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It is shown that a necessary condition that normal-hyperbolic solutions of the Einstein vacuum field
equations for the metric tensor defined by the quadratic differential form ds?=jfdu?— 2mdudv— Ildv*
— e (dx?+-dz?) (where f, I, m, and v are functions of x and 2, and fl+m?=2x?) be of type III or N is that
7Y, 71, and 27 'm be functions of a single function u; it is further shown that no such nonflat solutions
exist. Solutions having this functional dependence are found to belong to one of three classes: the Weyl
class and two classes which may be obtained from it. One of these classes is characterized by Sachs-Penrose
type-I stationary solutions having one real and two distinct complex-conjugate eigenvalues. The other
class is characterized by Sachs-Penrose type-II stationary solutions admitting a single shear-, twist-, and
expansion-free doubly degenerate geodesic ray which is also a null, hypersurface-orthogonal Killing vector.
Further invariant properties of these classes are discussed, as well as the special case where u depends

only upon x.

I. INTRODUCTION

HE study of exact solutions of the general-
relativistic field equations for empty space was
originally of some interest to physicists because these
solutions are thought to correspond to gravitational
fields external to matter distributions which are in some
sense localized. The fact that intrinsic singularities are
often present in these solutions is of no particular con-
cern since one eventually hopes to join to these solutions
interior solutions, or solutions with a nonvanishing
energy-momentum tensor, in the region in which the
exterior solution exhibits these intrinsic singularities.
On the other hand, it was realized that one could
instead treat the singularities in some cases as idealized
matter distributions, such as point particles in Newton-
ian mechanics, and develop the study of empty-space
solutions without any particular regard to the associated
interior solutions, if indeed such solutions exist. It soon
became evident that this study was mathematically
very rich, and at the same time one was freed from the
difficulty of proposing physical models from which the
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matter tensor must be constructed. The result is that
many distinct classes of empty-space solutions! have
been discovered since the discovery of the first non-
trivial solution by Schwarzschild and Droste?; few of
these solutions have been joined to exact interior
solutions.

Considerable interest has been shown®!! in such
solutions for the quadratic differential form (QDF)

ds?= gapdadxP
= fdu?—2mdudv —Ildv? —e*v(dx>+dz?) ,
8ap :‘gaﬂ(x:z) 5

we shall use the summation convention with Greek

(1.1)

L A review of exact solutions is given by J. Ehlers and W. Kundt,
in Gravitation: An Introduction to Current Research, edited by
L. Witten (John Wiley & Sons, Inc., New York, 1962), p. 49.

2 K. Schwarzschild, Sitzber. Preuss. Akad. Wiss. 7, 189 (1916);
J. Droste, Versl. k. Akad. v. Weten. 25, 460 (1916).

W. R. Andress, Proc. Roy. Soc. (London) 126, 592 (1930).

4T, Lew1s Proc. Roy. Soc. (London) 136, 176 (1932)

" ;3\’;/; J. van Stockum, Proc. Roy. Soc. Edmburgh A57, 135
6 P. Jordan, A. R. L. WCLJ TN 58-1, Chap. III (unpublished).
7R. Tiwari and M. Misra, Proc. Natl. Inst. Sci. India 28A,

771 (1962).

8 K. S. Thorne, Phys. Rev. 138, B251 (1965).

9 A. Papapetrou, Ann. Inst. Henri Poincaré 4, 83 (1966).

« 10 % A. Matzner and C. W. Misner, Phys. Rev. 154, 1229
967).

1 F, J. Ernst, Phys. Rev. 167, 1175 (1968); 168, 1415 (1968).
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indices taking the values 0, 1, 2, 3, and make the follow-
ing identification:

HO=u, x'=x, x?=v, %=z,

Since this metric is independent of #, v and the QDF
(1.1) is form-invariant under the coordinate transfor-
mation

", 09— —u, —9,

it seems a reasonable candidate for the exterior fields of
rotating matter distributions having axial symmetry.
The best known example of such a solution is that
found by Kerr,2:3 which is a special case of the general
class of solutions discovered by Kerr and Schild; it
is frequently considered to be the external solution for
a rotating mass distribution.

This QDF has the property that it is form-invariant
under the coordinate transformation

(1.2)

T=%(x,2), Z=%(x,2),
where & and Z are restricted by

9%/ 012+ 025/ 922 =0 (1.3)

and
0% 02 0% 9z
—_——— ——=—— (1.4)
dx 9z Oz ox

It is a consequence of the field equations that A, defined
by

A= fi+m?, (1.5)
satisfies Eq. (1.3); it is customary to transform to new
variables, the so-called canonical coordinates & and Z,
where Z=A and Z is a function conjugate to A obtained
by solving Eqs. (1.4). This has the effect of reducing the
number of independent metric components to three,
thereby simplifying the field equations. These equations
and the Christoffel symbols are listed in Appendix A.
By defining A as in Eq. (1.5) and demanding that the
components of the metric tensor be real functions of
real variables, we have limited ourselves to normal-
hyperbolic solutions, since the determinant g=||ges| is
given by

g=—(fl+m?)e*r.

In this paper we consider those normal-hyperbolic
solutions of the field equations for which the correspond-
ing QDF takes the form of the QDF (1.1) in canonical
coordinates showing that a necessary condition that
such a solution be of algebraic type III or N is that
x~1f, x~'m, and 2~ be pairwise functionally dependent.
Although it is found that no type III or NV solutions
exist in this case, the solutions obtained from the above
assumption of functional dependence are analyzed,

12R. P. Kerr, Phys. Rev. Letters 11, 237 (1963).

13 For a detailed study of this solution see R. H. Boyer and R. W.
Lindquist, J. Math. Phys. 8, 265 (1967).

14 R, P. Kerr and A. Schild, in Pubblicazions del comitato naigon-
ale per le manifestagzione celebrative del IV centenario della nascita
de Gt;h‘lea Galile: (G. Barbera, Florence, 1965), Vol. II, tomo 1,
p. 222.
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showing that they may be classified into one of three
classes distinguished by invariant properties such as
algebraic type and Killing structure. One of these
classes is the Weyl class; the remaining two classes, one
of which is the Lewis? class and the other a generaliza-
tion of a solution obtained from the Lewis class by van
Stockum, are simply related to the Weyl class. Al-
though the solutions discovered by Lewis and van
Stockum have been known for some time, the invariant
mathematical properties of these solutions have not
been discussed in detail in the literature. Because of the
importance of the knowledge of such properties for the
physical interpretation of solutions, the mathematical
properties of these generalized Weyl solutions are dis-
cussed in some detail.

II. SOLUTIONS WITH REAL EIGENVALUES

From the Christoffel symbols in Appendix A and the
fact that ges=_gas(%,2), it is easily seen that the curva-
ture tensor for the QDF (1.1) will have the form

Ry 0 Ris Riu 0 Ry

0 Rzz O 0 R25 0

_{Ris 0 Rz Ry O Ry
Ras= Riy 0 Rt Ry 0 Ry’ 2.1)

0 Ry O 0 Rys O

R 0 R Ry 0 R

where R4p is related to the curvature tensor Ragys as
usual by establishing a correspondence between the
single indices 4 and B and the pairs of indices «3 and
v9, respectively, such that

1—10, 2—20, 3—30, 4—23, 5—31, 6— 12.
Defining

84B > Lafvs= fasfsy —far83s
we obtain for the QDF (1.1)

feer 0 0 0 0 —me?r)
0 Az 0 0 0 0
| o 0 ferr me* O 0
g48=1 o 0 me2r —le2v O 0o |- 2.2)
0 0 o0 0 —et 0
—me2r 0 O 0 0 —le2r

Hence, in determining the eigenvalues of Rus, i.e., the
solutions A of

[Ran—Ngas( =0,
we see that the determinant can be factored into the
product of two determinants, and the eigenvalue equa-
tion takes the form

Ry —N\g22 Ros

Ros
Ru—\gu
Ry3
R
Rie—Ng1s

Rss—MNgss
Rys
Rgs—Ngss
R3s—Nga
R

Ry
Rgi—Ngs4
R44—>\g44

Rys

Ry —Ng16
Ry
Ry

Ry —\gs6

=0.
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For the QDF (1.1) we find
—46DRay=4A%PRs= fl-+m2+fUm'2,
R25=}A—2[m(f’l-f'l’)-{—m(fl’—lf’)_
+m' (0f -0, (23)
f=of/ox, f'=df/os.

Hence, one pair of complex conjugate eigenvalues is
given by the solution of

(Raz—Nga2) (Rs5—Mgss5) — (Ra5)2=0,

where

(2.4)
that is,
A= —3A22(fl-pan2 4 £V m'?)
1A 2 Tm(f — ) +m(fl —1f")
+m'Uf 101, (25)
with i=+/(—1).

We begin by investigating the consequences if \ is
real, that is,

m(ft = f D A+an(fY =1 )+m' (f = f)) =0.  (2.6)

Of course, if any one of f, I, or m is zero, Eq. (2.6) is
identically satisfied. Assume that f520 [a coordinate
transformation can always be made in the QDF (1.1)
such that f#07]. Proceeding in canonical coordinates,
i.e., coordinates for which A?2=42, we solve Eq. (1.5)
for / and substitute the result in Eq. (2.6), obtaining

mw ffm 1/f w
AL (O W
fm fm x\f m
If we now define
xF=f, xL=l, xM=m,
Egs. (1.5) and (2.7) take the form
FL4M?=1 1.5
and . .
FM'-FM=0, 2.7)

respectively. If F is not constant, the most general solu-
tion of Eq. (2.7") is M=M(F) and, from Eq. (1.5,
L=L(F); if F is constant, we see immediately from Eq.
(1.5") that L and M are functionally related. Thus Eq.
(2.6) requires that F, L, and M be functions of a single
arbitrary function which we shall denote by u.

One could now proceed to solve the vacuum field
equations, given in Appendix A, to find all solutions
satisfying Eq. (2.6), but since these computations are
long and tedious, although straightforward, we will show
instead how they may be obtained from the Weyl!®
solutions which may be written in the form

ds?=uxe du? —xe~2dv?—e2v(dx?-+dz?) .
We now make the coordinate transformation
VZu=aa+bb, V2v=pi-+gs, 2u=sq,
15 H. Weyl, Ann. Physik 54, 117 (1917).

(2.8)
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obtaining from the QDF (2.8)
ds?=4x(a%"" — pP*")du*+x(abe*F — pge—°F)diudd
+3x(b%h—q2%*F)di2 —e2V(dx2+-dz?); (2.9)

this is the first set of solutions obtained by Lewis* and
is, for real constants, obviously static. If we now set

a=q= -1, b=p=12=s=\/(—-1) )
the QDF (2.9) takes the form

ds?=x cos2u du?-+2x sin2u dudo—x cosZﬁ dv?
—e?v(dx?4-ds%), (2.10)

when we drop the bars for convenience; this is the
second set of solutions discovered by Lewis? and later
obtained by Tiwari and Misra” by the use of a different
method. If instead we set

a=;b=s“”2, b=s—1/2__31/2.’ q__:s—l/z_l_sl/z
in the QDF (2.9) and take the limit as s — 0, we obtain

ds?=xudu?+2x(u—1)dudv+x(u—2)dv?
—ev(dx?+dz?); (2.11)

van Stockum?® obtained this solution for the particular
case where u=clIn|x|, with ¢ constant. In general,
u=pu(x,2) in the QDF (2.11). We will subsequently refer
to the QDF’s (2.8), (2.10), and (2.11) as the W class,
L class, and S class of solutions, respectively.

We see from the field equations that for all three
classes p is an arbitrary solution of

fi+atatu" =0. (212)

For the W and L classes of solutions y must be a solution
of
v=x(@—u')—1/4, ¥ =—2ap’, (2.13)

7 =a(u?—5?)—1/4, (2.14)

respectively; for the S class of solutions the equations
can be integrated in general, yielding

= _le.‘ﬂl ’

y=—%}In|x|. (2.15)

III. TYPE-III AND TYPE-N SOLUTIONS

Since all eigenvalues of Rap are zero for those solu-
tions which are of algebraic type III and N, a necessary
condition that a solution of the vacuum field equations
for the QDF (1.1) be one of these types is that

Ros=Rs5=Ry;=0.

Since Ry;=0 limits the solutions to the W, L, and S
classes, we now look for solutions of these classes for
which

flAm4- {1 4m'?=0; (3.9)

this reduces to the equations
p24p'2—1/x2=0, (3.2)
24p/21/x2=0, (3.3)
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and
1=0, (3.4)

for the W, L, and S classes, respectively. There are
obviously no real solutions of Egs. (3.3) and (3.4), and
the only solutions of the pair of Egs. (2.12) and (3.2) are

p==In|x|, w=In|z(@@2+22)12],

which are all flat. We thus conclude that there are no
solutions of the vacuum field equations of algebraic type
IIT or N for the QDF (1.1) expressed in canonical co-
ordinates. We point out that there exists a class of
“noncanonical” solutions of algebraic type N which
can be put into the form of the QDF (1.1) but which
cannot be expressed in canonical coordinates since
fl4m? is constant.!®

IV. MATHEMATICAL PROPERTIES
OF THE SOLUTIONS

In discussing the matehmatical properties of these
solutions it is convenient to introduce differential
forms'” w* such that

ds?=1qpw°%F 4.1)

where

neg=diag(1, —1, —1, —1).

Using the exterior differential calculus to determine the
Riemann tensor, one automatically obtains

M N
u(
N -M

where M, N are traceless, symmetric 3X3 matrices.
The calculations are outlined in Appendix B following
Misner,'” and the exterior derivatives dw® of the dif-
ferential forms w* as well as the connection forms w®g
are given for the three classes in terms of the differential
forms given below. Because of the simple form of R4p
the eigenvalues are easily computed as solutions of

M 4iN =\ =0, (4.3)

where I denotes the unit 3+3 matrix.!® The second-
order differential invariants may then be read from
the eigenvalues.

Debever!? has shown that in every empty space-time
there exists at least one and not more than four null
vectors k* satisfying

k [#Re]rxﬂhkslkakﬁ =0.

Sachs20 h'ls given a classification of the Riemann tensor

); A:B=1727“')6’ (42)

(4.4)

“’R B. Hotfman J. Math. Phys. 10, 953 (1969).

17 C. W. Misner, ] Math. Phys. 4, 924 (1963), Appendix A.

5 See A. S. Petrow Emstem-Raume translated by H. Treder
(Akademie-Verlag, Berlm 1964), p . 90.

19 R, Debever, Compt. Rend. 249 1324 (1959).

# R. K. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961).
An equivalent formulation in the spinor formalism is given by
R. Penrose, Ann. Phys. (N. Y.) 10, 171 (1960).
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based upon Eq. (4.4) and the following equations:

Reaprk?=0, (4.5)
Reapirkak?=0, (4.6)
Reapryksk*kP=0; 4.7

if the Riemann tensor admits one solution of Eq. (4.5)
it is said to be of algebraic type N, it if admits one
solution of Eq. (4.6) it is type III, if it admits two
solutions of Eq. (4.7) it is type D, if it admits one
solution of Eq. (4.7) it is type II, and if it admits four
solutions of Eq. (4.4) it is type I. All Riemann tensors
of type other than type I are said to be algebraically
special; also any solution of one of Eqs. (4.5)-(4.7) is
also a solution of the subsequent equations as well as
Eq. (4.4).
If one introduces a complex null tetrad

[knamnylu;inj

such that k, and m, are real and #, is complex, £, being
the complex conjugate of #,, and all products are zero
except

k= —tif,=—1,
we can write
ka:g=(0+iw)l ot gt olats+Uakat Ak atg+Bhoks+c.c.;
the optical parameters 6, w, |o|, and |Q| are called
the expansion, twist, shear or distortion, and rotation,
respectively.?!

A. W Class

Since the mathematical properties of these solutions
are carefully and thoroughly discussed by Ehlers and
Kundt,! we only list a few of these properties for com-
pleteness. Setting

o=(vx)erdu, w'=evdx, w?=(/x)e *dv,
and wd=evdz, (4.8)
we obtain
—3fitfe O VE
/s 0 —3fi—fe
N=0, (4.10)
M=f1, Aes=—3fi(fo?+f:H)12, (4.11)
where
Sr=er(ppult—1/4?)
Se=e wa (it —3u"2—1/4x%) —ii—4a/x],
fe=e2[ap' (3p2—u'2—1/40?) —p/ —u'/2¢].  (4.12)

There are two, and only two, independent second-order
21 These scalars are discussed in some detail by Sachs in Ref.
20, but the notation used here is that given by W. Kundt, Z.
Physik 163, 77 (1961).
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differential invariants

fi, fHfsd.

All eigenvalues are necessarily real.
In the case where u=u(x) we obtain the most general
solution

ds?=x2edy? —x22dy? —x2¢ D (dx2+dz?). (4.14)

This solution is flat for ¢=0, 1 and of type D for ¢=1,
2, —1. The solutions of Eq. (4.7) as well as the optical
parameters for these algebraically special solutions are
given in Table I.

(4.13)

B. L Class
For the L class we introduce the differential forms
o®=(v/%)(cosu du-+sinu dv), w'=evdx,
w?=(1/x)(sinu du—cosp dv), w*=evdz,

with the condition u3%£0, obtaining

(=31 0 0 —f2 0 fs
M=t0 i 0|, N=| 0 0 0], &15
0 0 —3fi fi 0 fo

M=f1, Ng=—3fii(f2+ )2, (4.16)
where
Si=—e (/2 4-1/4a7)
a=e o/ (W2 —3p2) — ' =3’ /4x],  (4.17)

So=e 2 ap(a?—3u'2) +i+50/4x].

The only L solution with real eigenvalues, i.e., that for
which f,=f;=0, is that with u constant, and that
particular solution is a Weyl solution. In general we
expect two independent second-order differential
invariants

Ju, RS (4.18)

Since the eigenvalues are all different, we conclude that
the L solutions are of algebraic type I.
Although the Killing equations

la;ﬂ+lﬁ:a=0

have not been solved in general for the L class, one can
solve these equations simultaneously with

Gaﬁwlpl,y;s =0, (419)

where €*#7? is the Levi-Civita tensor density; Eq. (4.19)
is the necessary and sufficient condition that /, be hyper-
surface orthogonal. When u=u(x) we have three and
only three independent Killing vectors

F=680*, &s*, and 83, (4.20)

the latter being spacelike and hypersurface-orthogonal.
In all other cases there are no hypersurface-orthogonal
Killing vectors, so that all L solutions must be station-
ary. If p=const, the corresponding QDF can be trans-
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Taste I. Null rays and optical parameters for the algebraically
special solutions for the QDF (4.14).

c k» le] @ ) ||
2 1,0,0,£1) 0 0 0 a3
i 1,0,£1,0) 0 0 0 (4x)—3/4
-1 1, £x73,0,0) 0 0o 0 0

formed to the QDF (4.14) with ¢=%; this solution
admits four independent Killing vectors including a
timelike and a spacelike hypersurface-orthogonal
vector.!

Returning to the case where u'=0,22 we have

2u=cIn|x|,
in which ¢ is constant, and

A= —f(H1)x @02,
N
< ) =3(2+1)(1tic)x (D2,
A

In this case we find one and only one independent
second-order differential invariant x¢*~%/2, Note that
for ¢2<3 the associated space is asymptotically flat in
the sense that this invariant approaches zero as x —
and is singular at . =0; for ¢2> 3 the roles of x=0 and
are reversed. In the case where ¢2=3 the differential
invariant reduces to a constant.

If we now let 7 denote an affine parameter and set

h=dn/dr, 28=ds?®, 2u=cln|x|,
we obtain upon dividing the QDF (2.10) by dr?

28 =ulcos(c In|x|)](#2—92)+2«[sin(c In|x|) Jiid
—e27(§24-82)

.....E,

where € is a constant of the motion; 7 is chosen such that
eis +1, 0, or —1 according as ds? is timelike, null, or
spacelike, respectively. The geodesic equations are ob-
tained from £ by the variational principle

5 / £(en,§4)dr =0.

Since the coordinates #, v, and z are cyclic, we have
immediately three additional constants of the motion:

P,=09L/d0=x cos(c In|x|) d+x sin(c In|x]) 3,
P,=08/09=xsin(cIn|x|) d4—x cos(c In|x|) 3,
and
P,=08/8 =002,
22 Mathematical properties of the W-, L-, and S-class solutions

with u'=0 are discussed in detail in R. Hoffman, Ph.D. thesis,
Lehigh University, 1967 (unpublished).
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Solving for 4, 9, 8, and £2, we find
A=x"1[P, cos(c In|x|)+P, sin(c In|x[)],
="' P, sin(c In|x|)—P, cos(c In|x|)],
§=x’—(c’+l) 12 ,

and

=02 — et g cos(cIn|x|) (Pu2—P,2)

+2P,P,sin(c In|x|) ]+ P 2D /2}
We see, therefore, 4, 9, 2, and £ are finite everywhere
except at x=0; since, except for ¢2=3, the associated
space is either singular or flat at x=0 we conclude that
these spaces are geodesically complete in the sense that
the geodesics can be continued for arbitrarily large
values of the affine parameter provided they do not
strike the singularity. If ¢2=3 the space is not geodesi-
cally complete.

C. S Class

Finally, for this class we introduce the differential
forms

o= (V) (u+1)du+(u—7/4)dv],
(V%) =[(u—Ddu+(u—9/4)dv], wi=ax"14dz,

obtaining

wl=x"4x,

[%fl—fz 0 —faJ
M=w2| 0 —f 0 |, (@21
—fs 0 3fitfe
{—fa 0 fz}
N=#2| 0 0 0/,
fr O fs

M=—3a%2 Np=Ng=La¥2, (4.22)

where
fi=1/4%2, fo=2ii+5a/2x, fs=24"+3u"/2x. (4.23)

We have one, and only one, independent second-order

differential invariant
(4.24)

Since there are only two distinct eigenvalues, these
solutions must be of algebraic type II or D; we find one,
and only one, solution

Fe=(1,0, —1,0)
of Eq. (4.7), and the solutions must be type II. We also

find k* to be shear-, twist-, and expansion-free with a
rotation

w32,

(4.25)

(2] = (4x)-372. (4.26)

The Killing equations can be solved in general for
this class of solutions, yielding two, and only two, in-
dependent solutions :

k=(1,0, —1, 0) (4.27)

B. HOFFMAN
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and
#=(1,0,1,0), (4.28)
except when
u=mz~+A4 In|x|+B, A, m not both zero, (4.29)

or

p=[AJo(mx)+BH,(mx)]e™, A, B not both zero,

(4.30)

where A, N, and m are constants and Jo and Hy are
the zero-order Bessel and Hankel functions, respec-
tively. In this case we find the additional Killing vectors

l“=[’m(u+'v), O’ —m(u+7))y —2] (4'31)
and
r=[m(u+29), 0, —mv, —27, (4.32)

respectively. The Killing vector in Eq. (4.27) is null
and hypersurface-orthogonal for all solutions of this
class; the only other hypersurface-orthogonal Killing
vector occurs when u’ =0 [i.e., »=01in Eq. (4.29)], and
is the spacelike vector in Eq. (4.31) with m=0. We thus
conclude that the S solutions are all stationary.

If u is a solution of Eq. (2.12) the solution ¢2u (where
c=const5%0) is equivalent to the original solution, for if
we make the coordinate transformation

u=ci+(c—1/c)o, v=_1/c)v
in the QDF (2.11), we obtain
ds? = xctudi?+2x(c2u —1)diadi+ x(cu — 2)di?
—e2v(dx2+dz?).
Specializing to the case where u’=0,22 we have
p=cln|z|, ¢==£1,0,
and
28 =xc In|x| 42+ 2%(c In| x| —1)d9+x(c In|x| —2)9?
—e2 (8248 =e,
A=x"—(cIn|x| —2)Py+(cIn|x| —1)P,],
d=x"(cIn|x| —1)P,—cIn|z|P,],
g=x12P,,
#2=x12{ —e+a~ [ — (¢ In|x| —2)P,2+2(c In|x| —1)
X Py Py,—cIn|x|P,2]+x/2P .2} .
Since all solutions of the S class are singular at x=0
and asymptoically flat as x — oo, we conclude that these
solutions are geodesically complete in the same sense as

that stated previously since %, 9, 8, and £ are bounded
everywhere except at =0, .

V. CONCLUSIONS

A necessary condition that a solution of the vacuum
field equations for the QDF (1.1) be of type IIT or IV is
that x~1f, =4, and «~'m be arbitrary functions of the
single function g, which may be any solution of Eq.
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(2.12). Finding that there exist no such solutions sub-
ject to the condition that x2= fl4m? for which the
eigenvalues vanish, we conclude that solutions of type
IIT or NV are possible only if A2 is constant. In Ref. 16
it was shown that, in this case, the solutions form a sub-
class of the so-called plane-fronted gravitational waves
which are necessarily type V. Investigation of solutions
for which f, I, and m have the previously stated func-
tional dependence shows that all such solutions for
which fl4m?=x2 are either of the Weyl class or one of
two classes, designated by L and S, respectively, ob-
tainable from the W class.

The L class was first discovered by Lewis? and has
the QDF (2.10) with v a solution of Eq. (2.14). These
solutions are stationary type-I solutions having no
hypersurface-orthogonal Killing vectors except for a
spacelike vector when u’=0. The eigenvalues of the
Riemann tensor are all distinct, one being real and the
other two complex conjugates; in general we expect
two independent second-order differential invariants
[see Egs. (4.17) and (4.18)7, but when u’=0 we obtain
only one.

Van Stockum® obtained the first solution of the S
class in the particular case where u= —In|#|. This class,
having the QDF (2.11) with y=—% In|«|, is character-
ized by type-II stationary solutions with a single shear-,
twist-, expansion-free double-degenerate geodesic ray
which is also a null hypersurface-orthogonal Killing
vector. The rotation is proportional to the single second-
order differential invariant, which is x=%2 for all S
class solutions, and the two distinct eigenvalues are real.
All solutions of this class are asymptotically flat in the
sense that this differential invariant vanishes as x —,
and all of these solutions are singular at £=0. In general
there are two, and only two, Killing vectors except
when p has the form in Eq. (4.29) or (4.30), in which
case there is one additional Killing vector given by Eq.
(4.31) or (4.32), respectively. The only additional
hypersurface-orthogonal Killing vector is the spacelike
vector obtained when u’'=0.

All of these solutions have been obtained and dis-
cussed in canonical coordinates. The S-class solutions,
for example, are asymptotically flat in the sense that the
Riemann tensor vanishes as x —o, but they are not
asymptotically Minkowskian. Thus, it is not clear
whether any theorems derived under the assumption
that the solutions for the QDF (1.1) in canonical co-
ordinates be asymptotically Minkowskian still hold for
these solutions, and the question naturally arises as to
whether these two assumptions are so restrictive as to
exclude physically interesting solutions. These solutions,
when viewed strictly in terms of the metric tensor itself,
are not at all well behaved; on the other hand, when
analyzed in terms of the various intrinsic properties,
most of these difficulties are seen to arise simply be-
cause of the choice of coordinates. One is led, in fact,
to the conjecture that canonical coordinates, although
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suited to the discussion of the various mathematical
properties of a given metric tensor, are not suited to the
physical interpretation of the results; however, attempts
to find a coordinate system suited to a physical interpre-
tation of the above solutions have been thus far un-
successful. Finally, one has the usual problem of de-
ciding upon the range of coordinates, a problem which
is especially difficult when the metric is not asymptoti-
cally Minkowskian.
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APPENDIX A
For the metric tensor in the QDF (1.1) we find
gO=I/A2, g2=—m/A?, g=—f/A?, gi=g¥=e",
and all other g##=0. The affine connection defined by
Ta"s=%8""(gas,s+g60,a—8a.o)

is given in Table II.
The field equations defined by

Rop=T0o7y,8—Ta"s,y T Ts7u—Ta"lv"s
reduce to
Rgyo= —%[f'*‘ " —x—1f+f(h1+h2):| =0,
Rox=3[m~+m" —a~iv+m(hi+-he)]=0,
Rop= 3[4V~ o+ Ui+ 1) ]=0,
Ru=5+~"—2""¥—3n=0,
Rayy=5+v"+a"'y—%h.=0,
Riz=a""y'+h3=0,
Ryy=Rops=R12=R23=0,

TasLE II. Components of the affine connection for
the QDF (1.1).

v 0 1 2 3
a B

00 0 3 ferr 0 3f'er
01  (fHtmm)/2a? 0 (fr—mf) /242

02 0 —3mey 0 —3m' e
03 (ff+mm)/2a2 0 (fm' —mf') /242 0
11 0 3 0 —y
12  (ml—Im)/2a2 0 (fl-+mm) /242 0
13 0 v 0 5
22 0 —3le?v 0 — e
23 (ml'—Im')/242 0 (' +mm’) /242 0
33 0 — 0 ¥
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where .
=A% (fl+m?), ha=A(f14+m'?),
hs=2A2(f 4+ fI+200m) .

APPENDIX B

To compute the curvature tensor using the differ-
ential forms, we use the procedure outlined by Misner."”
If we write

ds?=gopwwhf,

the connection forms are completely determined by

dgap=WaptWpa,
do*= —wgAws,

where A denotes the exterior product. From Eq. (4.1)
we see that the first of these yields

wap)=0.

We then solve the second for w%;. The curvature forms
6%5 are then obtained from

0% = dw*stw*, Awg.

From the connection forms we obtain the affine con-
nection since
W% =I‘°‘g,,,w",

and from the curvature forms we obtain the curvature
tensor since
0% =3 Ry Awk;

the geometrical objects I'ag and R%,, are of course the
components of the affine connection and the curvature
tensor with respect to the basis w*, and their indices,
as well as those of w® w%, and 6%, are raised and
lowered with 7.s. Thus we see that Regys has the sym-
metries indicated in Sec. I and T'ag, has, in general,
the single symmetry
T'(apy»=0.

We now list the forms dw® and w®s for the three classes
of solutions; the forms dw®s and 6% are easily obtained
from the definition of 8% in terms of R%s,s and dw*g.

A. W Class

dw®=e""(1/25—)w! Aw?+u w2 Aw],
dw'=—e~ 7y 0 Aw?,
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dw?= e "[(1/2x— )w' Aw?+p'w* Aw®]
dw®=e""w'Aw?,

Wy =e7(1/2x+i1)e’,

wl3= e—‘yﬂlwo )
wh=e""(1—1/2x)w?,
wh=¢""(y'w! —yw?),

wh=—e " w?.

B. L Class

do® =e="[ —(1/22)0® Aw! — ' Aw? ' w? Aw?]
dw'= —e 1 wlAw?,

dw?=e""(1/2x)w' Aw? — O Aw' — i/ Aw?],
dw®=e""yw'Aw?,

w® = (1/2x)e™ 7w’ — fiw?,

wl3= —[.L,6_7w2 ,
wly= —pe "’ —(1/2x)e w2,
wly=v"e" Y —ye Yw?,

w2=p'e 7w,

C. S Class
dew® = x4 —(1/2%+24) w0’ Aw! — 24/ 0 Aw®— 2w Aw?
—*—-2/./(.02/\603],
dw'=0,
dow? =4[ — 21" Aw' — 24/ 0 Awd+-(1/25—20) 00! Aw?
+2ﬂ/w2/‘w3]:
dwd = —1x~ 34w Aw?,
w0 =214 (1/2x424)w® — 2002 ]
w°2=0,

w0 =2x14(2u " —2u'w?)
wly=a 4 — 20420 —1/2x)w?],
wly=La—8/43

w2 =142 0w’ —2u'w?).



