964).

an interaction momentum, then the question arises
of what this can correspond to in quantum mechanics.
Would it perhaps mean that particles in the interaction
region are in some way "oG the momentum shell" ?
Again, one must take care over the nonrelativistic
limit. Another concept which is imcompatible with the
introduction of interaction momentum is that, at least
hypothetically, of being able to "switch o8" the inter-
action at any time (i.e., on any spacelike hyperplane)
without the system's suGering an impulse; that is,
the motion remains continuous. A nonrelativistic ex-
ample is that of a closed system of a charge entering two
concentric spheres which are oppositely charged. The
interaction may be cut off at any point by giving the
inner sphere the appropriate size, and the usual con-
servation laws arrived at. Of course, this particular
example cannot hold relativistically since the spheres
need to be rigid.

To sum up: In searching for a relativistic dynamics,
we are faced with giving up either condition (a), which
would be disturbing to quantum mechanics, or (c),
which would be contrary to our feeling for classical
relativity. To the authors' knowledge, there does not
seem to be any direct evidence for the world-line con-
dition holding under interaction. In the example of a
charged particle in a uniform field, the radiation at least
is neglected. '0 Furthermore, if the path is observed in
a cloud chamber, the path taken is really the trail
of ions. Besides, one also ignores the eGect of creating
the ions. Then there is the gravitational force, but this
belongs to the general theory of relativity, where the
transformation group is indeed quite diGerent. We do
believe that the states of a closed system form a basis
for a physical realization of the IHI, G, since this is
just a matter of the transformation of reference frames
ie Melo and hence, determined by the kinematics of
free systems. But it may perhaps not be reasonable,
except as an approximation, to investigate the system
in more detail just on the basis of special relativity. "

'0 See, e.g., P. G. Bergmann, Introductiol to the Theory of
Relativity (Prentice-Hall, Inc. , Englewood Cliffs, N. J., 1942),
pp. 135-138.

"See also D. Bohm, The SPecial Theory of Relativity (W. A.
Benjamin, Inc. , New York, 1965), p. 109.


