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Corrections to nuclear Q values in a dense stellar plasma are calculated by means of a modified ionic
cluster expansion in which the electrons are treated as a dielectric medium. Corrections beyond the weak-
screening (Debye) approximation are given in tabular form for purposes of interpolation. A comparison
between the Debye correction and the double-cluster correction is made for the chemical potential of a one-
component plasma; the latter correction is ~20%, of the former for a plasma parameter as large as unity.

I. INTRODUCTION

IN nuclear astrophysics there occur situations where
the interior of an evolved star may be considered
to be in local nuclear equilibrium for at least some of the
nuclear species present. Examples of such situations are
the red-giant stage with the equilibrium reactions

He!+Het <> Bed,

HetBe$ e C12* B

and the more advanced stage of stellar evolution for
which the silicon-burning reactions are applicable.! If
nuclear equilibrium has in fact been established, de-
tailed knowledge of nuclear reaction rates is not needed
to determine the concentrations of the equilibrium
constituents, but rather these concentrations are
related to one another in a relatively simple manner
determined by statistical mechanics. The dominant
feature of the relationship between the constituent
densities is the presence of a Boltzmann factor in-
volving the Q value (energy release) of the particular
equilibrium reaction taking place. The Q values, how-
ever, are not those measured in the laboratory. At the
high temperatures and densities for which nuclear
equilibrium holds, matter is essentially fully ionized,
and the Coulomb energy of an ionized nucleus in the
ambient plasma is more negative! than the Coulomb
energy of the bound atomic electrons in the laboratory
case. The problem of calculating the Coulomb energy
of a nucleus in a plasma has been considered by Sal-
peter? in general for the two cases in which the Coulomb
corrections are either small (weak screening) or large
(strong screening) compared to the thermal energy T
It turns out, however, that in many instances' the
Coulomb energy is comparable to the thermal energy
and it is of interest in such cases to obtain correc-
tions beyond that valid for weak screening.

It is the purpose of this paper to develop these
additional corrections by the method of a modified
cluster expansion that has been applied to classical
plasmas by a number of authors.®=® In Sec. II, an
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effective jon-ion interaction is constructed in the
approximation that the electrons are treated as a linear
dielectric medium. In an Appendix, a general formu-
lation of the effective ion-ion interaction is given which
implicitly incorporates the electron-ion and electron-
electron interaction in a relativistic manner and which
leads to the interaction of Sec. IT in the linear dielectric
approximation. In Sec. III this effective interaction is
used to obtain the Q value for a general nuclear re-
action, and corrections beyond those for weak screening
are tabulated as a basis for interpolation. Finally, in
Sec. IV a comparison is made between the weak-
screening corrections and the additional corrections
calculated in this paper.

II. EFFECTIVE ION-ION INTERACTION

Consider first a plasma containing fully ionized
nuclei and a uniform neutralizing electron background.
The assumption of a uniform background is a reasonable
first approximation at high density where the electron
gas is highly degenerate. The ion Hamiltonian for such
a system is

Po? 1
Hi=3 <2M +Ma52)+% ug:«z, fefar—, (2)

@« a |ra""ra’l

where Greek indices refer to the individual nuclei, and
Pas Yay Ma, and ¢, are the momentum, position, mass,
and charge of the ath nucleus. The nuclear rest energy
has been included since some of this energy is converted
into (or from) kinetic energy of the various participants
in the nuclear reactions. We have explicitly left out the
nuclear interaction part of the Hamiltonian since,
although it is essential for the maintenance of nuclear
equilibrium, it nevertheless has a negligible effect on
the equilibrium properties themselves.

The Hamiltonian (2) can be modified to take the
electrons into account indirectly by treating them as a
dielectric medium in which the nuclei are embedded.
With the assumptions that (a) the electrons move at
much higher velocities than do the ions and (b) the
electron-ion interaction is small on the average com-
pared to the electron kinetic energy, it can be shown
that the ionic Hamiltonian is effectively modified to
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the form

2
HY =3 ( Lk +Macz+aM,,cz)
oM

a a

+3 ;Iqaqa"ﬁ(‘ra—ra’l): 3)

with
d3k "”F""eik B4

(2 k2(k,0)

where e(k,0) is the exact static longitudinal dielectric
constant for the interacting electron gas in the presence
of a uniform neutralizing background of positive charge.
In an Appendix, this result is derived as the weak-
coupling limit of an effective ion Hamiltonian which
itself requires only the validity of the ‘static” ion
approximation [assumption (a) above].

The expression ¢uged(|Te—1or|) in Eq. (3) is the
electron-screened (but not ion-screened) ion-ion inter-
action, while the quantity 6M.c? is the interaction
energy between the ath ion and the induced electron
charge density. This self-energy can be obtained from
the electron-screened ion-ion interaction with a=a’
provided the (infinite) self-energy associated with the
point nucleus is first removed. Using Eq. (4), we then

obtain

1
st =42 lim (#(lra—rul)——)
Fa—Ta’ l To—Yq I

)

o(r)=4r

[P L 1) o
e @E(qkm— '

The electron dielectric constant e(k,0) has been
calculated in random-phase approximation (including
relativistic effects) by several authors.5? To sufficient
approximation, we then have

e(k,0)=1+«k2/k2, (6)
where
#p 1% Ep
K =4m —\ 1+— L/~ (B, Ep], (7
tre [ (T - E BT, O

with E,= (p*c*+m*c)'? and fi(Ep)=[expB(Ep=np)
417 Here m is the electron mass and g is the electron
chemical potential. Equation (7) includes positrons as
well as electrons and is valid relativistically. At low
temperatures and densities where positrons are not in
equilibrium with electrons and the radiation field, the
f+ term should be dropped. With the approximation
of Eq. (6), we then find

o(r)=e*r/r and M= —%qgq.. ©))

6 B. Jancovici, Nuovo Cimento 25, 428 (1962).
7V. N. Tsytovich, Zh. Eksperim. i Teor. Fiz. 40, 1775 (1961)
[English transl.: Soviet Phys.—JETP 13, 1249 (1961)7].
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III. PLASMA CORRECTIONS TO
NUCLEAR Q VALUES

Consider a system of nuclei undergoing a set of
nuclear reactions of the form

Z vir0;=0, (9)
i

where the Latin index ¢ labels the nuclear species; a; is
the symbol designating the ith species and »; is the
number of nuclei of the sth species undergoing the th
reaction. The integers »; are taken as positive for
nuclei initiating the direct reaction and negative
for nuclei initiating the inverse reaction. From thermo-
dynamics,® the conditions for nuclear equilibrium are
given by the set of equations
> viri=0, (10)
k)
where u; is the chemical potential of the ith species and
is related to the Helmholtz free energy F by

wi=(0F/dN)r,v. (11)
The free energy is then related to the microscopic
physics through the canonical ionic partition function
Zr by

F=F,—kT InZ;, (12)

where F, is the free energy of a system of interacting
electrons, positrons, and radiation with a uniform
neutralizing background of positive charge, and

; 1 Ppudira
= — 14
! I;'INi!/ M=

(13)

" Here 8=1/kT, N is the number of particles in the sth

nuclear species, and HY' is the effective ion Hamiltonian
and is given by Eq. (3) in the approximation that the
electrons are treated as a linear dielectric medium.
After carrying out the momentum integrations, we

obtain ( )
exp(—BNM)\ .
Zr= _— 1
! ItI( N;QN >ZI’ (14)
where
Q= (/2 M T2, M;=M:+M;,
an
ZI:/ H d3rae_ﬁU7 (15)
with )
(16)

U=% ;4:' QeGP (| Ta—Ta]).

The configurational partition function with a general
two-body interaction has been expressed as a modified
cluster expansion by Iukhnovskii, in which clusters
of increasingly larger numbers of ions become more
important with increasing density. Using these results

8 P. Morse, Thermal Physics (W. A. Benjamin, Inc., New York,
1965), p. 137.
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and keeping only terms through the double clusters,
we have from Ref. 4

V 00
Zim VN exp(_ / (w(k) —In[1+w(k) T} E2dk
47% Jo
+2zV > nmj/ {e B2 () —14-BD;;(r)
&5 0

—%Le@ixr)]z}rﬂdr), )

where V is the system volume,

© sinkr
w(l) =zt / $()——rdr, (18)
and ) ) ’
®;i(r)=— Ll sinkr kdk,  (19)
 r «xitJo 14w(k)
with

k2=4nB8 > g*n; and #n;=N;/V.

Using the expression for ¢(7) as given in Eq. (8), w(k)
and ®;;(r) become

w(k)=xr?/ (k2+«?) (20)

®;(r)=quqse"/7, (21)
where «®=k24«r% In most cases for which the present
work is applicable, .2 is actually small compared to
1% The ratio x2/k;? is given by N/Zay, where Z,y is the
average nuclear atomic number and X varies from unity
for a Maxwellian electron gas to k7/ep<<1 for a de-
generate electron gas with Fermi energy er. The present
formulation, however, is valid when «.*/ks? is not com-
pletely negligible. Finally, then, Z; of Eq. (17) can be
evaluated and from this expression the free energy
takes the form

and

F=F,4F+Fp+F,, (22)
where
Fy=F,+kTVcd/12r,
Fo=%; N{M i*+kT[In(n2:)—1]},
Fp=—kTV3/127,
> (23)

Fy=2xVkT Z n,-n,-/ {exp[[—B®;:;(r)]—1

+B:(r) —3[B8%:;(r) P}rdr .

The term F,’ is independent of the nuclear species
numbers /V; and will not affect the determination of the
Q values; From Eq. (23) it contains the term F, which
is the free energy of the system with the ions replaced
by a uniform, neutralizing background of positive
charge. The term F is the free energy of an ideal gas
of nuclei. The term Fp gives the Coulomb free energy
of the plasma in the Debye-Hiickel approximation and
leads to the weak-screening result of Salpeter.? Finally,
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the term F; gives the double-cluster contribution to the
Coulomb free energy and leads to additional Q-value
corrections.

The condition for nuclear equilibrium, Eq. (10),
may then be written as

I‘I (1:Q03)Vir =B Qort@DrtQ2,) | (24)
where
QOr = ; vl ic? ’ (25)
QDr=§‘: VislhiD (26)
and
Q2r=z‘: Virli2 5 (27)
with

uip=(3Fp/dN:)r,y and uie=(9F:/dN;)r,v. (28)

The quantities Qor, Opr, and Q.. are the contributions
to the energy release for the rth reaction from free
ionized nuclei, from the Debye approximation to the
Coulomb energy, and from the double-cluster terms,
respectively. Carrying out the differentiation indicated
in Eq. (28), we then obtain

uip=—%5kT & (29)
and

piz=—kT[X A(E)uitEu Ei B(&w)uur], (30)

where u%;=4mn;/k® and £;=q.q;0x. The functions 4 (y)
and B(y) are given by

Ay) =39 () +3yh:(v)— 12,

B(y)=yin(y)—dy—24(5), 1)

where L e
hoy) =— / s (-l @)y,  (32)

?lJo

with f(x)=e%/x. It is evident that to find the actual
values of the various energy releases, the complicated
set of nonlinear equations (24)-(30) must be solved
for those #; that cannot be independently specified. We
do not deal with that problem in this paper. The
functions 4 (y) and B(y) have been tabulated in Table
I for values of y suitable for interpolation out to y=2.
This value is actually beyond the range of validity for
the double cluster. This range should be somewhat less
than unity, although a more quantitative check on the
convergence of the cluster expansion would be obtained
by looking at the triple-cluster contributions to the
plasma thermodynamics.

IV. COMPARISON BETWEEN DEBYE AND
DOUBLE-CLUSTER CORRECTIONS

Most of the thermonuclear reations for which the
results of this paper are applicable are of the form

a1+az <> a3,

(33)
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TaBLE I. Functions 4 (y) and B (y). Numbers in parentheses are
powers of 10 by which the indicated value of 4 (y) and B (y) should
be multiplied.

¥ A(y) B(y) y A (y) B(y)
0.00  0.000 0.000 0.75 —5.861 (—2) 8.626 (—2)
0.05 —5.835 (—5) 4.863 (—6) 0.80 —6.846 (—2) 1.021 (—2)
0.10 —3.645 (—4) 3.483 (—5) 0.85 —7.918 (—2) 1.195 (—2)
0.15 —1.047 (—=3) 1.090 (—4) 0.90 —9.079 (—2) 1.385 (—2)
0.20 —2.192 (—3) 2.432 (—4) 0.95 —1.033 (—1) 1.593 (—2)
0.25 —3.868 (—3) 4.507 (—4) 1.00 —1,167 (—1) 1.818 (—2)
0.30 —6.129 (—3) 7.432 (—4) 110 —1.463 (—1) 2.320 (—2)
0.35 —9.020 (—3) 1.131 (—3) 120 —1.797 (—1) 2.896 (—2)
0.40 —1.258 (—2) 1.624 (—3) 1.30 —2.168 (—1) 3.547 (—2)
0.45 —1.684 (—2) 2.229 (—3) 1.40 —2.579 (—1) 4.276 (—2)
0.50 —2.184 (—2) 2.956 (—3) 1.50  —3.030 (—1) 5.085 (—2)
0.55 —2.759 (—2) 3.810 (—3) 1.60 —3.520 (—1) 5.975 (—2)
0.60 —3.412 (—2) 4.798 (—3) 1.70  —4.051 (—1) 6.949 (—2)
0.65 —4.146 (—2) 5.926 (—3) 1.80 —4.623 (—1) 8.007 (—2)
0.70 —4.961 (—2) 7.201 (—~3) 1.90 —5.236 (—1) 9.152 (—2)

2,00 —5.893 (—1) 1.038 (—1)

in which case the Debye contribution takes on the
simple form

Qp=—qgxx, (34)

which is the weak-screening result obtained by Sal-
peter? from a somewhat different point of view. The
double-cluster corrections, however, do not lead to
any simple form but, as is apparent from Egs. (27)
and (30), depend in general on all the nuclear species
explicitly as well as implicitly through the inverse
Debye radius «. Since it is not our intent to discuss
specific astrophysical situations but rather to simply
make available Coulomb corrections beyond the Debye
approximation, we shall limit the discussion of u.; to
that of a one-component plasma and compare it to u;p.
This comparison should then give some indication as to
the general size of the double-cluster correction to the
Q value as compared to the Debye correction.

For a one-component plasma the parameters # and
¢ are related by #1=§=¢?6k, and from Egs. (29) and
(30) we obtain

pa/up=2[A(H)+B(E) /& (35)

0.3 T T T T T Y T

—Hy/ By

00 02 04 06 08 10 12 14 I3

F1c. 1. Ratio —ue/up as a function of the plasma parameter &.
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This ratio is plotted in Fig. 1 as a function of the plasma
parameter £ It is interesting to note that even at §=1
the double-cluster corrections are only 209, of the
Debye corrections. This result is also indicated in the
analysis of the equation of state for a one-component
plasma.® 1 This apparent accuracy of the Debye ap-
proximation could be better verified by including higher-
order clusters to determine the convergence of the
cluster expansion.

APPENDIX

In this Appendix we derive an expression for the
effective ion Hamiltonian which, in the limit of weak
electron-ion interaction, reduces to Eq. (3). In the
approximation that the ionic motion contributes only
to the ideal part of the internal energy and does not
affect the Coulomb energy of the plasma, the canonical
partition function for the system is given by

Froad*pa
Z=(IN: !)'1/ II ———}—;—e—*‘”’l Tre fUWstHD - (A1)

where Tr stands for the trace over the appropriate
complete set of plasma states with static ions, H; is
given by Eq. (2), H, is Hamiltonian for an interacting
system of electrons and photons with a uniform neutral-
izing background of positive charge, and H.r is the
electron-ion interaction and is given by

m——p(X) @?x.
[ X—re|

H,==Y qae (A2)

The detailed nature of H, will not be needed for the
derivation given below. We note that in its full gen-
erality it is relativistic and automatically includes
electrons and positrons as well. The quantity p(x) is
the electron charge density and is given by

p(X) =¥ (X (x),

where ¥(x) is the relativistic electron field operator
and ' (x) the Hermitian adjoint field operator. These
operators satisfy the canonical anticommutation rules

YY) HT (X (x) =" (x—x), (A4)

with all other anticommutators vanishing.

We now replace H.; by AH,r, where X\ is a measure
of the coupling between ions and electrons. For A=1
we have the full coupling that corresponds to the actual
plasma, while for A=0 the electrons and ions are not
coupled. Next we define

ZM(rs) = Tre-fUyHD

(A3)

(A5)
With the standard technique™ of taking the logarithmic

®D. L. Bowers and E. E. Salpeter, Phys. Rev. 119, 1180 (1960).

10 J. G. Trulio and S. G. Brush, Phys. Rev. 121, 940 (1961).

1t L, P. Kadanoff and G. Baym, Quantum Statistical Mechanics
(W. A. Benjamin, Inc., New York, 1963), Chap. 2.
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derivative of Z,r,) with respect to A and then inte-
grating from A=0 to A=1, we obtain

Ldx
1nzp(ra)=1nz,,—5[ Oy, (40
J0

where
(XY =Tr(5X)/Tx(3), (A7)

with
p= e BUHpNHLD)

(A8)

Here the quantity Z,(r,) is Z,*(r.) for A=1. The
quantity Z, is Z,*(r,) for A=0 and is independent of
the ionic coordinates; it is the canonical partition
function for the electron-positron-radiation system
with uniform neutralizing background of positive
charge. The interaction term in Eq. (A6) can now be
expanded as a perturbation series! in the electron-ion
interaction to give

Zp(te)=2Z e PrG, (A9)
where
Ld\
Amh/;wwmwwm. (A10)
Here ’
(X)="Tr(50X)/Tr(p0), (A11)
with
po= ey, (A12)
and the quantity .S(8) is given by
w 1 B 8
S@ =% [ o a.
n=07! 0 0
XT[HeI(ﬁl) o HeI(Bn)] . (A13)

In Eq. (A13) the symbol T arranges the operator within
the square brackets with successively larger values of
B: standing to the left. The operators Hr.(8;) them-
selves are related to H.r by

Her(ﬂi) =ePiHp[] 1o Fillp (A14)
Equation (A9) may now be inserted back into Eq.

k2
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(A1) to obtain
Z=7,71, (A15)
where
BrodPpa
&#Hmvjﬂ*¢ e B, (A16)
and the effective ion Hamiltonian H;' is given by
H[,=H[+A(X'a). (A17)

The effective interaction A(r,) given in Eq. (A10) may
be written as a sum of N-body interactions

Mm=§mmx (A18)

where N1 is the total number of ions in the system.
Since in the present paper we are including only double
clusters in the analysis, it is then consistent to keep
only the one- and two-body effective interactions A;
and As. We note here, however, that all effects of the
electron-ion interaction have now been incorporated
implicitly in an effective ion-ion interaction. Physically,
the nonionic part of the plasma has been replaced by a
(generally nonlinear) dielectric medium. If the further
approximation of keeping only the first-order electron-
ion interaction term in A® and A® is made, these two
quantities reduce to

2r Y g2 / Tk (1 ) (A19)
Ay=—27m o — 9
' 2] G\ ko)
and
3 / @k i >1
Ap= alfa’ e Horat)—
: H aFa’ Gad (2#)36 k2
X( —1) , (A20)
e(k,0)

where €(k,0) is the exact static, wave-vector-dependent
longitudinal dielectric constant for the electron plasma
with uniform background. The quantities A; and A,
are connected to the dielectric constant through the
relationship®

47r62( e(k,0)

>=_1_ (o (k) [m)(m|p(—k) )+ (] p(—K) |m)m]| p () | )
v n )

A21
E—F. (A21)

where p (k) is the Fourier transform of p(x), |m) is an eigenstate with energy En., of the electron plasma, p,=e¢ 8%
/2 mePEm, and V is the system volume. Equations (A19) and (A20) then combine with H; to give the effective ion

Hamiltonian (3).

2 R. Brout and P. Carruthers, Lectures on the Many-Eleciron Problem (Wiley-Interscience, Inc., New York, 1963), Chap. 2.



