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The Planck radiation law for the blackbody radiation spectrum is derived without the formalism of
quantum theory. The hypotheses assume (a) the existence, at the absolute zero of temperature, of classical
homogeneous fluctuating electromagnetic radiation with a Lorentz-invariant spectrum; (b) that classical
electrodynamics holds for a dipole oscillator; (c) that a free particle in equilibrium with blackbody radiation
has the classical mean kinetic energy 347 per degree of freedom. The Lorentz invariance of the spectrum of
zero-temperature radiation is used to derive the zero-point electromagnetic energy-density spectrum,
found to be linear in frequency, 37w per normal mode. The procedures based on classical theory employed
by Einstein and Hopf, which were formerly regarded as giving a rigorous derivation of the Rayleigh-Jeans
radiation law, are modified and corrected for electromagnetic zero-point energy to allow a rigorous derivation
of the full blackbody spectrum from classical theory without any assumptions of discrete or discontinuous

processes.

I. MOTIVATION FOR A NEW DERIVATION
OF PLANCK’S LAW

HE theoretical derivation of the blackbody energy
spectrum for thermal radiation looms large in the
history of physics, not for its own interest, but because
of its tremendous impact in demonstrating the failure
of classical theory and in suggesting the formulation of
a new quantum mechanics. However, it is clear that
quantum theory has been developed far beyond the
original modifications of classical theory demanded for
the derivation of the Planck radiation law. As an in-
teresting illustration that some quantum systems
require only a small part of the full quantum theory for
their analysis in classical terms, this paper presents a
derivation of the blackbody energy spectrum requiring
in addition to the usual ideas of classical theory only
the assumption of classical, Lorentz-invariant elec-
tromagnetic radiation at the absolute zero of tempera-
ture. Any notion of discrete or discontinuous processes
is unnecessary for the analysis of this particular
phenomenon.

II. HISTORICAL REVIEW OF
BLACKBODY THEORY

In order to place the new derivation of the blackbody
spectrum in its proper theoretical context,! we first
recall the theoretical analysis of thermal radiation from
the point of view of classical theory. During the
nineteenth century, attempts to use classical thermo-
dynamics and electrodynamics to analyze thermal
radiation achieved major syccesses.2 Use of Maxwell’s
electromagnetic radiation pressure in combination with
the thermodynamics of the Carnot cycle led Boltzmann

* Center for Theoretical Physics, Postdoctoral Fellow.

1E. T. Wittaker, in 4 History of the Theories of Aether and
Electricity, Modern Theories 1900-1926 (Philosophical Library,
Inc., New York, 1954), gives an invaluable summary and reference
source for the historical arguments related to blackbody radiation.

2 See the historical survey presented by M. Planck, in Theory
of Heat Radiation (Dover Publications, Inc., New York, 1959).
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to derive the connection between total blackbody energy
density U and temperature 7':

U=oT*, (1)

which had been obtained experimentally by Stefan.
Moreover, use of the properties of reflection of electro-
magnetic radiation from a moving mirror, coupled with
thermodynamic arguments, allowed the derivation of
Wien’s displacement law involving the energy-density
spectrum p(w,T):

p(w,T)=w'F(w/T),
where

U= / des p(@,T), @)

and the function F is still undetermined.

Here, however, classical theory stopped. Any attempt
to apply the classical form of the energy equipartition
theorem to the energy of mechanical or of electro-
magnetic vibrations led directly to the Rayleigh-Jeans

radiation law
p(w,T) = (w*/2c3)kT 3

(% is Boltzmann’s constant), with its associated ultra-
violet divergence. Attempting to push the contradiction
between classical theory and experimental results even
one step further, Einstein and Hopf® proved that the
assumption of energy equipartition for only the kinetic
energy of a free particle again led rigorously through
classical theory to the Rayleigh-Jeans law. The need for
some new hypothesis beyond traditional classical theory
seemed undeniable.

Planck came upon his radiation law first by making
an ad hoc modification of the assumed connection be-
tween energy and entropy for thermal radiation, and
later by assuming that the calculation of the entropy
of an oscillator in thermal equilibrium with radiation
might be carried out assuming discrete units of energy.

% A, Einstein and L. Hopf, Ann. Physik 33, 1105 (1910).
1374
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By comparison with experiment or with Wien’s dis-
placement law, the discrete energy unit required for
agreement was seen to be 7w. The postulate of energy
quanta linear in frequency was thus introduced into
physics.

In the present paper, we will not assume energy
quantization, but rather will add a different postulate
to classical theory. We will show that the single un-
traditional assumption of a Lorentz-invariant spectrum
of fluctuating electromagnetic radiation in the universe
(electromagnetic zero-point radiation) will allow us to
derive the zero-point energy spectrum (found to be
linear in frequency, 47w per normal mode), and then,
employing precisely the arguments of Einstein and
Hopf, which formerly led to the Rayleigh-Jeans law,
to arrive at the full Planck blackbody spectrum.

III. ZERO-POINT ENERGY IN
QUANTUM THEORY

Before turning to the actual derivations, we wish to
make some indications of the connections between the
postulate of electromagnetic zero-point energy to be
employed here and the usual formulations of quantum
theory. Thus in Schrédinger wave mechanics, the
presence of ground-state probability distributions
having a finite extent in space is usually regarded as an
indication of zero-point oscillations of the mechanical
systems. The quantization of the simple harmonic
oscillator is often written with a ground-state energy
37w, and occasionally this assignment is made to the
electromagnetic energy spectrum, although in this later
case it is usually dismissed as giving rise to no ob-
servable effect. Thus the zero-point energy appears as
a result of the formulation of quantum theory, usually
in the role of an unnoticed though occasionally annoying
hanger-on.

However, Casimir has shown that it is worthwhile to
take quantum electromagnetic zero-point energy
seriously despite the divergence of zero-point energy
density. Accepting the usually ignored assignment of
an energy 3%w to each normal mode, Casimir was the
first to calculate the quantum electromagnetic attrac-
tion of two conducting parallel plates,* an effect which
has been confirmed by experiment.® Moreover, he used
the notions of quantum electromagnetic zero-point
energy to calculate a number of further effects® which
had previously been obtained by quantum electro-
dynamic perturbation theory. The number of such
calculations based on Casimir’s zero-point energy ideas
has been extended,” and the results are in agreement
with the traditional evaluations (when they exist) from
quantum perturbation and dispersion theory.

( 4 H) B. G. Casimir, Koninkl. Ned. Akad. Wetenschap. 51, 793
1948).

6 M. J. Sparnaay, Physica 24, 751 (1958).

6 H. B. G. Casimir, J. Chimie Phys. 46, 407 (1949).

1T, H. Boyer, Phys. Rev. 174, 1631 (1968); 174, 1764 (1968);
180, 19 (1969).
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This paper suggests that electromagnetic zero-point
energy should not only be considered seriously, but may
even play a fundamental role in physical phenomena.
Here we are abstracting one aspect of quantum theory,
electromagnetic zero-point energy, and will superimpose
it on classical theory. Making no initial assumptions
about the form of this energy beyond the Lorentz
invariance of the spectrum, we will make it the basis for
the rigorous derivation of the full blackbody energy
spectrum. Since no quantum assumptions are involved,
we prefer to speak of electromagnetic zero-point energy
rather than quantum electromagnetic zero-point energy.
What is involved is a theory of fluctuations, not of
quanta.

We should emphasize that the untraditional fluctu-
ation assumption has connections with alternative
formulations of quantum theory which probably go well
beyond heuristic ideas. Nelson® has shown that the
mathematical formalism of nonrelativistic quantum
mechamnics is fully equivalent to classical mechanics on
which is superimposed a random walk. There has been
some tentative work® on the equivalence of quantum
electromagnetic theory with classical electromagnetism
on which there is superimposed a random walk in the
normal coordinates. The use of zero-point energy here
is hardly a full fluctuation theory equivalent to some
part of quantum electrodynamics, but it forms a non-
trivial beginning.

IV. DERIVATION OF THE ELECTROMAGNETIC
ZERO-POINT ENERGY SPECTRUM

The one hypothesis which we add to classical theory
is the assumption of fluctuating electromagnetic radia-
tion in the universe even at the absolute zero of tem-
perature. In order to maintain the Lorentz invariance
of the theory, we require that the spectrum of the
radiation shall look the same to all observers moving
at constant relative velocity with respect to each other.

The fluctuating electromagnetic radiation can be
written in the form of transverse plane waves

2
E(xf)=Re ¥ / & e(k M\ h(wp)eiet—k-x=0kN) | (4)
A=1

Xe(k,\)

2 kXe
B(x,/)=Re 3 d3k—--k-—h (e eient—ile-x=io D)
A=1

e(k\) k=0, e(k))-e(kN)=bun. (5)

Here the random phase ©(k,)) is introduced (following
Planck? and Einstein and Hopf?) to indicate the
fluctuating character of the radiation. The function
h(wx) can depend only upon wx=ck=c|k| because of
the assumed isotropy of the radiation.

8 E. Nelson, Phys. Rev. 150, 1079 (1966).
9T, H. Boyer, Phys. Rev. 174, 1631 (1968).
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In order to connect the function A(wy) with the
spectral energy-density function p(wy), we compute

1 2 2 2
(BB == 5 [ / Phaelah)
s

&7 Ai=1 Ao=1
. £(k2,>\2)h (w1)h(w2) * 63(k1 '—k2) 5MMX% ) (6)

where the initial 2 comes from the equal contributions
of E and B, and the final $ comes from the correlation
between the phases:

<COS(w1t—'k1 ‘X— 0(1(1,)\1)) COS(wzt—kz cX— 0(k2,)\2))>
= %53(1(1 —'k?) 6)\1)\2 . (7)
Thus

1 1 2
—(E2+B2)=—3" | d% h2(wy)
8t 8w a=1
0 0 (d2
= / dk k2R (o) = / do—h*(w), (8)
k w=0 63

=0

and we identify the spectral energy-density function

p(w) as ,

() =‘:—3h2(w) . ©)

Under a Lorentz transformation and along the x axis,
transverse plane wave go into transverse plane waves
with transformed frequencies and wave numbers.
Carrying out the transformation of the fields in (4), we
merely rotate the components of E and B into each
other and note the Lorentz-invariant character of the
phase of a plane wave,

2 v (kXe),
E,/)=Re > dskl:ie,—l—jy(ey—— ——)
A=1 c
kXe),
‘|'13‘Y(eri'E (EXo )]h(wk)
c k

Xexp[iw't' —ik’-x’ —i6(k,\)],

2 (kXe), v
B'(x,/)=Re Y d3k[ie,+j—y( - +—e,>

A=1 4

w2 e

4

Xexp[iw't' —ik’-x'—i0(k\)], (10)

with e=¢(k,\). The connection between the primed and
unprimed wave vectors is always

ks =y (ka—(v/cPwy), wi’'=v(wk—1ks),

kﬂ’:kv; kl":kl’ (11)
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with y=(1—122/¢?)~12, Now we compute the energy
density in the primed frame, writing

k= d%k'y (14 vk [eor”)

in Eq. (10) so as to associate the variable of integration
with the frequencies of the plane waves. We have

(8m) (B2 B'2)
'Ukla:, 2
oo 2]
w1

‘vklx 2
L

w1

vk
= Const/d%’hz(wk)fy(l ——~—) ,
Wi

where the first factor in square brackets arises from
transformation of d*k1d%k., the second factor arises from
summing over the polarization vectors, and always the
primed and unprimed variables appearing are related
by (11).

By invariance of the spectrum of zero-point energy,
we mean that if an observer measures the original
density of radiation energy with some instrument with
a selective frequency filter, then he will find precisely
the same energy density when inspecting the trans-
transformed distribution with the same filter. Thus the
energy density contained in the frequency interval
wx=a to wyx=> for the untransformed distribution must
be identical with the energy density contained in the
frequency interval wy’= @ to wy’=b for the transformed
distribution. The nwumbers @ and b can be chosen
arbitrarily, but are the same for the transformed and
untransformed systems. Thus, from Egs. (8) and (12)
we require, for any velocity » and any ¢ and b,

wp=b
/ % 1) =

k=a

2 2 2
-——> ¥

87r A1=1 A2=1

(12)

wr'=b R

dak’h“’(wk)'y( 1— ) , (13)

Wi =a Wk
where the primed and unprimed quantities on the right-
hand side are related as in Eq. (11). But since the
variable of integration is a dummy variable, this is the

same as requiring
W2 (o) = h2(wi)y (1 —vks/wy). (14)

Since from (11) wy’=~v(1—vk,/wi)ws, it follows that /42
must be a linear function of wy. In other words, by
suitably adjusting the normalization constants in the
original electromagnetic fields, we must have exactly an
electromagnetic zero-point energy 47w per normal mode
if the spectrum is to be Lorentz-invariant. Introducing
polar coordinates as in Eq. (8), and then relating the
number of normal modes to the variables of integration
d’k, we see that we require

7 (w) = b, (15)
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and the zero-point spectral density function p(w) is

p(w) = fs®/ 223, (16)
V. CLASSICAL SYSTEM CONSIDERED
BY EINSTEIN AND HOPF

A. System Involved

Einstein and Hopf?® consider a particle of mass m
which contains a nonrelativistic electromagnetic dipole
oscillator of angular frequency wo. For convenience, it
is assumed that all particle motion is in the x direction
v=1,, and the oscillator dipole points along the z axis.
The system is chosen so that the free translational
motion enables one to use the ideas of classical statis-
tical mechanics while the oscillator contained in the
particle allows for interaction with the electromagnetic
radiation. In thermal equilibrium with blackbody
radiation at temperature 7, the mean-square velocity
due to interaction with the radiation must be identical
with that determined by classical statistical mechanics
for a free particle which, for example, may be thought
of as one of the gas atoms of an ideal gas.

B. Forces

During a time interval 7, the particle experiences two
forces due to electromagnetic radiation.

(a) The interaction of the oscillator vibrations with
the fluctuations of the radiation field leads to a random
force and a corresponding fluctuating impulse A during
a time interval 7.

(b) There is a velocity-dependent average force F,
tending to slow the particle down. Assuming that the
velocity of the particle is small compared with the
velocity of light ¢, the force may be written as linear
in v, F,= —Pv. Also, if the time interval 7 is short so
that the change in particle velocity is small, the impulse
may be taken as = —Pvr. We note that the function P
will depend only upon the thermal part of the radiation
and not on the zero-point radiation. We have postulated
that the zero-point.spectrum is Lorentz-invariant; thus
no uniform motion relative to the zero-point radiation
is observable, and no velocity-dependent force depend-
ing on the zero-point spectrum is possible.

C. Average Squared Momentum

For any particle having a momentum v, at time ¢,
the momentum after a time interval 7 is changed by
the impulses from forces (a) and (b):

(17)

In equilibrium, if we average over all particles, the
mean-square momentum must be constant in time; thus

((mv)?)={(mv.1)*)= ((mv+A—Puvr)?) (18)

MU= m'vg“}"A—PvtT .

or

0=(A2)+2m(vAY=2mPr(12)—2Pr(vA)+P?r2(2?), (19)
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where we have dropped the subscript ¢ on the velocity v,.
Now the velocity v, is fixed at one instant ¢ while the
impulse A in the time interval from ¢ to {47 may be
positive or negative with equal probability. Hence
(»A)=0, and we may drop two of the terms of Eq. (19).
Also, the mass m of the particle is at our disposal, so
that we may neglect the term P272(22) compared to
—2mPr(v?). Thus (19) reduces to the Einstein-Hopf
impulse-squared equation

(A2)=2mPr(1?). (20)

If we assume the classical equipartition theorem
im(®)=3%kT, and introducing the classical electro-
magnetic calculations for (A?) and P, then (20) leads
directly to the Rayleigh-Jeans radiation law.

VI. ELECTROMAGNETIC ZERO-POINT ENERGY
AND STATISTICAL THERMODYNAMICS:
SOME BASIC CONSIDERATIONS

The introduction of electromagnetic zero-point
energy seems to require a fundamental reanalysis of the
statistical equilibrium between a set of particles and
the surrounding electromagnetic radiation.!® In classical
theory, the interaction of the particles and the enclosing
walls goes unmentioned. Sometimes one speaks of the
walls as being perfectly elastic reflectors of the gas
molecules. Perhaps more accurately from the point of
view of entropy considerations, the molecules should be
thought of as being absorbed by the walls, and then
emitted by the walls with the same velocity distribution
as that which holds for the gas molecules contained in
the box because the walls are assumed at the same
temperature 7" as the gas. We may note, in connection
with Sec. V, that when Einstein and Hopf describe the
interaction of gas molecules and thermal radiation in
the context of classical theory, they neglect the further
interaction with the box. Thus equilibrium between
particles and radiation is maintained by the combina-
tion of forces (a) and (b). If the random interaction (a)
of the oscillator with the radiation extracts energy out
of the radiation field converting it into kinetic energy
of the particle, then the velocity-dependent force (b)
slows the particle down and returns the energy to the
radiation field. Classical equilibrium corresponds to a
balancing of these two energies, and as Einstein and
Hopf showed, leads to the Rayleigh-Jeans distribution
of thermal radiation.

At the absolute zero of temperature, traditional
theory predicts that there is no electromagnetic radia-
tion present, and no particle motion for the ideal gas.
However, the introduction of electromagnetic zero-point

10 The ideas presented in this section represent only the basic
considerations required for the derivation of the blackbody spec-
trum. In a future publication, the author hopes to treat the
thermodynamic aspects of the problem, including implications
for superfluid helium. It is interesting that a number of phenomena
connected with helium II allow a qualitative explanation in terms
of the ideas of electromagnetic zero-point energy presented here.
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energy alters the entire situation. Now there is fluctu-
ating radiation present even at zero temperature. Hence
the particle is subjected to the fluctuating force (a), and
exacts energy from the radiation field. But the Lorentz
invariance of electromagnetic zero-point radiation
means that no velocity-dependent force is possible.
Hence the energy is not returned to the radiation field.
The particles diffuse to increasingly high velocities. For
particles in free space, the velocity distribution will
gradually acquire a Lorentz-invariant character, and
the space and velocity properties will be quite reminis-
cent of Milne’s expanding universe.!! However, in a
container, the gas molecules will strike the walls and
give up their kinetic energy by dipole radiation and by
transfer of mechanical energy to the solid walls at ab-
solute zero. The mechanical energy thus spread through
the surrounding medium is also eventually returned to
the radiation field. When the gas molecule is now
emitted from the wall, it will be emitted at a lower
velocity. Thus the molecules continue to absorb energy
from the radiation field until they strike one of the walls.
We see that, at the absolute zero of temperature, the
surrounding enclosure plays a crucial role for an ideal
gas, and we must introduce the effects of the walls into
the equilibrium equations corresponding to (17) derived
for the classical case.

We consider first a particle moving with momentum
my; at time ? in a container at temperature 7= 0. After
a time interval 7, the momentum is

MV, =m0+ AT, (21)

where A is the impulse given to the particle through the
fluctuating radiation field, and J is the impulse given to
the particle by any wall. Of course, if the particle does
not strike a wall during the time interval 7, then for this
particle J=0. We now square and average over all
particles. If the distribution of particle velocities
represents an equilibrium, then the average particle
momentum squared will not have changed during 7,

((mv)?)=((mver.r)*)=(mot-A+T)*).  (22)
Carrying out the square in (22), this implies
0=2m{vA)+2m{v.J )+ (J2)+2(AT)+(A%). (23)

Now the impulse A may be in the plus or minus # direc-
tion during the time interval ¢ to {47, and hence the
averages (v;A)=0 and (AJ)=0. On the other hand, if
the particle strikes a wall, then », will be just opposite
in direction to the impulse of the wall which slows the
particle down so that (v.J) is not zero, but is negative
definite. The term (/%) may be neglected compared to

(A?), giving 0= 2m(oJ )+ (A2) (24)

at the absolute zero of temperature. One way to under-
stand the neglect of (J?) is to note that the particle
momentum 7 v, will in general be much larger than the

11 E, A. Milne, Z. Astrophys. 6, 1 (1933).
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fluctuating impulse A received during the short time
interval 7. Hence, in order for Eq. (23) to hold, J must
be much smaller than A and so (/%) may be neglected
compared to (A?). Equation (24) expresses the fact that
during the time interval 7, the particles absorb energy
from the zero-point radiation and give up the kinetic
energy when striking the walls.

Having obtained this result, we now turn back to the
situation for finite temperature when zero-point radia-
tion is also present. In this case, the impulse given by
the walls must be included, giving

MV, =mv+A—Por+J,

instead of Eq. (17). Again, assuming equilibrium condi-
tions so that ((mvy)?)={((mv.;,)?) and expanding the
expression, we have corresponding to (19)

0=2m{vA)+2m{J )+ (J*)+2(AT)+(A2)
—2mPr{v®)+ P2r%(v%) —2P7(vA)—2P7(vJ ).

By the random character of A, we have (vA)=0,
(AJ)=0. Again noting that the mass # of the particle
is at our disposal, we see that the term —2Pr{vJ) may
be neglected compared to 2m(vJ ), and P27%(s%) neglected
compared to —2mPr(2?). Now the term (vJ) is related
to the average kinetic energy loss of the particle on
hitting a wall. However, we have seen that this energy
from strictly thermal considerations is as often positive
as negative and may even be excluded from considera-
tion entirely as in all treatments of classical theory.
Rather, it is only the contribution from the zero-point
energy in (A?) which must be removed by collisions with
the walls as indicated in Eq. (24). Thus we have

2moT )y r=2m{0T yrmo= —{A%)pp,

again neglecting (J2). Thus our final impulse-squared
equation becomes

(A2)—(A%)p_o=2mPTr(s?).

This equation differs from the Einstein-Hopf equation
(20) by exactly the zero-point term (A%)p_o.

(25)

(26)

27

(28)

VII. DERIVATION OF BLACKBODY SPECTRUM
A. Use of Classical Statistical Mechanics

We now turn to the evaluation of Eq. (28). The
average velocity squared (22) may be evaluated by the
equipartition of energy for a free particle due to classical
statistical mechanics. Since there is only one degree of
freedom considered,

sm(v?)y=3kT. (29)

By taking the particle mass m sufficiently large, we find
that any contribution to (22) from zero-point oscillations
at T'=0 is negligible when introduced in Eq. (28); the
argument follows from the mass independence of the
impulse from the electromagnetic fluctuations. Thus
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our basic equation becomes

(A%)—(A?)7o=2P7kT, (30)

where the values of A and of P are to be determined by
classical electromagnetic theory applied to the inter-
action of the oscillator and the electromagnetic radiation
ncluding zero-point radiation.

B. Calculations Follow Einstein and Hopf

At this point, the appropriate calculations for (A2)
and P are precisely those of Einstein and Hopf. The
calculations are sketched in the Appendix in more
recent notation for relativistic transformations and
Fourier decompositions.!?

C. Results—Planck’s Radiation Law

Inserting the results of (A?) and P obtained by
Einstein and Hopf [or of Egs. (51) and (63) of the
Appendix] into the relation (30), we have

A

3 kTw?

d
[o*(w,T) —p*w)1=p(w,T) —%wg;p(w,T) , (31)

where we have used the notation p(w)=p(w,7'=0). In
Sec. IV, we derived the spectrum of electromagnetic
zero-point energy from Lorentz invariance as

p(w)= w3/ 27263, (32)
Consistent with our ideas of the invariant appearance
of the electromagnetic zero-point energy spectrum, it
may be noticed that the contribution from the zero-
point energy doesnot enter on the right-hand side of
Eq. (31), which is derived from the velocity-dependent
force F,= —Pv, with

P=cn(6/5)T[p(w,T) —wdp(w,T)/dw].
Thus the contribution to P from Eq. (32) is

(33)

[t | = -t =0. @4
plw 3wdwpw -—-27‘_2631.0 3030?) =0,

Substituting the zero-point energy spectrum (32) into
the left-hand side of (31), we have the differential
equation for p(w,T)

1 ¢3n2 ) ( fiuwd )2]
_ p2(w,T) —
3 kT wgl: 2m2c?

d
=p(w,T) —Ew'd:,p(w,T) . (39)

12 Notations involving Lorentz transformations have changed
so much in the half-century since Einstein and Hopf’s work that
the present author found their manipulations on the surface in-
comprehensible. Repeating the full calculations, the author
arrived at values identical with their results.
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The solution of the differential equation is
w? fie .
p(o,T) —%<m+§ﬁw) ) (36)

which is exactly Planck’s distribution? for the full
blackbody energy spectrum.

The crucial role played by zero-point energy is
strikingly clear in the differential equation (35). If the
electromagnetic zero-point energy is set equal to zero,
then we have the differential equation of Einstein and
Hopf corresponding to (20),

S D) =plo D) —doeleT), O
3 kTw? dw
whose solution!? is the Rayleigh-Jeans law
p(w,T)= (w?/m2c®) kT, (38)

Only with the introduction of the electromagnetic zero-
point energy (32) corresponding to a Lorentz-invariant
spectrum does the differential equation give the experi-
mentally observed energy spectrum (36).

D. Energy of an Oscillator in the Electromagnetic Field

In the chain of argument presented here, we have
derived the blackbody radiation spectrum without first
obtaining the average energy of a quantum-mechanical
oscillator. Thus we may reverse the order of argument
traditionally followed in quantum theory and may now
derive the average energy of an oscillator in equilibrium
with the blackbody radiation field. Hence, starting from
the hypothesis of a Lorentz-invariant spectrum of
electromagnetic zero-point energy, we may proceed
through a derivation of blackbody radiation and then
find the average energy of a mechanical oscillator which
is in agreement with quantum theory.

Once again, the mathematics of the argument has
been carried out before by writers!* viewing the problem
from a different point of view. Using classical electro-
dynamics for a nonrelativistic oscillator including
radiation damping situated in a fluctuating electro-
magnetic field, we find that the average energy (e) of

the oscillator is
(&)= (rc*/w?)p(w,T). (39)

Substituting the result for blackbody radiation p(w,T’)
from Eq. (36), we have

(e)=tw/ (e"/FT 1)+, (40)

13 Differential equations (35) and (37) may be written in the
form 8p/dw=F(w,p), where F is an analytic function of » and of p.
Trying the undetermined coefficient form of a power-series
solution, and requiring that p(w,T) be regular in w at the origin
and a continuous function of 7, we find that the Planck and
Rayleigh-Jeans laws are the unique solutions of (35) and (37),
respectively. See G. Birkhoff and G. Rota, Ordinary Differential
Equations (Ginn and Co., Boston, Mass., 1962).

14 M. Abraham and R. Becker, Theorie der Elekrizitat (B. G.
Teubner Verlag, Leipzig, 1933), Vol. II, 6th ed., pp. 373-375.
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which is just the usual result of nonrelativistic quantum
theory.

We note that when the electromagnetic zero-point
energy is included in the calculation for (39), the non-
relativistic kinetic energy is actually divergent. The
value given in (39) is, however, twice the (convergent)
nonrelativistic potential energy even in this case. The
divergence of the kinetic energy expression can not be
considered as significant for any physical system, inas-
much as the dipole and other nonrelativistic approxima-
tions used in the differential equation for the oscillator
will break down at the high frequencies where the
kinetic energy divergence occurs.

E. New Understanding of Quantum Theory

The developments presented here, relating electro-
magnetic zero-point energy to the blackbody spectrum
and to the energies of a quantum harmonic oscillator,
strongly suggest the possibility of a new interpretation
of quantum theory. Flutuating electromagnetic zero-
point energy will lead to fluctuations in the positions of
electrons. Using the classical Abraham-Lorentz differ-
ential equation of motion including radiation damping,
it is easy to show that the diffusion coefficient for the
particle position must be a constant times %/m, where m
is the mass of the charged particle. The charge does not
enter the diffusion to first order in time. But Nelson? has
shown that nonrelativistic classical mechanics on which
is superimposed a Brownian motion with diffusion
coefficient 7#/2m is fully equivalent to nonrelativistic
quantum theory. Thus starting from the assumption of
electromagnetic zero-point energy, it may be possible
to use nonrelativistic classical mechanics to obtain all
of nonrelativistic quantum theory. Moreover, the use
of relativistic classical particle dynamics might give a
form of relativistic quantum theory.

The present stumbling point in the analysis outlined
is the Abraham-Lorentz equation of classical electro-
dynamics, an equation which is also a sore point in
purely classical theory because of the run-away solu-
tions. Thus far, the author has been unable to evaluate
the numerical coefficient in the diffusion of a charged
particle due to electromagnetic zero-point energy. It
may well be that a proper understanding of this point
will solve a problem of classical electromagnetism while
joining classical theory naturally onto what is now
regarded as a separate theory of quanta.

VIII. CLOSING SUMMARY

We have seen that the assumption of electromagnetic
zero-point energy can be added to classical theory to ob-
tain the full blackbody radiation spectrum. The hy-
pothesis is somewhat more economical than quantum
theory in that the association with each normal mode of
zero-point energy 3%w linear in frequency is derived from
Lorentz invariance, rather than being postulated in a

TIMOTHY H.

BOYER 182

quantum energy unit %w. At this point, it is natural to
ask further about the role of electromagnetic zero-point
energy in thermodynamics, and also to enquire into the
equivalence between classical electromagnetism with
fluctuating zero-point energy and quantum electro-
dynamics.

APPENDIX: SUMMARY OF CALCULATIONS
OF EINSTEIN AND HOPF

In the following calculations, we are summarizing in
more recent notation the work of Einstein and Hopf?
required in Sec. VII B. The analysis uses random phases
to express the fluctuations of thermal radiation.

A. Calculation of the Velocity-Dependent
Average Force

We are considering a nonrelativistic dipole oscillator
of frequency wo oriented along the z axis in an electro-
magnetic field E(x,?),

a*p _d’p
— —TI—w?p=3T¢E,,
g d

(41)

where p is the oscillator dipole moment, and the radia-
tion damping constant for a physical oscillator corre-
sponds to

I'=2e2/mc3. (42)
The zero-point and thermal electromagnetic radiation
is assumed to exist in the form of transverse plane waves
as in Eqs. (4)-(9), except that now % and p must be
regarded as functions of the temperature i(w,T), p(w,T),
reducing to i(w), p(w) at T'=0.

In obtaining the velocity-dependent average force,
we are using the fact that the spectrum of thermal
radiation loses its isotropy when viewed from the
moving particle. Specifically, we make a Lorentz
transformation to a frame of reference moving with the
particle. Then new electromagnetic fields are experi-
enced by the oscillator, and hence there arises a velocity-
dependent force. The transformed fields are exactly as
given in Egs. (10)-(11), with %(w,7) replacing %(w). In
the particle frame of reference, Eq. (41) holds with the
differentiation now with respect to ¢, and the driving
field is given by E.'(x,'). The frequency will be indi-
cated by w¢’. Then the dipole moment is

2 33 v (kXe)y,
p=73 [ d* 'y(ez—l—— >h(wk,T) sina(w’)
A=1 2’3 c
Xcos[w't!' =k -x' —a(w)—0(kN)], (43)
where we have defined
cota(w)= (w2 —w'?)/Tw’, (44)

and always the primed and unprimed quantities are
related as in (11).
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The force on the particle due to the interaction of the
dipole with radiation is
OE; 1 ap
F)=—p —B,/—. (45)
dz’ c df
Thus differentiating E,/(x',¢') in Eq. (10) with respect
to 2, and B,/(x,t) in (10) with respect to ¢/, we have

c3

2
FJ/=3% | &% e/ h*(w,T)—
A=l 20’3

v (kx*:)y
X’y(ez—{—— . ) sin%z(w'))(%

c
12 (kXe), v 3c?
—= > | d3k 'y< +—e,>h2(w,T)
¢ N=1 k c 2w'3
v (kXe),
X'y(ez - ) sina(w’) X3, (46)
c

where we have noted that the random phases give

<Sin[w1/t—'k1, X — 0(1(1,)\1):]
X COS[wzlt, - k2/ . Xl - a(wg') —_ 0(k2,)\)]>

=% sina(wz') as(kl—kQ) 5)\1)\2 ) (47)

primed and unprimed variables, as always, related
by (11).

In order to simplify the expression, we sum over
polarizations, and change all variables to primes using
(11). In order to change p(w,T) = (w?/c*)h2(w,T) over to
a function of wy’, we expand

dp(w',T)

’
(O]

p(w,T)=p(o, 1)+

(@—)

vk 9p(,T)

(o', T)+- —w (48)
ck

to first order in v/¢c. We then find that

. /d3k’3 I3 ¢t

4 (002 —w?)? 4 T7%'6 o2

v ks 9p(w,T)
X{ plo, )= —0'———
c F dw’

VRO BEIE N FER N NE) R
X(kx’— -3~ +3- ) . (49)
k2 c kK c k3

The change to polar coordinates and angular inte-
grations is straightforward. However, in evaluating the
integral over frequency, we assume that I'we<X1, so that
the integrand involving sin?a(w’) is sharply peaked
at wy’. Changing the variable of integration from o’ to
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x=w'—wy, replacing all terms in ' not involving
o' —wy by w/, and extending the lower limit of integra-
tion to' — o, we finally need to evaluate an integral of

the form
*® dz
/ -=T, (50)
—w 221
Thus
F. = —ver2(6/5)T(p(wd,T) — 3wy 9p(wy’,T)/dwy’).  (51)

The relativistic transformations between the stationary
and particle frame for the forces and frequencies in(51)
involve completely negligible higher powers of v/¢ and
hence we may drop all primes in Eq. (51) when abstract-
ing the value for P in F,= — Pu.

B. Calculation of the Fluctuating Impulse

The fluctuating impulse given to the particle during
a time 7 due to interaction of the oscillator vibrations
with fluctuations of the electromagnetic field can be
computed for an oscillator at rest as

t=7 t=r \E, 1. dp
A=/ det=/ ( p——By—~)dt. (52)
=0 =0 \ 0% ¢ ‘di

The expression can be simplified by partial integrations
on the second term: '

t=r dp t=71 aBy
/ By—dt=[B,plo"— / ——pdi.
t=0 dt =0 O

The first term on the right does not depend upon the
time interval 7 and may be neglected. The last term
may be transformed using Maxwell’s equation

(53)

VX E=c¢"19B/ot (54)
to give
t=r1 aEz
A= / T, (55)
t=0 0%

Again we take the radiation field as composed of
fluctuating transverse plane waves given by (4), with
h(wx) replaced by h(wy,T). It follows that the dipole
moment given by the differential equation (41) satisfies

3

2 3¢
p=2 | @k—e.(kNh(wy,T) sina(w)
A=1 2u?

Xcos[wi—k-x—a(w)—0(k,\)], (56)

with a(w) the same function as in (44), but now without
primes.

Formally, 9E.(x,t)/dx may be obtained by differ-
entiating in Eq. (4). However, the evaluation of the
impulse due to the fluctuating fields calls for an integral
over time which is not appropriately averaged with the
same random phase appearing in E.(x,) and
dE.(x,)/dx. In a separate article which forms a neces-
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sary preliminary to their work, Einstein and Hopf's
derive a general result of probability theory which
shows that E.(x,f) and dE.(x,f)/dx must be regarded as
independent quantities in this time integral. Hence we
will write dE,/dx with a second, independent phase,

0E.(x,0) 2
(x )=Z

ox =1

d3ke,(k Nk,
Xcos[wt—k-x—£(k\)].

(7)

Qualitatively, we may say that because of the random
fluctuations we expect the average of A to vanish; it is
only the average value of A? which will increase with

time.
Thus with these considerations in mind, we write

t=1 2 2
A:/ dt Z Z d3k1/d3k2 éz(kl,)u)h(wl,T)ku
t=0 .

A1=1 Ag=1

3¢3 €(kay\2)
_ B (w2,T") sina(ws)

203 (wo2 —w?)2—TI%w
XCOS[wﬂ—er—E(kl,)\l)]
XCOS[wzt—kz X -—a(wg) - o(kz,)\g)] . (58)

Choosing the origin of coordinates at the location of the
particle, we may drop the k;-x and ke-x contributions.

The time integral gives

t=1
/ dt cos(wit— £1) cos(wat— G2 —as)
t=0

1 w1tw2 w1tw2
=[ sin( ,> cos< 1—51—02-—012)
w;-l—wz 2 2

1 Wo—wW1 wWe—w1 .
-+ sin( 7 ) cos( r+£1—02—a2):l ,
Wy —w1 2 2
(59)

where &= £(ki,\1), 6= 0(ksz,\2), 2= a(wx,)-

Next we square and evaluate the mean value (A?).
Now the phases £&4-6; and &’ —0y are not correlated
and hence the cross terms from Eq. (59) vanish, leaving

only the squared terms from

wewy
<cos( . 7 £(k1,\1) —0(ka,\2) —a2>

'y
we w1

Xcos( rFE(kd M) —0(ke' \e) —'0t2>>

=%53(k1—k1')5x1x1'53(k2_ 2,)6)\3)\2’- (60)

15 A, Einstein and L. Hopf, Ann. Physik 33, 1096 (1910).
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Summing over polarizations, we find that

klzz
d3k1/d3k2(1 —*k—;)khz/’lz(wa)

1

@=3 >

A1=1 Ap=1

ka. 3c?
X(l —_—— h’(wz,T)——- sin%ay
ko? 2wq?

2 W2

1 w1tws
X l: sin"’( T )
(w 1 +w2) 2 2

e 1 : 2<w2—w1 ):' 1
sin )| X3.
' (wp—wy)? 2 :

Again it is convenient to change to polar coordinates.
Only the integrations over w; and ws require comment.
The term involving wi+we may be neglected in com-
parison with the w,—w; term, which may be regarded
as a sharply peaked (8 functionlike) integrand, requiring
us to set wy=ws. The basic integral here is

® sin?rx
dx=mT.

e X2

(61)

(62)

The function sina(w,) is similarly regarded as sharply
peaked for T'wy<K1, and the evaluation of the integral
in ws is carried out in the same style as indicated in
part A of the Appendix. Then, recalling Eq. (9) con-
necting 4(w,T) and p(w,T), we obtain

(A%)= (4T m%*r/50%) p%(w, T) . (63)

C. Added Note: Earlier Literature on Electromagnetic
Zero-Point Radiation

During the research continued after submitting this
paper for publication, the author became aware of
several further papers on electromagnetic zero-point
radiation. In 1916, Nernst!® suggested that the universe
might contain zero-point radiation in agreement, except
for a factor of 2, with the 3#w per normal mode proposed
by Planck. While apparently not realizing the Lorentz
invariance implicit in this spectrum, Nernst does com-
ment, essentially on the basis of our Eq. (15), that the
assumed spectrum will not give rise to frictional forces
on objects moving at constant velocity. Nernst is con-
cerned with the energy divergence implicit in the zero-
point spectrum and speculates on an appropriate high-
frequency cutoff. By contrast, we note that it is precisely
this divergence which allows us to escape the usual
dictum that the energy (if finite) of a Lorentz-invariant
vacuum state must vanish.

16 W. Nernst, Verhandl. Deut. Phys. Ges. 18, 83 (1916).
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There also is interesting work by Marshall'” published
during 1963-65 proposing essentially the same view as
that arrived at by the author, that electromagnetic
zero-point radiation can be regarded as the cause of
particle quantum motion. In this sense, quantum
motions are experimental evidence for zero-point

17T, W. Marshall, Proc. Roy. Soc. (London) A276, 475 (1963);
Proc. Cambridge Phil. Soc. 61, 537 (1965); Nuovo Cimento 38,
206 (1965). I wish to thank Dr. B. Robertson for bringing this
work to my attention.
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radiation. However, Marshall does not touch the
question treated in this paper, that of deriving Planck’s
radiation law from electromagnetic zero-point radiation
and classical theory. It is interesting that Marshall came
upon the Lorentz invariance of the zero-point spectrum
as an afterthought. It was this Lorentz invariance of the
electromagnetic zero-point spectrum, and the consequent
absence of velocity-dependent damping forces, which
struck the author as so fundamental that it prompted
the line of development carried out in the present paper.
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The field equations for coupled gravitational and zero-mass scalar fields in the presence of a point charge
are solved in the spherically symmetric static case. The resulting solution is the generalization of the Reiss-
ner-Nordstrém solution in the presence of a zero-mass meson field.

I. INTRODUCTION

HE well-known Reissner-Nordstrom solution of

Einstein’s equations corresponds to the situation

with a charged mass-point at the origin of spherical

coordinates. That solution plays a justifiably important

role in studies of the interaction of electromagnetic and
gravitational fields.

Recently,! we had occasion to treat the problem of
interacting gravitational and zero-mass meson fields in
the axially symmetric, static situation, and obtained
the (spherically symmetric) generalization of the
Schwarzschild solution in the presence of a zero-mass
meson field. The form of that solution was considerably
simpler than the form originally obtained by Janis ef al.2

Indeed, the form of the generalized Schwarzschild
solution is simple enough to give hope that the Reissner-
Nordstrém solution could also be generalized in the
presence of a zero-mass meson field. In this paper we
obtain the desired generalization.

The main reason for presenting the solution is that
exact solutions of Einstein’s gravitational equations
are scarce. Thus any such exact solutions may be useful
even though somewhat unrealistic.

II. FIELD EQUATIONS
We wish to solve the field equations
Gu.=—KT,—KE,,, 1)
T,= ﬁpu‘Pv—%gnvﬁ"aﬁoa; (2)
Eyy=g"F auF v~ guF P, ®3)
1R, Penney, Phys. Rev. 174, 1578 (1968).

2 A, I. Janis, E. T. Newman, and J. Winicour, Phys. Rev.
Letters 20, 878 (1968).

where ¢, is a gradient and F,, is the Maxwell
tensor.

We are interested in the spherically symmetric,
static situation, in which case the line element is®

ds?=e*d R*+ePdQ2—evdi? , 4)

and we choose coordinates such that a7 vanishes.

We assume that only ¢; and F14 are nonzero functions
of R. We further assume, as in the Reissner-Nordstrom
solution, that J,, the current, vanishes except for a
point-charge singularity at the origin of coordinates.
(Because of our choice of coordinates, the ““origin” will
not be at R=0.)

To proceed, we first look at the Maxwell equation

Fr,=0 ©)
and obtain immediately that
F 14= €€ B y

(6
where ¢ is the charge.
We next look at the wave equation for ¢, viz.,
oFp= 0, (7)
and obtain directly that
PL1= ceF (8)
for some constant c.

It is then a simple matter to calculate the com-
ponents of T, and E,,, and one finds that the nonzero

3J. L. Synge, Relativity: The General Theory (Wiley-Inter-
science, Inc., New York, 1960), p. 270.



