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Corrections to nuclear Q values in a dense stellar plasma are calculated by means of a modi6ed ionic
cluster expansion in rvhich the electrons are treated as a dielectric medium. Corrections beyond the vreak-.
screening (Debye) approximation are given in tabular form for purposes of interpolation. A comparison
between the Debye correction and the double-cluster correction is made for the chemical potential of a one-
component plasma, " the latter correction is 20 j& of the former for a plasma parameter as large as unity.

I. INTRODUCTION
' 'N nuclear astrophysics there occur situations where
~ - the Interior of an evolved star may be considered

to be in local nuclear equilibrium for at least some of the
nuclear species present. Examples of such situations are
the red-giant stage with the equilibrium reactions

and the more advanced stage of stellar evolution for
which thc slllcoIl-bUx'niDg I'cRctioDS RI'c applicable. If
nuclear equilibrium has in fact been esta, blished, de-

tailed knowledge of nuclear reaction rates is not needed

to determine the coDccntI'Rtions of the equilibrium

constituents, but rather these concentrations are
rela, ted to one another in a relatively simple manner

determined by statistical mechanics. The dominant

feature of the relationship between the constituent
densities is the presence of a Boltzmann factor in-

volving the Q value (energy release) of the particular
equilibrium reaction taking place. The Q values, how-

ever, are not those Ineasurcd in the laboratory. At the

high tcIDpcI'RtUI'cs Rnd densities fox' which QUclcRI'

equilibrium holds, matter is essentially fully ionized,

and the Coulomb energy of an ionized nucleus in the
ambient plasma is more negative' than the Coulomb

energy of the bound atomic electrons in the laboratory
case. The problem of calculating the Coulomb energy

of R nucleus in R plasma has been considered by Sal-

peter' in general for the two cases in which thc Coulomb

corrections are either small (weak screening) or large

(strong screening) compared to the thermal energy kF,
It turns out, however, that in many instances' the
Coulomb energy is comparable to the thermal energy

and it is of interest in such cases to obtain correc-
tions beyond that valid for weak screening.

It is the purpose of this paper to develop these

RddltioQRl corrections by thc method of a modlfmd

cluster expansion that has been applied to cia,ssical

plasmas by a number of authors. ' ' In Sec. II, an
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J. Suppl. 148, 299 (I968).' K. E. Salpeter, Australian J. Phys. I, 373 (I954).
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effective ion-ion interaction is constructed in the
approximation thRt thc electrons Rrc tI'cRtcd as R llncRr
dielectric medium. IQ RQ AppcDdlx R general formu"
lation of the c8ective ion-ion interaction is given which
implicitly incorporates the electron-ion and electron-
electron interaction in a relativistic manner and which
leads to the interaction of Sec. II in the linear dielectric
approximation. In Sec. III this CGcctive interaction is
used to obtain the Q value for a general nuclear re-
Rctlonq RI1d corrections bcyoDd those fol weak screening
are tabulated as a basis for interpolation. FinaHy, in
Sec. IV a comparison is made between thc weak-
scx'ccIllIlg corrections and thc RddltlonRl coI'I'cctlons
calculated in this paper.

II. EFFECTIVE ION-ION INTERACTION

Consider 6rst a plasma containing fully ionized
nuclei and a NIssforfII neutralizing electron background.
The assumption of a Uniform background is a reasonable
first approximation at high density where the electron
gas is highly degenerate, The ion Hamiltonian for such
a system is

where Greek indices refer to the individual nuclei, Rnd

p~, f~, 3f~, RDd g~ Rlc thc momcntUm, posltlon, mass,
and charge of the 0.th nucleus. The nuclear rest energy
has been included since some of this energy is converted
Illto (ol' fl'Gill) klllcflc cllel'gy of tllc val'lolls pR1'flclpRIlts

in the nuclear reactions. %C have explicitly left out thc
Ngc)get Interaction pRI't of the Hamlltonlan since~
although it is essential for the mu&sIemmsce of nuclear
equilibrium, it nevertheless has a negHgible CGect on
the equilibrium properties themselves.

The Hamiltonian (2) can be modified to take the
electrons into account indirectly by treating them as a
dielectric medium in which the nuclei are embedded.
With the assumptions that (a) the electrons move at
lllucll lllgllcl vcloclflcs fllall do 'tllc 1011s Rlld (b) tllc
electron-ion interaction is sInall on the average com-
pared to the electron kinetic energy, it can be shown
that the ionic HRIDiltom, an is electively modi6cd. to
13N
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with

+M c'+8M c'
423'

+s Z g-g-4(lr- —r I) (3)
age'

de ~haik f

(2s-)' Ass(k, 0)

where s(k,0) is the exact static longitudinal dielectric
constant for the interacting electron gas in the presence
of a uniform neutralizing background of positive charge.
In an Appendix, this result is derived as the wcak-
coupling limit of an effective ion Hamiltonian which
itself requires only the validity of the "static" ion
Rppl'oxllllR'tloxl Lassumpt1on (R) above].

The expression q q g(jr —r t) in Eq. (3) is the
electron-screened (hilt Ilot 1011-scrccllcd) 1011-1011llltcr-
actlon while thc quRntlty 8M 0 ls thc interaction
energy between the 0,th ion Rnd the induced electron
charge density. This self-energy can be obtained from
the electron-screened ion-ion interaction with 0,=0,'
provided the (infinite) sdf-energy associated with the
point nucleus is first removed. Using Eq. (4), we then
obtain

1
&~.~'=Ig.s»m 14(lr« —r- I)—

rare 1, )r —r„,|j
de

=&~q '4x
(2s)s ks e(k,0)

III. PLASMA CORRECTIONS TG
NUCLEAR Q VALUES

Consider a system of nuclei undergoing a set of
nuclear reactions of the form

where the Latin index i labels the nuclear species; a; is
the symbol designating the 1th species and v;, is the
number of nuclei of the ith species undergoing the eth
reaction. The integers v;„are taken. as positive for
nuclei initiating the direct reaction and negative
for nuclei initiating the inverse reaction. From thermo-
dynamics, the conditions for nuclear equilibrium are
given by the set of equations

Z I'~rishi=0)

E=P„—&~ ln~r, (12)

where Ii „is the free energy of a system of interacting
electrons, posltrons, Rnd rRdlRtlon with a unlf orm
neutralizing background of positive charge, and

(13)

where p; ls thc chcmicRl potcntlRl of thc $th spcclcs Rnd
is related to the Helmholtz free energy Ii by

p, = (BP/BN;)r, v.

The free energy is then related to the microscopic
physics through the canonical ionic partition function
Zl by

The electron dielectric constant s(k,0) has been
calculated in rRlldoIII-pllRsc Rppl'oxllllR11011 (lncludlng
relativistic effects) by several authors. ' ' To su%cient
approxunatlon, we then have

s(k,0)=1+«.s/ks

H«c p= 1//k2', E; is the number of particles in the sth
nuclear species, and Bl' is the effective ion Hamiltonian
and is given by Eq. (3) in the approximation that the
electrons are treated as a linear dielectric medium.
After carrying out the momentum integrations, we
obtain

(exp( —pSdf c')
~I=II

I

E;!0;&'

0 =(h'/2~& kr)»s M '=lid +g~

&I= II d'r e ~II,

U=l Z e-V-4(lr- —r- I).

The configurational partition function with a general
two-body interaction has been expressed as a modi6ed

(g) cluster expansion by Iukhnovskii, 4 in which clusters
of increasingly larger numbers of ions become more
important with increasing density. Using these results

6 3.Jancovici, Nuovo Cimento 25, 428 (1962}.
7 V. N, Tsytovich, Zh. Eksperim. i Teor. Fiz. 40, 1775 (j.961}

LEnglish trsnsl. :Soviet Phys. —JETP 13, 1249 (1NI}g.
8 P. Morse, Therma/ I'hysics (%'. A. Benjamin, Inc., Nmv York,

1965},p. 137.

dsp
«.s=4~e'

I 1+ Lf (~,)+f+(&s)j -(&)
(2s @)s +„Psos wher

with E =(pscs+essc')Iis and fp(E )=PexpP(Z„wp)
+1j-l. Here rw is the electron mass and p is the electron
chemical potentiaL Equation P) includes positrons as
well as electrons and is valid relativistically. At low
temperatures and densities where positrons are not in
equilibrium with electrons and the radiation 6eld, the
f+ term should be dropped, With the approximat'
of Eq. (6), we then find

y{r)=S-""/r and m.CS= —I-q s«,



and keeping only terms through the double clusters,
we have from Ref. 4

oo

~;= V~ exp {w(lr) —lnL1+w(k) 7)k'dk
4m o

thc term E2 glvcs thc double-cluster contrlbutlon to thc
Coulomb free energy and leads to additional Q-value
corrections.

The condition for nuclear equilibrium, Eq. (10),
may then be written as

+2m V Q e;ei {e s~'i"I —1+PCy(r)
ij o

—'Pe; (r)7')rldr ~, (17)
where

(Il,.g,.)
' —s-omowonwo«&

Qo, =Q I;,M;e',

(24)

(25)

where V is the system volume,

sinkr
w(ll) =«I2 y(r) rdr,

o

(18) and,

Qas =Q virgin y

i

Qa~=Z ~irwin p

(26)

(27)

2g,q 1 " w(ll)
4 g(r) =— — — sinkr kdk,

n- r «P 0 1+w(k)

with
(19

with

w (k) =«ll/(k'+«, ')

p;n = (8'/8N;) r, r and pp = (BF2/8X;) r,r. (28)

«I2=4n.P P q e; and ri; N;/V. The quantities QO„Qn„and Ql, are the contributions
to the energy release for the rth reaction from free
ionized nuclei, from the Debye approximation to the

Using the exPression for P(r) as Riven in Eq. (8) w(k) Coulomb energy, and from the double-cluster terms,
alld 4';p'(r) become respectively. Carrying out the differentiation indicated

(20) in Eq. (28), we then obtain

F2=2«VkT Q e;Ng {expL—Pe;;(r)]—1

+PC "(r)—'[j9C "(r)]')r'dr

The term F„' is independent of the nuclear species
numbers Ã; and will not aGect the determination of the

Q values; From Eq. (23) it contains the term F~ which
is the free energy of the system with the ions replaced
by a uniform, neutralizing background of positive
charge. The term Fo is the free energy of an ideal gas
of nuclei. The term E~ gives the Coulomb free energy
of the plasma in the Debyc-Hiickel approximation and
leads to the weak-screening result of Salpetcr. 2 Finally,

4;,(r) =M;e-"'/r, (21)

where ~2= a,'+~~'. In most cases for which the present
work is applicable, ~ 2 is actually small compared to
«I'. The ratio «2/«p is given by X/Z, „, where Z, is the
average nudear atomic number and X varies from unity
for a Maxwellian electron gas to k2'/er((1 for a de-
generate electron gas with Fermi energy eg. The present
formulation, however, is valid when «,l/«P is not com-
Pletely negligible. Finally, then, Z; of Eq. (17) can be
evaluated and from this expression the free energy
takes the form

F=F,'+F0+FR+F2,
wherC

F„'=F„+kTV«e'/12«,

F,=g; g;{M;c'+kTgln (N;Qi) 17)—
Fz, —kTVP/12w, ——

p n= —-k2'g"1 (29)
and

Iii2= —k&fP &(0'I)&;+4'P B(k;«)ee«], (30)

oo

k„(y)=— a&s"~(i—e»&*I)dh,
P ~ 0

(32)

with f(g) = e ~/x. It is evident that to 6nd the actual
values of the various energy releases, the complicated
set of nonlinear equations (24)-(30) must be solved
for those N; that cannot be independently specified. %c
do not deal with that problem in this paper. The
functions A(y) and B(y) have been tabulated in Table
I for values of y suitable for interpolation out to y= 2.
This value is actually beyond the range of validity for
the double cluster. This range should be somewhat less
than unity, although a more quantitative check on the
convergence of the cluster expansion would be obtained
by looking at the triple-duster contributions to the
plasma thermodynamics.

IV. COMPARISON BETWEEN DEBYE AND
DOUBLE-CLUSTER CORRECTIONS

Most of the thermonuclear reations for which the
results of this paper are applicable are of the form

ox++2++ as ~ (33)

where N;=4lrII;/«' and $;;=M,p«. The functions A (y)
and B(y) al'e glvell by

~ (y) = aykl(y)+3ykl(y) —ky',
(»)

&(y) =-'ykl(y) —sy' —x~ (y)
where



1372 PETER B. SHA W

TAsr, z I. I unctions A (y} and 8 (y}, Numbers in parentheses are
powers of 10by which the indicated value of A (y} and 8(y} should
be multiplied.

0.00 0.000
o.os —s.83s (-s)
o.io —3.64s ( —4}
o.is —i.o47 ( —3)
0.20 —2.192 ( —3}
0.25 -3.868 ( -3)
0.30 —6.129 ( —3)
0.35 —9.020 ( —3)
0.40 —1.258 {—2)
O.4S —1.684 ( —2)
0.50 —2.184 ( —2)
0.55 —2.759 ( —2}
O.6O —3.4» ( —2)
0.65 —4.1.46 ( —2)

—4.961 ( —2)

0.000
4,863 ( —6}
3.483 (-5)
1.09o ( —4}
2.432 ( —4)
4.so7 ( —4}
7.432 ( —4}
1.131 ( —3)
1.624 ( —3)
2.229 ( —3)
2.956 ( —3}
3.81o ( —3)
4.798 ( —3}
5.926 ( —3)
7.2oi ( —3}

0.75 —5.861 ( —2)
0.80 —6.846 ( —2}
0.85 —7.918 ( -2)
0.90 —9.079 ( —2}
0.95 —1.033 ( —1)
i,oo —1.167 ( —1)
1.10 —1.463 ( —1)
1.20 —1.797 ( —1)
1.30 —2.168 ( —1)
1.40 —2.579 ( —1)
1.50 —3.030 ( —1)
i.6o —a.s2o ( —1)
1.7o —4.os i ( —1)
1.8O —4.623 ( —1)
1.90 —5.236 ( —1)
2.oo —5.893 {—1)

8.626 ( —2)
1.021 ( —2}
1.195 ( —2)
1.38S ( —2)
1.S93 ( —2)
1.818 ( —2)
2.32o ( —2)
2.896 ( —2)
3.s47 ( —2)
4.276 ( —2)
5.085 {—2)
s.97s ( —2)
6.949 ( —2)
8.oo7 ( —2)
9.1S2 ( —2)
1.038 ( —1)

in which case the Debye contribution takes on the
simple form

QI) = —&12)I ~ (34)

which is the weak-screening result obtained by Sal-
peter' from a somewhat different point of view. The
double-cluster corrections, however, do not lead to
any simple form but, as is apparent from qs. ~

and (30), depend in genera1 on all the nuclear species
explicitly as well as implicitly through the inverse
Debye radius a. Since it is not our intent to discuss
speci6c astrophysical situations but rather to simply
make available Coulomb corrections beyond the Debye
approximation, we shall limit the discussion of y;2 to
that of a one-component plasma and compare it to p;~.
This coInparison should then give some indication as to
the general size of the double-duster correction to the
Q value as compared to the Debye correction.

For a one-component plasma the parameters I and
P are related by I '= &= g'P», and from Eqs. (29) and
(30) we obtain

d'r, d'p
Z=(ger !) ' g e eH'Tre e&H+K"), (Ay)

h'

where Tr stands for the trace over the appropriate
complete set of plasma states with static ions, III is

vc11 by Eq. (2) II ls HamlltolllRI1 fol Rll 1Iltclactlllg
system of electrons and photons with a uniform neutra-
izing background of positive charge, and II,q is the
electron-ion interaction and is given by

II~I = —Q g~e
p(x)

S ~

(x—r [

(A2)

The detailed nature of II„will not be needed for the
derivation given below. We note that in its full gen-
erality it is relativistic and automatically includes
electrons and positrons as well. The quantity p(x) is
the electron charge density and is given by

p(x) =P (x)P(x) (A3)

This ratio is plotted in Fig. 1 as a function of the plasma
paramcp rameter $. It is interesting to note that even at )= 1

r ' 0thc double-clustcl' colrcctlolls ale oIdy 20/g ofthe
Dcbye corrections. This result is also indicated in the
analysis of the equation of state for a one-component
plasma. 9'0 This apparent accuracy of the Debyc ap=
proximation could be better verified by including higher-
order clusters to determine the convergence of the
cluster expansion.

JPPENDIX

In this Appendix we derive an expression for the
effective ion HaIMltonlan which) ln thc llIMt of weak
electron-ion interaction, reduces to Eq. (3). In the
approximation that the ionic motion contributes only
t the ideal part of the internal energy and does not
aGect the Coulomb energy of the plasma, the canonlca
partition function for the system is given by

0.3,

0.2

O. l

p2/pn= 2L~ (5)+&(5)j/F. (3S)
where f(x) is the relativistic electron Geld operator
and PI(x) the Hermitian adjoint Geld operator. These
operators satisfy the canonical anticommutation rules

4 (x)0'(x')+4'(x')f(x) =~'(» —x'), (A4)

with all other anticommutators vanishing.
We now replace II,g by XII,I, where X is a measure

of the coupling between ions and electrons. For A. =1
we have the full coupling that corresponds to the actual
plasma, while for X=O the electrons and ions are not
coupled. Next we de6ne

g ) (r )—Tre e(Hy+IK81)—(AS)

With the standard technique" of taking the logarithmic
I

0.0 0.2 OA QS 08 lg L6

FIG. 1. Ratio —p2/p. ~ as a function of. the plasma parameter $.

' D. L. Bowers and E. E. Salpeter, Phys. Rev. 119, 1180 (1960}.
'0 J. G. Trulio. and S. G. Brush, Phys. Rev. 121, 940 (1961}."L.P. KadanoG and G. Baym, QNuetum Statistical 3Achcnics

(W. A. Benjamin, Inc., New York. , 1963},Chap. 2.
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derivative of Z„(r ) with respect to X and then inte- (A1) to obtain
grating from X=O to X=1, we obtain

where
Z= Z„ZI, (A15)

where

'dP
lnZ, (r ) =lnZ„—p —&PH.r&',

, p

(A6)
d r»d p»

Z.=m~. '&-' rr
'C

(A16)

with

&I&'= Tr(pr)/Tr(P), and the effective ion Hamiltonian II& is given by

Hr'=Hr+h(r ). (A17)

' dA.

~(r ) = &S(p)~H &/&S(p)) (A10)

Here

with
&&&= Tr(~.X)ITrVo),

(A12)

and the quantity S(p) is given by

P
—g

—P (IIp+AIIel)

Here the quantity Z„(r ) is Z~"(r ) for X=1. The
quantity Z„ is Z„"(r ) for X=O and is independent of
the ionic coordinates; it is the canonical partition
function for the electron-positron-radiation system
with uniform neutralizing background of positive
charge. The interaction term in Eq. (A6) can now be
expanded as a perturbation series" in the electron-ion
interaction to give

Z (r ) Z g
—Pk(r»)

where

The effective interaction h(r ) given in Eq. (A10) may
be written as a sum of cV-body interactions

D(r.) =P D)(r.), (A18)

d'k 1
hg ———2mgg' — — 1—

(2~)' e(k, O)
(A19)

where X& is the total number of ions in the system.
Since in the present paper we are including only double
clusters in the analysis, it is then consistent to keep
only the one- and two-body effective interactions hi
and A~. We note here, however, that all effects of the
electron-ion interaction have now been incorporated
implicitly in an effective ion-ion interaction. Physically,
the nonionic part of the plasma has been replaced by a
(generally nonlinear) dielectric medium. If the further
approximation of keeping only the erst-order electron-
ion interaction. term in 6&" and 6(2) is made, these two
quantities reduce to

1
S(P) =g —(—X)"

x=0 ~ I

dpi' dp
Ap=27I Q 9»g»~ &sk ~ (ra za')

(2')' k'
X2'l H.r(Pi) H.r(P.)j. (A13)

In Eq. (A13) the symbol T arranges the operator within
the square brackets with successively larger values of
P; standing to the left. The operators Hr. (P,) them-
selves are related to H, g by

H, r(P,) = es'~~H, re s'~~. —
(A14)

Equation (A9) may now be inserted back into Eq.

1
X —1, A20

e(k, O)

where e(k,0) is the exact static, wave-vector-dependent
longitudinal dielectric constant for the electron plasma
with uniform background. The quantities hi and A2

are connected to the dielectric constant through the
relationship'

k' 1 1
1—

4ne' e(k,0) V»

&~l~(k) l~&(~l~( —k) lN&+&~I~( —k) l~&&~l~(k) l~&

E —E
(A21)

where p(k) is the Fourier transform of p(x), l m& is an eigenstate with energy E of the electron plasma, p„=e &x"

/g„e s~», and Vis the system volume. Equations (A19) and (A20) then combine with Hr to give the effective ion
Hamiltonian (3).

» R. Brout and P. Carruthers, I.ectures on the Many-E/ectron I'roblem (Wiley-Interscience, Inc. , New York, 1963), Chap. 2.


