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It is shown that a necessary condition that normal-hyperbolic solutions of the Einstein vacuum Geld
equations for the metric tensor defined by the quadratic differential form ds'=fdu' —2mdldv —ldv'
—e'r(Ch'+de') (where f, l, m, and p are functions of x and s, and fl+m'=x') be of type III or 2V is that
x 'f, x 'l, and x 'm be functions of a single function p, ; it is further shown that no such nonfat solutions
exist. Solutions having this functional dependence are found to belong to one of three classes: the Weyl
class and two classes which may be obtained from it. One of these classes is characterized by Sachs-Penrose
type-I stationary solutions having one real and two distinct complex-conjugate eigenvalues. The other
class is characterized by Sachs-Penrose type-II stationary solutions admitting a single shear-, twist-, and
expansion-free doubly degenerate geodesic ray which is also a null, hypersurface-orthogonal Killing vector.
Further invariant properties of these classes are discussed, as well as the special case where p, depends
only upon x.

I. INTRODUCTION

'HE study of exact solutions of the general-
relativistic field equations for empty space was

originally of some interest to physicists because these
solutions are thought to correspond to gravitational
6elds external to matter distributions which are in some
sense localized. The fact that intrinsic singularities are
often present in these solutions is of no particular con-
cern since one eventually hopes to join to these solutions
interior solutions, or solutions with a nonvanishing
energy-momentum tensor, in the region in which the
exterior solution exhibits these intrinsic singularities.

On the other hand, it was realized that one could
instead treat the singularities in some cases as idealized
matter distributions, such as point particles in Newton-
ian mechanics, and develop the study of empty-space
solutions without any particular regard to the associated
interior solutions, if indeed such solutions exist. It soon
became evident that this study was mathematically
very rich, and at the same time one was freed from the
difhculty of proposing physical models from which the
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matter tensor must be constructed. The result is that
many distinct classes of empty-space solutions' have
been discovered since the discovery of the first non-
triviaI solution by Schwarzschild and Droste'; few of
these solutions have been joined to exact interior
solutions.

Considerable interest has been shown' " in such
solutions for the quadratic differential form (QDF)

dS =gtzPdS dS~

=fdu' 2trsdttdu —id@' —e'&(dx'+ds') —(1.1)

K tt=f tt(ss&s)

we shall use the summation convention with Greek

' A review of exact solutions is given by J.Ehlers and W. Kundt,
in Gravitation: An Introdlction to Current Research, edited by
L. Witten (John Wiley R Sons, Inc. , New York, 1962), p. 49.

s K. Schwarzschild, Sitzber. Preuss. Akad. Wiss. 7, 189 (1916);
J. Droste, Versl. k. Akad. v. Weten. 25, 460 (1916).' W. R. Andress, Proc, Roy. Soc. (I.ondon) 126, 592 (1930).

4 T. Lewis, Proc. Roy. Soc. (London) 136, 176 (1932).
W. J. van Stockum, Proc. Roy. Soc. Edinburgh AS7, 135

(1937).' P. Jordan, A. R. L.WCLJ TN 58-1, Chap. III (unpublished).
7 R. Tiwari and M. Misra, Proc. Natl. Inst. Sci. India 28A,

771 (1962).
8 K. S. Thorne, Phys. Rev. 138, 3251 (1965).
9 A. Papapetrou, Ann. Inst. Henri Poincare 4, 83 (1966).' R. A. Matzner and C. W. Misner, Phys. Rev. 154, 1229

(1967).
~' F. J. Frnst, Phys. Rev. 167, 1175 (1968); 168, 1415 (1968).

1361
Copyright 1969 by The American Physical Society.



RICHARD B. HOI FMAN 182

a =S(x,s), i=a(x,s),
where x and z are restricted by

and
8'a/8a'+8'a/Bs'= 0

8888 8$88
Bg 88 88 Bg

(1.4)

It is a consequence of the Geld equations that ~, deGned,

by
fl+m', —

satisfies Eq. (1.3); it is customary to transform to new

variables, the so-called canonical coordinates S and. z,
where S=6 and 8 is a function conjugate to 6 obtained

by solving Eqs. (1.4). This has the effect of reducing the
number of independent metric components to three,
thereby simplifying the Ge1d equations. These equations
and the ChristoGel symbols are listed in Appendix A.
By defining 6 as in Eq. (1.5) and demanding that the
components of the metric tensor bc real functions of
real variables, wc have limited ourse1ves to normal-

hyperbolic solutions, since the determinant g=—ffg off is

given by
g= (fl+m')e". —

In this paper wc consider those normal-hyperbolic
solutions of the Geld equations for which the correspond-
ing QDF takes the form of the QDF (1.1) in canonical
coordinates showing that a necessary condition that.
such a solution be of algebraic type III or E is that
x-'f, x 'm, and@ '/bepairwisefunctionallydependent.
Although it is found that no type III or N solutions
exist in this case, the solutions obtained from the above
assumption of functional dependence are analyzed,

~~ R. P. Kerr, Phys. Rev. I etters 11,237 (1963).
ag For a detailed study of this solution see R.H. Hoper and R. W.

Lindquist, J. Math. Phys. 8, 265 (1967)."R. P. Kerr and A. Schild, in Pubblicuzioei del comituto muizoe-
ule Per le mumifestuzioee celebrutive del IV centemurio dellu euscitu
de Gukleo Gulilei (G. Barbara, Florence, 196.~), Vol. II, tomo 1,
p. 222.

indices taking the values 0, I, 2, 3, and make the follow-
ing ldcnt16catlon:

C =S S =S S =V~ S =S.
Since this metric is independent of u, w and the QDF
(1.1) is form-invariant under the coordinate transfor-
1Tlatlon

V~ —I]

it seems a reasonable candidate for the exterior Gelds of
rotating matter distributions having axial symmetry.
The best known example of such a solution is that
found by Kerry ' which ls a spcclal case of thc gcnclal
class of solutions discovered by Kerr and Schild'4; lt
is frequently considered to be the external solution for
a rotating mass distr'lbutlon.

This QDF has the property that it is form-invariant
under the coordinate transformation

showing that they may be classiGed into one of three
classes distinguished by invariant properties such as
algebraic type and Killing structure. One of these
classes is the Keyl class; the remaining two classes, one
of which is the Lewis' class and the other a generaliza-
tion of a solution obtained from the Lewis class by van
Stockum, ' arc simply related to the Weyl class. Al-

though the solutions discovered by Lewis and van
Stockum have been known for some time, the invariant
mathematical properties of these solutions have not
been discussed in detail in the literature. Because of the
importance of the knowledge of such properties for the
physical interpretation of solutions, the mathematical
properties of these generalized Acyl solutions are dis-

cussed in some detail.

%2—~g2a

~aa —&gaa

Ra3
.Ra4

Ra 6—Xga6

Eaa
~33 ~F3
834—P g34

36

+a4
834—Xg34

844 Xg44

R)6

&a6 —Xga6

836
846

~66 ~gBB,'

From the ChristoGel symbols in Appendix A and the
fact that g,s ——g s(x,s), it is easily seen that the curva-
ture tensor for the QDF (1.1) will have the form

'Eaa 0 Ea3 Ea4 0 Ea6
0 822 0 0 825 0

R$3 0 Rga R34 0 R36
(2

ga4 0 g34 E44 0 846
0 E5 0 0 j755 0

ga6 0 836 846 0 866

where Egg is rdated to the curvature tensor E„p~g as
usual by establishing a correspondencc between the
single indices 3 and 8 and the pairs of indices o;,9 and

y8, respectively, such that

1~10, 2~20, 3~30, 4~23, 5~31., 6 —+12.

DCGnlIlg

g4@~ g~A~= g~~gPv g~vg&&

we obtain for the QDF (1.1)
' fe» 0 0 0 0 —wee'~ I

0 0 0 0
0 0 fe» me'& 0 0
0 0 ~." -1. 0 0
0 0 0 0 —e4~ 0

i

—me'& 0 0 0

Hence, in determining the eigenvalues of E~~, i.e., the
solutions X of

ffR„e—Xggeff =0,
we see that the determinant can be factored into the

product of two determinants, and the eigenvalue equa-

tion takes the form



For the QDF (1.1) we fmd

4—e»R2, =4a2e »-R„=fl+'m2+ fVm",
R22= ~2/$ 25m-(f'~ fl—')+m(fl' lf—')

+m'(lf f—l)j, (23)

(R22 —Xg22) (R22—) g22) —(R22)'=0, (2.4)
that is,

'A= ~~6, 'e 2«(fl+m'+ f'l'+m")
,'ih 2e-2«[-m-(fP f'l)+—m(fl' lf')—

+m'(l f—f1)j, (2.5)
with i=+(—1).

%C begin by investigating the consequences if X is
real, that is,

m(fl' f'l)+—m(fl' if')+—m'(1f fl) =—0. (2.6)

Of course, if any one of f, l, or m is zero, Eq. (2.6) is
identically satisfied. Assume that fAO La coordinate
transformation can always be made in the QDF (1.1)
such that f/Oj. Proceeding in canonical coordinates,
i.e., coordinates for which cV=x2, we solve Eq. (1.5)
for l and substitute the result in Eq. (2.6), obtaining

fm f fs 1 f m
+ ——=0.

fm fmx f m

If wc Dow deGnc

xF=f, xL= l, —xM=—m,—

(2.7)

f=8f—/Bx, f'= 8f/Bs.

Hence, one pair of complex conjugate eigcnvalues is
given by the solution of

obtaining from the QDF (2.8)

ds'=&x(a2eN/I —p2e 'e)-du2+x(abe'e —pqe 'e)dudS

+)x(b2e'e q-2e '$-)d6' e—'«(dx'+ds'); (2.9)

this is the Grst set of solutions obtained by Lewis4 and
is, for real constants, obviously static. If we now set

a=q= —1, b=p=)s=g( —1),
the QDF (2.9) takes the form

ds'= x cos2/I du'+2x sin2/I deCk —x cos2/I ds2

—e'«(dx'+ds'), (2.10)

when we drop the bars for convenience; this is the
second set of solutions discovered by Lewis' and later
obtained by Tiwari and Misra~ by the use of R diGerent
DMthod. If instead wc sct

a p $
—I/2 b $-1/2 $1/2

q $—1/2+$1/2
/

in the QDF (2.9) and take the limit as s ~ 0, we obtain

ds'=x/Ide2+2x(/I —1)dudl/+x(/I —2)ds2
—e'«(dx'+ds'); (2.11)

van Stoc'kum' obtained this solution for the particular
case where /I=cln]x, with c constant. In general,
/I =/I(x s) 111 tile QDF 2.11).Wc WIB subsequently rcfcl
to the QDF's (2.8), (2.10), and (2.11) as the W class,
L class, and. 8 class of solutions, respectively.

%C see from the Geld equations that for RH three
classes p, is an arbitrary solution of

/i+x '/1+/I" =0 (2.12)

For thc 8' and L classes of solutions y must be a solution
of

Eqs. (1.5) and (2.7) take the form

FL+M2 =1 (1.5')

p=x(p2 —/'2) —1/4x, p'= —2xp/', (2,13)

j=x(p,"—P2) —1/4x, y' = —2xP/I', (2.14)

PM' —P'3f =0, (2.'I')

respectively. If F is not constant, the most general solu-
'tloll of Eq. (2.7 ) ls M =M(F) alld from Eq. (1.5 )
L =L(F); if F is constant, we see immediately from Kq.
(1.5') that L and M are functionally related. Thus Eq.
(2.6) I'cqllll'cs tllat F L, alld. M bc fllllc'tlolls of a slllglc
arbitrary function which we shaH denote by p.

One could now proceed to solve the vacuum Geld

equations, given in Appendix A, to Gnd aH solutions
satisfying Kq. (2.6), but since these computations are
long and tedious, although straightforward, we will show
instead how they may be obtained from the Weyl'~
solutions which may be written in the form

respectively; for the S class of solutions the equations
cRD bc iDtegrRted ln general yielding

(2.15)

III. TYPE-IH AND TYPE-N SOLUTIOHS

Since all eigenvalues of Egg are zero for those solu-
tions which are of algebraic type III and E, a necessary
condition that a solution of the vacuum Geld equations
for the QDF (1.1) be one of these types is that

E22 =E55=E2g=0.
Since R2~ ——0 Emits the solutions to the TV, L,, and 8
classes, we now look for solutions of these classes for
which

ds2=xe2&de2 —xe 2"dv2 —e"(dx'+ds') .
%e Dour make the coordinate transformation

v2e =au+bI/, v2 pItu+q//; 2p, =sp,
"H. Wey1, Ann. Physik S4, 117 (1N7).

(2.8) fi+m2+ f'i'+m'2=0;

this reduces to the equations

p 2+/I~ 2 1/x2 —0

p2+/2~2+1/x2 —0

(3 1)

(3.2)

(3.3)
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and

(3.4)

for the W, I, and 5 classes, respectively. There are
obviously no real solutions of Kqs. (3.3) and (3.4), and
the only solutions of the pair of Eqs. (2.12) and (3.2) are

based upon Kq. (4.4) and the following equations:

E, p~k&=0,

Agre tyke]k~ —0
~

E, ctvk&~k k&=0

(4.5)

(4.6)

(4.7)
p=& In(x[, @=in(s&(x'+e')'"(,

which are all Rat. We thus conclude that there are no
solutions of the vacuum field equations of algebraic type
III or cV for the QDF (1.1) expressed in canonical co-
ordinates. We point out that there exists a class of
"noncanonical" solutions of algebraic type 2V which
can be put into the form of the QDF (1.1) but which
cannot be expressed in canonical coordinates since
fl+m' is constant. "

IV. MATHEMATICAL PROPERTIES
OF THE SOLUTIONS

In discussing the matehmatical properties of these
solutions it is convenient to introduce differential
forms'~ co& such that

(4.1)

if the Riemann tensor admits one solution of Eq. (4.5)
it is said to be of algebraic type Ã, it if admits one
solution of Eq. (4.6) it ls type III if it admits two
solutions of Eq. (4.7) it is type D, if it admits one
solution of Eq. (4.7) it is type II, and if it admits four
solutions of Eq. (4.4) it is type I. All Riemann tensors
of type other than type I are said to be algebraically
special; also any solution of one of Eqs. (4.5)—(4.7) is
also a solution of the subsequent equations as well as
Fq (4 4)

If one introduces a complex nuH tetrad

L4)'nsw4) 4j
such that k„and ns„. are real and f„ is complex, t„being
the complex conjugate of t„, and all products are zero
except

where

r1 p ——diag(1, —1, —1, —1).
we can write

k., p=(8+iro)1 jp+ot tp+Qf k +3k 1p+Bk kp+c.c.;
Using the exterior differential calculus to determine the
Riemann tensor, one automatically obtains

M E
&~a= A 8=1 2 6 (4.2).V —M

the optical parameters 0, re, (o (, and (0( are called
the expansion, twist, shear or distortion, and rotation,
respectively. "

A. 8' Class

where 3f, E are traceless, symmetric 3&3 matrices.
The calculations are outlined in Appendix 8 following
Misner, '~ and the exterior derivatives Ckv of the dif-
ferential forms co as well as the connection forms co p

are given for the three classes in terms of the differential
forms given below. Because of the simple form of Egg
the eigenvalues are easily computed as solutions of

Since the mathematical properties of these solutions
are carefully and thoroughly discussed by Khlers and
Kundt, ' we only list a few of these properties for com-
pleteness. Setting

es' = (gx)e~dg, re' =e&dx, re' = (gx)e-~de,

and res =e&ds, (4.8)
we obtain

f/CV+sX —7lff=o, (4 3)
sfr+ fs o — fs

fz 0
fs o sf~ fs— —

(4.9)

(4.10)g=0,
&x =fr, 4,s= —'fr~(fs'+fs')'", (4.11)

where
(4 4)k [gag] ~ltt fyk$] k k —0

fr =e '&(11'+p" 1/4x'), —

f =e ''"fxp(jc' 3p"' 1/4x-' ') ji p—/s j,— -— —

fs es&pep'(3' s
IJ,
" ——1/4x') 1I' p—'/2xf—. — —

Sachs" has given a, classification of the Riemann tensor

"R.B. HofTman, J. Math. Phys. 10, 953 (1969).
'7 C. W. Misner, J. Math. Phys. 4, 924 (1963), Appendix A.
'" See A. S. Petrol, Einstein-Meme, translated by H. Treder

(Akademie-Verlag, Berlin, 1964), p. 90.
'~ R. Debever, Compt. Rend. 249, 1324 (1959)."R. K. Sachs, Proc. Roy. Soc. (I.ondon) A264, 309 (1961}.

An equivalent formulation in the spinor formalism is given by
R. Penrose, Ann. Phys. (N. Y.) 10, 171 (1960).

(4»)
Dlere are two, and only two, independelit second-order

"These scalars are discussed in some detail by Sachs in Ref.
20, but the notation used here is that given by W. Kundt, Z.
Physik 163) 77 (1961).

where I denotes the unit 3+3 matrix. 's The second
order differential invariants may then be read from
the eigenvalues.

Debever'9 has shown that in every empty space-time
there exists at least one and not more than four null
vectors k~ satisfying
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differential invariants

fr, fs'+ fs' (4.13)

TAsLE I. Null rays and optical parameters for the algebraically
special solutions for the QDF (4.14).

All eigenvalues are necessarily real.
In the case where is =is(x) we obtain the most general

solution

dss —xscdus xs—scdns xsc(c—1)(dxs+dzs) (4 14)

2
1

—j.

(&, 0, 0, ~t)
(1, 0, ai, 0)
(1, &x ', 0, 0)

0 0 0 ~x3
0 P P (4x)

—3(4

0 0 0 0

This solution is Hat for c=0, 1 and of type D for c= 2,
2, —1. The solutions of Kq. (4.7) as well as the optical
parameters for these algebraically special solutions are
given in Table I.

B. I. Class

For the I. class we introduce the differential forms

&e' = (gx) (costs du+sinis de), ret =evdx,

res = (gx)(sinis du —costs dn), &ss =e&dz,

formed to the QDF (4;14) with c=ss; this solution
admits four independent Killing vectors including a
timelike and a spacelike hypersurface-orthogonal
vector. '

Returning to the case where p Op we have

2is=c ln)x(,

in which c is constant, and

Xt ———-', (c'+1)xi'

with the condition p/0, obtaining

' ——',fs 0 0 ' f, 0 —f;
ft 0, 1V= 0 0 0

0 0 ——,'f, f, 0 f,.
4=fr, ~.,s= ——,'fr~i(fss+fs')'",

where

fr = —e sv(iss+p"+1/4xs)

fs =e s&[xIs'(ls" 3iss) js' 3—is'/4xj- , —
fs =e "L*i (I" 31 ")+0+5—p/4x7

s'(c'+-1)(1aic)g'" ""
(4.15)

In this case we find one and only one independent
second-order di6'erential invariant x&" 3)~'. Note that

(4 16) for cs(3 the associated space is asymptotically flat in
the sense that this invariant approaches zero as x~
and is singular at x =0; for c'& 3 the roles of x =0 and
are reversed. In the case where c'=3 the differential

(4 17) invariant reduces to a constant.
If we now let 7 denote an one parameter and set

The only I, solution with real eigenvalues, i.e., that for
which fs=fs=0, is that with u constant, and that
particular solution is a %eyl solution. In general we
expect two independent second-order diGerential
invariants

h=dIs/dr, 2Z=ds', 2is=c lnixi,

we obtain upon dividing the QDF (2.10) by drs

2Z =xLcos(c ln
(
x ()7(u' —8s)+2xgsin(c ln( x ))7u8

—e»(gs+zs)
fr, fs'+ fs' (4.18)

e"»'Ipl~, t;
——0, (4.19)

where «»s is the Levi-Civita tensor density; Kq. (4.19)
is the necessary and suflicient condition that l be hyper-
surface orthogonal. When is=is(x) we have three and
only three independent Killing vectors

Since the eigenvalues are all different, we conclude that
the I. solutions are of algebraic type I.

Although the Killing equations

7, , p+lp, , 0——

have not been solved in general for the I. class, one can
solve these equations simultaneously with

where e is a constant of the motion; v is chosen such that
e is +1, 0, or —1 according as ds' is timelike, null, or
spacelike, respectively. The geodesic equations are ob-
tained from 2 by the variational principle

Z(x~, l~)dr =0

Since the coordinates I, e, and s are cyclic, we have
immediately three additional constants of the motion:

P„=BC/Bu=x cos(c ln(x~) u+x sin(c in~ x~) 8,
P„=M/88=x sin(c in~—x]) u —x cos(c ln(x[) 8,

l~= ho~, b2~, and 6,~, and
the latter being spacelike and hypersurface-orthogonal.
In all other cases there are no hypersurface-orthogonal
Killing vectors, so that all I solutions must be station-
ary. If @=const, the corresponding QDF can be trans-

P, = riZ/el' =x "+'&"z.
"Mathematical properties of the 8'-, L-, and S-class solutions

with p,'=0 are discussed in detail in R. Hoffman, Ph.D. thesis,
Lehigh University, 196/ (unpubhshed).
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Solving for 4, i, 8, and F, we hand

4=x-'LP„cos(c ln(x()+P, sin(c ln(x()j,
e=x- t P„sm(c ln(x() —P. eos(c in(x()j,
9=x-~'

OI'

l»= (1,0,1,0), (4.28)

p =ms+A ln(x(+8, A, m not both zero, (4.29)

xm=x '+""{—«+x '( cos(cin(x() (P„'—P„')
+2P„P.sin(c ln(x() j+P,'x "+"").

We see, therefore, 4, 8, 9, and z are 6nite everywhere
except at x=0; since, except for c2=3, the associated
space is either singular or Qat at @=0we conclude that
these spaces are geodesically complete in the sense that
the geodesics can be continued for arbitrarily large
values of the RKne parameter provided they do not
strike the singularity. If c =3 the space is not geodesi-
ca11y complete.

Finally, for this class we introduce the differential
forms

(o'= (Qx)( (I+«')dN+(p —7/4)dsj, (a'=x-'i'dx,

(o'(Qx) =P(p ,')d««+ {iI,—9/4)d«j,—a)'= x-'i'ds,

obtaining

l»=lm(N+s), 0, —m(N+s), —2j (4.31)

l»=Lm(e+2v), 0, —rn«, —2j, (432)

respectively. The Killing vector in Eq. (4.27) is null
and hypersurface-orthogonal for all solutions of this
class; the only other hypersurface-orthogonal Killing
vector occurs when i4' =0 D.e., m =0 in Eq. {4.29)j, and
is the spacelike vector in Eq. (4.31) with m=O. We thus
conclude that the 5 solutions are all stationary.

If p is a solution of Eq. (2.12) the solution c'p (where
c= constWO) is equivalent to the original solution, for if
we make the coordinate transformation

I=cg+(c 1/c)v, —s= (1/c)e

y= f3J«(tax)+BHo(mx) j«"* 2, 8 not both zero,
(4.30)

where 2, E, and m are constants and Jo and Ho are
the zero-order Bessel and Hankel functions, respec-
tively. In this case we Gnd the additional Killing vectors

0 —f«
fg 0—

«fr+f2 ~

0 fm

0 0
0 fl.
) 2 ——Xa ——-*x-'~2

2 —3—8

(4.21) in the QDF (2.11), we obtain

ds'= xc'pdN'+2x(c'il, —1)dude+ x(c'p —2)dt '
—«'&(dx'+ds') .

SpcclRllzlng to the CRse where p =0, we have

p=c ln(x(, c=a1, 0,

where

fr=1/4x', f2=»+8!2x, f«=&i"+3i'/2x. (4.23)

We have one, and only one, independent second. -order
differential invariant

{4.24)

Since there are only two distinct eigenvalues, these
solutions must be of algebraic type II or D; we Gnd one,
and only one, solution

(4.25)k»=(1, 0, —1, 0)

of Eq. (4.7), and. the solutions must be type II. We also
6nd k& to be shear-, twist-, and expansion-free with a
rotation

2Z =xc ln (x(4'+2x(c ln (x (
—1)ui+x(c ln (x (

—2)i'
«'&(P+s') =—«,

4=x '( —(c ln(x( —2)P„+(cln(x( —1)P,j,
it=x-'L(c ln(x( —1)P„—c ln(x f P.j,

P=x'"{ «+x 'P (c —ln(x( —-2)—P„'+2(cin(x( —1)

Since all solutions of the S class are singular at x=G
and asymptoically Bat as x~ ~, we conclude that these
solutions are geodesically complete in the same sense as
that stated previously since n, i, a, and 9 are bounded
everywhere except at x=0, ~.

(0( =(4x)-'i'. (4.26)
V. CONCLUSIONS

The Killing equations can be solved in general for
this class of solutions, yielding two, and only two, in-
dependent solutions

l»=(1, 0, —1, 0)

A ncccssaly condltlon thRt R solution of the vRcuum
Gell equatlOlls for the QDF (1.1) be of type III or X is
that x 'f x-'I and x '—m be arbitrary functions of the
single function p, which may be any solution of Kq.



GENERAL I ZATI 0NS OF WE YL SOLUTIONS 1367

(2.12). Finding that there exist no such solutions sub-
ject to the condition that x'=fl+m' for which the
eigenvalues vanish, we conclude that solutions of type
III or E are possible only if b, ' is constant. In Ref, 16
it was shown that, in this case, the solutions form a sub-
class of the so-called plane-fronted gravitational waves
which are necessarily type 1V. Investigation of solutions
for which f, l, and m have the previously stated func-
tional dependence shows that all such solutions for
which fl+m'=x' are either of the Weyl class or one of
two classes, designated by I. and S, respectively, ob-
tainable from the 8' class.

The L class was first discovered by I.ewis4 and has
the QDF (2.10) with 7 a solution of Eq. (2.14). These
solutions are stationary type-I solutions having no
hypersurface-orthogonal Killing vectors except for a
spacelike vector vrhen p,'=0. The eigenvalues of the
Riemann tensor are all distinct, one being real and the
other tvro complex conjugates; in general we expect
two independent second-order differential invariants
Lsee Eqs. (4.17) and (4.18)5, but when p,'=0 we obtain
only one.

Van Stockum' obtained the first solution of the S
class in the particular case where p = —ln x

~
.This class,

having the QDF (2.11) with y = —~~ ln
~
x, is character-

ized by type-II stationary solutions with a single shear-,
twist-, expansion-free double-degenerate geodesic ray
which is also a null hypersurface-orthogonal Killing
vector. The rotation is proportional to the single second-
order differential invariant, which is x 'I' for all S
class solutions, and the two distinct eigenvalues are real.
All solutions of this class are asymptotically Bat in the
sense that this differential invariant vanishes as x ~~,
and all of these solutions are singular at x=0. In general
there are tvro, and only two, Killing vectors except
when p has the form in Eq. (4.29) or (4.30), in which
case there is one additional Killing vector given by Eq.
(4.31) or (4.32), respectively. The only additional
hypersurface-orthogonal Ikilling vector is the spacelike
vector obtained when p,

' =0.
All of these solutions have been obtained and dis-

cussed in canonical coordinates. The S-class solutions,
for example, are asymptotically flat in the sense that the
Riemann tensor vanishes as x~~, but they are not
asymptotically Minkowskian. Thus, it is not clear
whether any theorems derived under the assumption
that the solutions for the QDF (1.1) in canonical co-
ordinates be asymptotically Minkowskian still hold for
these solutions, and the question naturally arises as to
vrhether these tvro assumptions are so restrictive as to
exclude physically interesting solutions. These solutions,
when viewed strictly in terms of the metric tensor itself,
are not at all well behaved; on the other hand, when

analyzed in terms of the various intrinsic properties,
most of these ditIiculties are seen to arise simply be-
cause of the choice of coordinates. One is led, in fact,
to the conjecture that canonical coordinates, although

suited to the discussion of the various mathematical
properties of a given metric tensor, are not suited to the
physical interpretation of the results; hovrever, attempts
to find a coordinate system suited to a physical interpre-
tation of the above solutions have been thus far un-

successful. I"inally, one has the usual problem of de-

ciding upon the range of coordinates, a problem vrhich

is especially dificult when the metric is not asymptoti-
cally Minkovrsk. ian.
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reduce to

Rpp —— xp[f+f"—x'f+ f(—hg+h p) 5=0,
Rpp =)Liis+es" —x-'m+m(hg+h p) 5=0,
Rpp ——xpD+l"—x 'l+l(hg+hp)5=0,

Rgg y+y —x '7 ————',h~=0,

Rpp=i+v"+x 'i php=0)—
Rtp ——x 'y'+hp ——0,
Rpg =Rp3 =Rg2 =R23=0,

TmLE II. Components of the afBne connection for
the QDF (1.1).

a P
0 0
0 1
0 2
0 3
1 1
1 2
1 3
2 2
2 3
3 3

0
(tf+mm)/2~2

0
qy'+mm')/2S'

0
(M—rm)/2~

0
0

(~'—lm')/2~2
0

fe2 y

0
—~2'e 'y

0
7
0
v'

—y)e &

0
'y

0
{fm —m f)/242

0
{fm' —mf')/2~2

0
(f)+mm)/2~2

0
0

(fl'+m)N')/2&'
0

Ifje2y

0
—-'m'e'y

2

0
—7'

0
v—-'l'e2&

0
7'

APPENDIX A

For the metric tensor in the QDF (1.1) we find

gpp —)/+2 gp2 — gg/+2 g22 — f/+2 gll —gpp —e-py

and all other g t'=0. The a6ine connection defined by

r 's=pg"(g ~s+gs, . g, s—).
is given in Table II.

The field equations defined by
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where
he=A '(fi+~is'), hg=d '(fV+nz"),
km= ~rA '(fl'+ f'j+2morc') .

APPENDIX 3
To compute the curvature tensor using the diQer-

ential forms, we use the procedure outlined by Misner. '"
If we write

dS =g~pM G)p~

the connection forms are completely determined by

dg n=co ~+coo

kd = —M p+Mp
&

where A denotes the exterior product. From Eq. (4.1)
we see that the 6rst of these yields

M(~p) =0.
We then solve the second for co p. The curvature forms
8 p are then obtained from

From the connection forms we obtain the alone con-
nection since

ro "p= I'"p„coi",

and from the curvature forms we obtain the curvature
tensor since

8 p=gE p»G0~AN~p

the geometrical objects I'&
p and E"p» are of course the

components of the affine connection and the curvature
tensor with respect to the basis ~, and their indices,
as well as those of co, cv"p, and 8"p, are raised and
lowered with p p. Thus we see that E p» has the sym-
metries indicated in Sec. II and I p~ has, in general,
the single symmetry

I'( p)7=0.

Ke now list the forms d~ and ~ p for the three classes
of solutions; the forms der p and 8 p are easily obtained
from the de6nition of 8 p in terms of E"p» and d~ p.

A. 8" Class

dcoo =e-&L(1/2x —jc)co'n, co'+p'co'nco'],

dc@ = —e ~you Ace,

dco'= e cp(1/2x p)c—o' nco'+ p'co'neo'],

cho'= e—&jco'&~'

co'g ——e &(1/2x+jc)co",

M 2=0y

co'3=e &p,'(v',

co'2 ——e-&(jc—1/2x) co',

co'3=e 7(y'co' —'r'co ),
M 3= —e ~p, M

B. L, Class

dcoo =c: &p —(1/2g)co'Aco' —jcco'Aco'+ p'co'Aco']

dc' —e +p cd +4)

dco' =e &P(1/2x) co'nco' —jccoo n co' —~'co'nco'],

d~'=e—&jr''w~',

co'~ ——(1/2x) e—&co' —jcco',

GP 2=0
OP 3= Pe ~M

co'2 ———jce
—&co'—(1/2x) o &co',

Q) 3=+ e ~co —pe ~co

Go 3=p, e

dcoo =g'«L —(1/2g+2jc)co" n co' —2p'co'n co'—2jcco'n co2

+2' co +M ]p

dM =0
dco =g'I L

—2jcco ncoc —2p co n co3+(1/2g —2jc)coen co2

+2p'co'n co'],
4v'= —41 X '~'co'+co'

coo& =&~/cg(1/2g+2jc)coo —2jcco2]

~'2=0,
~0 ~1/4(2p&coo 2~&co2)

co', =x'i4L —2jcco'+(2jc —1/2x)co'],

S i'
xii4(2p'coo 2~'co') .


