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The nuclear-structure properties of the odd and even tin isotopes are studied, making use of an improved
inverse-gap-equation (IGE) method and the quasiparticle theories. The two-body nuclear force assumed is
a realistic potential (or reaction matrix) renormalized for the core polarization, and two cases are considered:
(a) the potential of Tabakin, and (b) the reaction matrix of Yale-Shakin. While most types of levels are
obtained in good agreement with experiment, others sharply disagree with the data. Only poor agreement
with experiment is obtained for the electromagnetic properties of some of the calculated states and for the
inelastic electron-scattering form factors. Spectroscopic factors for the one- and two-nucleon transfer reac-
tions are presented and discussed. A warning is given against too much optimism about the indiscriminate
applicability of the IGE method. Possible explanations for the difficulties of the method are discussed.

1. INTRODUCTION

NE of the most disturbing difficulties in detailed
shell-model analysis of various regions of nuclei is
the uncertainty or our ignorance of the single-particle
(s.p.) shell-model energies. Ideally, such energies should
be determined as self-consistent solutions of a Hartree-
Fock (HF) or a Hartree-Fock-Bogolubov (HFB)
calculation based on a realistic two-body potential
(or reaction matrix). In practice such calculations are
almost prohibitive in some regions of the periodic table.
Only very preliminary results of some simplified HF
calculations are becoming available (e.g., for the tin
isotopes.!?) On the other hand, the experimental
information on the so-called s.p. energy levels of the
corresponding odd-mass nuclei is hardly ever complete
and sufficient. Even in cases when such information is
available, the identification of the “empirical” s.p.
levels with the “HF s.p. energies” is rather arbitrary
and certainly (by definition) at best only very roughly
approximate.

Such is the situation with most nuclei in the vibra-
tional region, such as the tin isotopes. One characteristic
feature of that nuclear region is the outstanding
importance of the BCS superfluidity effect. The pre-
dominance of the BCS pairing forces imposes the
definition of a s.p. basis in terms of an HFB solution
rather than of an HF solution. The s.p. basis is in this
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case usually expressed in terms of the Bogolubov
quasiparticles (qp) [a single-qp basis defining the
independent-quasiparticle model (IQM)7]. With some
reservations, one can attempt to interpret the energy
levels of the odd-mass isotopes in terms of such single-qp
energies or, better, in terms of the corresponding
QTD13 eigenvalues. The QTD13 (or modified Tamm-
Dancoff, MTDA) method*™ involves diagonalization
of energy matrices of one- and three-qp modes in inter-
action. Similar descriptions of even isotopes in terms of
superpositions of two-gp medes [quasiparticle Tamm-
Dancoff (QTD)] or of two- and four-qp modes [quasi-
particle second Tamm-Dancoff (QSTD) ] have proved
generally successful.®12

A method known as the inverse gap equation (IGE)
has been proposed by Gillet and Rho® for determining
from the experimental energies of the odd-mass isotopes
of single closed-shell nuclei the input parameters for qp
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calculations. The method assumes the first few observed
levels with known spin and parity as pure one-gqp
excitations. The solution of a given IGE problem
determines uniquely the HF s.p. energies and the
chemical potential A and thus also the subshell occupa-
tion factors (probabilities) 9,2 of the BCS theory. An
IGE solution also yields the coupling (strength)
constant V, of the BCS pairing force. If one has a purely
phenomenological two-body potential, such a unique
determination of V), is useful, although the obvious
question arises of how the solution depends on all the
details of such an assumed two-body force. If the result
is sensitive to any details of such a force, then one
wonders what is the value of the information obtained.
If, on the other hand, the pairing force corresponds to a
realistic nucleon-nucleon potential (or reaction matrix)
renormalized for the core polarization which is always
necessary,’®!! then one is more confident of the utility
of the IGE output information on the HF energies and
on the 2. However, the departure of V, from unity is
the measure of the extent to which the simple qp
description of a given odd isotope of a single closed-
shell nucleus is inappropriate or it implies that the
pairing force used is incorrect. An alternative to this
conclusion could only be that it is the given potential
which is inappropriate. However, if one repeats the
calculation with another realistic two-body force and
again finds a V, drastically different from unity, then
the former is a more convincing conclusion. Both in a
previous work by Gambhir on the Ni isotopes and in
the present work on the Sn isotopes with different
realistic two-body forces, the IGE solutions have
indeed V, very close to unity, which means that the
IQM (or the QTD13) interpretation of the corre-
sponding spectra is at least not incompatible with the
pairing force assumed.

The improvement of the IGE procedure first proposed
and applied by one of us'® consists in interpreting the
observed energies of the odd isotopes and the odd-even
mass differences in terms of the QTD13 eigenvalues
(superpositions of one- and three-qp modes) rather
than in terms of pure (independent) quasiparticles
(IQM). The QTD13 definition and equations are now
coupled to IGE. One solves the problem by an iteration
procedure consisting of successive IGE solutions and
QTD13 matrix diagonalizations. The procedure,
although far from being free of criticism, is by definition
more realistic than the simple IGE method because it
includes contributions from the residual qp interactions.
In the first step one sets up and solves the ordinary IGE
problem and the output set (the BCS E,, #,, 7,) is fed
into the corresponding QTD13 energy matrix. The
differences between the input energies (E,=the ob-
served energies) and the output energies (QTD13
eigenvalues) 6F, are then added to E, and used as

14V, K. Gambhir, Phys. Letters 26B, 695 (1968).
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input in the second IGE problem, etc. The final solution
is obtained when the QTD13 eigenvalues of the nth
iteration almost coincide with the observed energies
(the original E,). The corresponding #th gp-input set is
the final set, and the corresponding IGE solution gives
the final HF energies. The iteration procedure converges
very rapidly (z=2, 3 in practice in cases where the
first 6F, are not too large). The spectra of the corre-
sponding even isotopes are then calculated with the
QSTD method by feeding in the qp energies and
occupation probabilities obtained with the use of the
final gp sets of the above method.

The above method has, for a number of interactions,
given a remarkable agreement between the observed
and the calculated low-lying levels of the odd and the
even isotopes of nickel.!*® This agreement is striking
because the qp description should not be particularly
reliable in the case of nickel, where one has only three
active subshells and all of them are of small degeneracy.
Moreover, a small number of valence neutrons does not
favor a statistical-mechanical theory such as that
of BCS.

It was therefore interesting to examine the case of the
Sn isotopes, for which the qp description is considered
particularly appropriate, in order to see if good agree-
ment with experiment can be obtained and whether the
success of the work of Refs. 14 and 15 is not somewhat
accidental. ‘

Since the wave functions are generally a much more
critical test of a model than are the energy levels, we
have examined, in addition to the spectra, some of the
electromagnetic reduced transition rates B(EM)), the
static moments, the inelastic electron-scattering form
factor, and the spectroscopic (parentage) factors for
the one- and two-neutron transfer reactions.

2. ENERGY SPECTRA OF THE ODD
ISOTOPES OF TIN

By definition of the improved inverse-gap-equation
(IIGE) method described in Sec. 1, the first (lowest-
lying) energy level of each value of spin and parity is
made almost to coincide with the corresponding ob-
served level. The merit of the method in determining the
spectra of the odd isotopes, if any, could possibly lie in
the correct or reasonably good prediction of the posi-
tions of the second or higher-lying levels of each spin-
parity assignment J7. Clearly, the structure of the wave
functions is most important and this, if successfully
predicted both for the first and for the other low-lying
states, could be a merit of the method; the question
of the wave functions (the QTD13 eigenvectors of
IIGE) concerns our results of Sec. 4.

As commonly accepted, we describe the low-lying
nuclear states of Sn in terms of the five valence neutron
subshells: 2ds/s, 1g7, 3512, 2d3s, and 1hys. However,
we include the effect of the neutron and proton core
subshells through the renormalization for the ‘“core



1310

ALZETTA et al.

182

TasLeI. QTDI13 energy eigenvalues of the first few levels of Snl*% obtained by the IIGE (second iteration) using the core renormalized
(i) Tabakin and (ii) Yale-Shakin force with V=1 and V,>1. The experimental energies are of Ref. 20, in which half of the odd-even
mass difference calculated from the observed binding energies [Eqgs. (11) and (12) of Ref. 15] are added.

A=115 Tabakin Yale-Shakin

Jr Vo=1 Vo=1.114 Vo=1 Vo=1.099 Expt.

1/2+ 1.041(94) 1.000(93) 1.061(93) 0.997(91) 1.000
4.117(4) 4.024(5) 4.009(4) 3.869(5) 2.970

3/2+ 1.511(95) 1.478(94) 1.517(95) 1.472(93) 1.490
3.204(~0) 3.061(~0) 3.110(~0) 2.935(~0)

5/2+ 1.997(96) 1.972(95) 2.008(94) 1.967(93) 1.980
3.420(~0) 3.280(~0) 3.321(~0) 3.156(~0) (2.280)
3.714(0.5) 3.591(0.8) 3.596(0.7) 3.444(1) (2.630)

7/2% 1.595(97) 1.570(96) 1.599(96) 1.564(95) 1.600
3.549(~0) 3.452(~0) 3.557(~0) 3.422(0.1)

11/2- 1.727(97) 1.705(96) 1.725(95) 1.682(94) 1.730

3.785(~0) 3.709(0.2) 3.852(1) 3.730(2)

polarization” of the effective nuclear force (and of the
effective operators of electromagnetic interactions).
The s.p. wave functions are those of the harmonic
oscillator with the spring constant 4/»=0.454 F-1,

The two-body “bare” nuclear force is taken to be
(a) the nonlocal potential of Tabakin®® and (b) the
Yale-Shakin reaction matrix.”” The second-order correc-
tions for the core polarization (the three-particle one-
hole diagrams) are those of the variant “.51” of Ref. 10.
The neutron and proton core subshells included are
four: 1gos, 2p1s2, 1fss2, and 2pse. The separations of the
proton levels from the level 2ds, are of —4.0 MeV
(1ge;2) and —12.0 MeV (the remaining three); this
assumption is taken from the work of Bando.’® The open
subshells for the protons are the same as the five
valence neutron levels (between the magic numbers 50
and 82). Again, the s.p. proton energies of these levels
are those of Ref. 18. For simplicity, we assume only one
open (‘“particle’”) subshell for the core neutrons: the
1hy)2 level, distant 6.4 MeV from the 1gg level and
14.4 MeV from the other core levels.”® This simplifica-
tion for the core neutrons is justified by the fact that
the entire effect of the polarization of the core neutrons
is, anyway, practically negligible as compared with that
of the core protons; another prescription leads to
almost identical results (cf. Refs. 10 and 11).

We present below our IIGE results for the Sn isotopes
115, 117, 119, and 121. The IGE and the QTD13
FORTRAN codes employed in our work are those of Refs.
14 and 15 and of Refs. 5 and 19, respectively. All the
pertinent defining equations are given in all these

16 7, Tabakin, Ann. Phys. (N.Y.) 30, 51 (1964).

17K, E. Lassila ef al., Phys. Rev. 126, 881 (1962) ; C. M. Shakin

et al., ibid. 161, 1006 (1967).
18 H, Bando, Progr. Theoret. Phys. (Kyoto) 38, 1285 (1967).
1R, Alzetta and J. Sawicki, Phys. Rev. 173, 1185 (1968).

references and in Kuo ef al® Our numerical results
corresponding to the second iteration of IIGE are
reproduced in Tables I-IV. For each 4 and nuclear
force considered we give two series of results: one for
Vo=1 (the actual nuclear force given), the BCS input
set (Eq, #a, 9,) for QTD13 being that of the last (second)
IGE solution; and another one for Vo1 determined
from the second IGE solution. The first few (two or
three) QTD13 eigenvalues are given for each case and
the percentage of the one-qp component of the corre-
sponding eigenvector is given in parentheses. The ¥V,
of the second IGE is always about 1.1, which means
that the gp interpretation of the lowest-lying (J7)
levels with the given force as the BCS pairing force may
be a reasonable approximation. Moreover, the differ-
ences between the corresponding QTD13 eigenvalues
and eigenvectors calculated with Vy=1 and V,%1 are
very small indeed. The results for both the forces
(Tabakin and Yale-Shakin) are generally very similar
for all the cases. The only characteristic difference is
slightly wider spacings between the first and the second
(higher) levels in the case of the Tabakin potential. No
results are given for the Yale-Shakin force for 4=121
because in this case the IGE conditions cannot be
satisfied and no solution is obtained [note the unstable
(singular) behavior of the HF energies already at
A =119 as indicated in Table V.

The observed energies are given in the last columns
of Tables I-IV. The data are taken from Refs. 20-
22. We see that the calculated second and third levels
(5257) lie considerably too high when compared

20E. J. Schneid, A. Prakash, and B. L. Cohen, Phys. Rev. 156,
1316 (1967).

21K, Yagi et al., Nucl. Phys. A111, 129 (1968).

22 M. R. Bhat ef al., Phys. Rev. 166, 1111 (1968).
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Tasre II. QTD13 energy eigenvalues of the first few levels of Sn!Y. For details see caption of Table I.

A=117 Tabakin Yale-Shakin
Jr Vo=1 Vo=1.146 Vo=1 Vo=1.137 Expt.
1/2+ 1.224(95) 1.193(93) 1.254(94) 1.201(92) 1.180
3.884(2) 3.773(3) 3.817(3) 3.667(4.8)
3/2% 1.368(96) 1.343(94) 1.381(95) 1.342(94) 1.340
3.164(~0)  2.991(0.1) 3.105(~0)  2.889(~0)
5/2+ 2.233(96)  2.213(94) 2.250(95)  2.215(92) 2.210
3.306(0.4) 3.134(0.7) 3.211(0.5) 3.004(1) 2.370
3.694(0.1) 3.542(0.2) 3.592(0.2) 3.405(0.4) (2.690)
7/2+ 1.907(96)  1.882(95) 1.912(96)  1.875(94) 1.900
3.717(0.2) 3.553(0.3) 3.608(0.2) 3.414(0.4)
11/2- 1.508(97) 1.488(96) 1.511(96) 1.475(94) 1.500
3.627(0.7) 3.499(1.4) 3.605(1.8) 3.446(3)

with the corresponding data. This may be because the
effective force is too weakly attractive, but it may
also mean that our gp description of the odd isotopes is
somewhat inappropriate (at least too crude). As for the
weakness of the force, we note that the lowest levels are
almost pure one-qp states while the second and higher

levels are almost pure three-qp states (very little .

one qp-three gp mixing). Clearly, the lower the level,
the more reliable the QTD13; for too high-lying states
five-qp modes may become not negligible. The role of
the unprojected higher-order spurions due to the
nucleon-number nonconservation is not clear, particu-

larly in the higher states. The only spurion projected
out*® has three-qp components only. Higher-order
spurions contain five and more qp components, but also
small one- and three-qp components (lying within our
Hilbert space).

The s.p. (valence neutron) HF energies correspond-
ing to the IIGE results of Tables I-IV are given in
Table V. These energies refer to the 2ds), level. They all
include the “kinetic” energy and the HF self-energy
parts. Typically, the standard s.p. level sequence is
reproduced (as §t, 2+, 4+, 2+ and 417), but at 4=119
a sudden change occurs in the relative position of the

TasLE III. QTD13 energy eigenvalues of the first few levels of Sn1®. For details see caption of Table I.

A=119 Tabakin Yale-Shakin

Jr Vo=1 Vo=1.136 Vo=1 Vo=1.128 Expt.

1/2+ 1.309(98) 1.298(97) 1.317(97) 1.298(96) 1.300
3.461(0.4)  3.293(1) 3.382(1) 3.182(2)

3/2+ 1.332(97) 1.317(96) 1.338(97) 1.314(95) 1.324
2.968(~0) 2.791(~0) 2.920(~0) 2.722(~0)

5/2+ 2.237(98) 2.228(97) 2.244(97) 2.227(95) 2.230
3.101(0.2) 2.936(0.4) 3.024(0.2) 2.835(0.3) 2.400
3.638(0.2) 3.509(0.4) 3.562(0.4) 3.407(1) 2.520

7/2% 2.099(95) 2.079(94) 2.107(95) 2.076(93) 2.090
3.607(0.4) 3.469(0.4) 3.531(0.4) 3.364(0.5)

11/2- 1.387(97) 1.370(96) 1.393(96) 1.364(94) 1.380
3.405(1.4) 3.282(2) 3.383(2) 3.242(3)
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TaBLE IV. QTDI13 energy eigenvalues of the first few levels of
Sn2L, For details see caption of Table I.

A=121 Tabakin
J* Voe=1 Ve=1.168 EXpt.
1/2+ 1.360(97) 1.343(96) 1.350
3.562(0.3) 3.421(1)
3/2+ 1.308(97) 1.292(96) 1.300
3.036(~0) 2.835(~0)
5/2+ 2.427(98) 2.416(96) 2.420
3.129(~0) 2.941(~0) 2.700
3.675(~0) 3.547(0.1) 3.010
7/2% 2.239(95) 2.218(94) 2.230
3.569(0.3) 3.432(0.3)
11/2- 1.357(97) 1.341(96) 1.350
3.426(1) 3.285(2)

2d3;, level (a sharp crossing with the 3sy2 level). The
results obtained with Vo=1 and V,#1 are very similar
(see Tables I-V).

The spectra of Tables I-IV can be compared with
those obtained by two of us®® with the Tabakin poten-
tial, with the same particle-hole excitation energies of
the core nucleons but with the s.p. energies of the
valence neutrons as assumed by Bando.!® These latter
energies are (except for 4=119 and 121) not very
different from those of Table V. While, by definition of
IIGE, the first J™ levels of the present work are much
better, the positions of §5* are not (e.g., for 4=119).

ALZETTA et al.
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3. SPECTRA AND ELECTROMAGNETIC
PROPERTIES OF THE EVEN
ISOTOPES OF TIN

For calculating the spectra and wave functions of the
even isotopes we have used the same reduced matrix
elements of the effective forces (Tabakin and Yale-
Shakin). The BCS input parameters were, for each
value of 4, calculated with the HF s.p. energies of the
valence neutrons (including the valence self-energy
parts) taken to be the arithmetical means of the
energies B, of the neighboring odd isotopes 4—1 and
A1 as taken from Table V (for 4=120 and the Yale-
Shakin force we take the values of 4A—1=119 of Table
V) ; the nuclear effective force is not modified (Vy=1).
The prescription of the arithmetical means for the s.p.
HF energies is somewhat arbitrary. We have examined
its consequences by repeating all our calculations, taking
for the isotope 4 the HF energies of 4—1; the corre-
sponding results were ‘only slightly different from those
we present below. The qp parameters E, #, and v are
calculated for the even isotopes from the BCS equations
by using these HF energies (corresponding to Vy=1).
Two theories are applied: (a) the pure two-qp theory
(QTD) and (b) the QSTD theory (or MTDA of Ref.
8) in which nuclear states are superpositions of zero-,
two-, and four-qp excitations. All the spurions due to
the nucleon-number nonconservation which are entirely
contained within a given Hilbert space are projected
out from the secular matrices. All the equations and
descriptions of the method are given in Refs. 7, 10, and
11. The ForRTRAN codes used for the computations of the
present work are those of Refs. 7, 10, and 11.

In Tables VI and VII we present some of our QTD
and QSTD eigenvalues for 4 =116, 118, and 120 for the
even parity (0%, 2+, 4+) and odd parity (3-, 5, 67,

TaBLE V. The HF s.p. energies (including the valence self-energy parts) .9, of odd Sn isotopes (117-121) obtained by the IIGE
method (second iteration) using the core renormalized (i) Tabakin and (ii) Yale-Shakin reaction matrix for Vo=1 and V,#1.

115 117 119 121
Vo=1 Tabakin  Yale-Shakin Tabakin  Yale-Shakin Tabakin  Yale-Shakin  Tabakin
By — B0 0.5562 0.5604 0.5010 0.4788 0.1743 0.1166 0.2775
By — By 1.7630 1.7566 1.8937 1.8839 1.8410 1.8417 2.0265
g0 — Bj® 2.8958 2.8233 2.5391 2.4057 1.2916 1.3437 1.7675
By — Fsy? 3.2452 3.2958 2.9934 3.0567 2.8180 2.9120 2.8810
115 117 119 121
Vo#1 Tabakin  Yale-Shakin Tabakin  Yale-Shakin Tabakin  Yale-Shakin  Tabakin
Ty — By 0.5612 0.5563 0.5123 0.4832 0.1635 0.1105 0.2670
Fyy0— Eg? 1.7619 1.7575 1.8914 1.8864 1.8438 1.8444 2.0288
By — Bspa® 2.8930 2.8270 2.5228 2.4053 1.2885 1.3436 1.7800
By — Egyed 3.2432 3.2971 2.9840 3.0608 2.8327 2.9241 2.8924
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TasLE VI. QTD and QSTD eigenvalues of the first few 0% levels of the even Sn isotopes with 4 =116, 118, and 120. Percentages
of the four-qp components of the corresponding QSTD eigenvectors are indicated (in parentheses). Experimental energies are given

for comparison.

116
Tabakin Yale-Shakin
QTD QSTD(I) QSTD(II) QTD QSTD(I) QSTD(II) Expt.
0.000 (—0.346) (5.1) (—0.206) (36.2) 0.000 (—0.333)(5.0) (—0.204) (36.1) 0.000
1.713 1.505(5.7) 1.520(6.0) 1.827 1.583(6.9) 1.600(7.2) 1.76
2.797 2.364(16.0) 2.366(16.2) 2.826 2.281(21.1) 2.282(21.3) 2.02
118 120
Tabakin Yale-Shakin Tabakin Yale-Shakin
QTD QTD QSTD(I) QSTD(II) Expt. QTD QTD QSTD(I) QSTD(II) Expt.
0.000 0.000 (—0.230)(3.6) (—0.119)(35.7) 0.000  0.000 0.000 (—0.247)(4.4) (—0.140)(35.3) 0.000
1.828 1.883 1.636(11.1) 1.653(11.2) 1.75 1.756 1.728 1.409(13.1) 1.451(14.3) 1.872
2.480 2.529 2.003(16.3) 2.015(17.5) 2.043  2.459 2.531 2.126(10.9) 2.155(12.8) 2.170

and 7-) for lowest-lying levels. The percentage of the
four-gp components of the QSTD eigenvectors is
indicated in parentheses.

In Table VI we present our J7=0% results. Two
variants of the QSTD theory are considered (labeled I
and II). A detailed description of these variants is
given in Ref. 11. The distinction between I and II
concerns a different treatment of the spuriousness due to
the nucleon-number nonconservation. In the case I the
gp vacuum (the BCS ground state) is assumed to be
totally free of spuriousness and thus the qp vacuum
(10)) components of the spurions to be projected out
are omitted ({0 |¢s')=0). In the case IT we project
out exactly all the spurions |ys,) entirely within the
QSTD Hilbert space [together with their constant
(or | 0)) components, i.e., {0|¥sp)<0]. In this latter
case, the most important BCS fluctuations of the
numpber-squared operator are eliminated [the spurion
g (A2—Ng) | 0), where No is the actual neutron
number]. The only practical difference between I and
II is the rather high (~369%,) percentage of the four-qp
components of the ground state (0;%) in case II.
This is due to the depletion of the | 0)-component of
| 0sF) through the projection of the spurion of N2— N,
Because of the four-qp correlations, the energy of the
0.+ level of QSTD is depressed in relation to the BCS
ground (a negative shift). In principle, one should
compensate all the remaining QSTD eigenvalues for
this small shift. We prefer to avoid this reinterpretation
for several reasons. For example, if one turns on the
two-gp-six-gp coupling by the same part of the qp-
transformed Hamiltonian Hyy, which is responsible for
the O;* energy depression, we may in the other states get
similar small shifts which could compensate for that
of 01+.

From Table VI we see that the agreement of the
position of the calculated 0+ level with experiment is
rather good. In fact, it is better in the present work
than in that of Refs. 10 and 11. The four-gp percentages
of | 0;,5t) are not very high.

From Table VII we see that the over-all agreement
with experiment of the calculated even-parity levels
210,57 and 4,5 57 is rather impressive; again, it is better
than that of Refs. 10 and 11. Unfortunately, no satis-
factory agreement with experiment is obtained for the
odd-parity states, particularly for the 37~ and 7;~ levels.
This failure to reproduce the odd-parity levels is
probably due mainly to the incorrect position of the
HF energy of the 1kup. s.p. level in relation to the
remaining HF energies (all these s.p. levels of the
valence neutrons are of positive parity). It probably
means that the interpretation of the %~ levels in the
odd isotopes as QTD13 eigenvalues for the application
of the IIGE method is much too crude or may be that
the experimental (IGE input) information on these
11~ levels is questionable.

The over-all fit to the data is usually measured in
terms of the quantity

xXP= Z[(Ecalc_ expt) 2/ Eexpt]; (1)

where Eexps is the observed level energy and E,,. is the
corresponding calculated energy; the summation runs
over all the observed levels with assigned spin and
parity of a given nucleus. We have calculated x2 values
for the levels of Tables VI and VII. For example, for the
isotope 116 and the QTD theory with the Yale-Shakin
force we find x?=1.268 MeV for the 13 known levels
(including 0;t) and x?=0.542 MeV if the worst fit
levels, 3;~ and 7:7, are excluded from the analysis. To
compare this with our previous calculations we may
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mention that for the corresponding QTD levels of
Table V of Ref. 11 we had x2=1.369 and 1.023 MeV if
3~ and 7y~ are excluded; for the corresponding QTD
levels of Table VI of Ref. 11, we had x2=3.221 and
2.442 MeV if 3;~ and 7, are excluded.

We turn now to the electromagnetic properties of
some of the calculated excited states. Let us concen-
trate on one isotope, 4 =116. One of the most important
observables is the collective E2 transition 2;%—0.*.
Since the respective eigenvectors do not contain
protons explicitly, we must use the concept of a con-
stant effective charge e, or construct the effective E2
operator from a microscopic theory.?? Following
closely the theory of Ref. 24 [Eq. (11)] and, for con-
sistency, assuming the s.p. energies of Bando,® we
computed the appropriate effective E2 operator (and
the corresponding theoretical effective charge matrix);
we include in the computation all the s.p. proton levels
contained between the magic numbers 8 and 126.
Such a large number of subshells involved is, in contrast
to the core polarization of the force, necessary here
because of the importance of the upper major shell.
The elements of this E2-operator (and thus of the
effective charge matrix) are very close to those of Ref.
23. For example, the elements of the calculated effective
charge matrix are only very slightly smaller than those
of Table I of Ref. 23. They are clustered in two groups:
one with values slightly over 0.6 and one with values
between 1.0 and 1.2.

In Table VIII we give the calculated QSTD values of
the reduced transition rate B(E2, 2;*—0;t) and of the
quadrupole moment of the 2,+ state, Q(2;+). The most
recent published experimental values of these two
observables appear to be 420 ¢2 F4% and +0.40-£0.30 b,
respectively. The predictions of Table VIII are too
small by a factor of 2-4 for both the observables
[Q(21*) is of the correct sign]. This is in contrast to the

TaBLe VIII. Values of the reduced transition rate B(I[2,
2,%—0,%) and of Q(2:™) of Sn1¢ calculated with e;=1 and with
the theoretical effective E2 operator. The QSTD (I and II ex-
plained in the text) eigenvectors are those of Tables VI and
VII; the force is Yale-Shakin.

=1 ex(n, n')
QSTD QSTD QSTD QSTD
A=116 (I) (1I) I (IT)
B(E2, 2,0+
196.5 145.0 115.9 85.8
(in €2F*)
Q(2H)
+0.05 +0.04
(in b)

28 M. Gmitro, A. Rimini, J. Sawicki, and T. Weber, Phys. Rev.
Letters 20, 1185 (1968).

24 M. Gmitro, A. Rimini, J. Sawicki, and T. Weber, Phys. Rev.
175, 1243 (1968).

25 P, Stelson et al., Phys. Rev. 170, 1172 (1968).

#6 J. De Boer, J. Phys. Soc. Japan Suppl. 24, 203 (1968).
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results of Refs. 23 and 24, where values much closer to
observation were reported. This is connected with the
fact that the partial contributions of the two-qp-two-
qp, two-gqp—four-qp, four-qp—two-qp terms (the terms
four-gp—four-gp are small) do not all add up coherently
with the vectors | 21t) and | 0/t) of the present work.
Incidentally, the corresponding QTD values of
B(E2, 27t—0,%) are significantly larger than those of
Table VIII [B(E2, 2;7+—0;t)=138.7 ¢ F* with
ex(n, n’) ], while the QTD values of Q(2,+) are smaller.
The calculated B(E2, 2;7—0:t) for the isotope 4=120
are still considerably smaller than those of Table VIII,
thus in a more dramatic disagreement with experiment.
The specific difficulty with 4=120 may be a direct
consequence of the incorrectness of the HF energies of
A=119 and A=121 as predicted by the IGE method
(as in Table V).

An interesting observable is the static magnetic
moment u(5;~) of the 5~ state. Bodenstaedt et al.?
give the following values of the corresponding g factor:

g5~ (A=116) = —0.065=-0.005,
g5,- (A =120) = —0.058-0.007.

If one uses the “bare” M1 operator (involving the
valence neutrons only) and applies it to our calculated
QSTD eigenvectors | 5;~), one obtains too large a value:
G- 29 (4=116)=0.121 and g, % (4=120)=
—0.062. The inclusion of all the contributions of the
diagrams of virtual excitations and deexcitations of the
core neutrons and protons leads to very important
reductions of gs,- in the direction of a better agreement
with experiment. Again using the same s.p. basis as in
the preceding calculation of the effective E2 operator
and following closely the method (even the FORTRAN
code is the same) of Ref. 24, we compute the total
effective M1 operator for the valence neutrons. With
this the g factors are then recalculated and we find
(QSTD):

gal_(theor) (A o 116) = —0081,
gs,-theon) (4 =120) = —0.027.

The agreement with experiment is much worse here
than in Ref. 24. The absolute value of g for 4=116
is too large because the theoretical ‘“effective M1
reduction matrix” elements of the excitations of the
core nucleons are too large (give too little reduction),
larger by about 509, than the corresponding elements
of Ref. 24. This too small reduction is due to the way
(variant S1, see Ref. 10) in which we have chosen here
to take into account the Pauli principle in the propaga-
tors. Due to the particular selection rules of the M1
operator this is the only case in which the choice of the
propagators is of importance. As for 4=120, the too
small absolute g follows from the properties of the

2 E. Bodenstaedt e al., Z. Physik 168, 370 (1962) ; Cooperation

of the Angular Correlation Groups of Bonn and Hamburg, Nucl.
Phys. 89, 305 (1966).
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F16. 1. Inelastic form factor squared | Fia |2, in Born approxima-
tion corrected as in Ref. 24, for the reaction Sn%(e, ¢’) Sn'6(2;%)
at 150 MeV. Curve A reproduces the results of the present work
for theory QSTD(I). The theoretical effective operator is used.
The force is that of Yale-Shakin. Curve B reproduces the corre-
sponding results of Ref. 24. The experimental error bars are taken
from Ref. 28.

| 57) vector. Thus gs,- is yet another observable badly
predicted for A =120 by the IIGE method.

Similarly, only poor results are obtained for the
inelastic electron scattering from the even isotopes with
the excitation of the 2;% and 3;~ states. The data are
those of Barreau and Bellicard® and refer to the bom-
barding electron energy of 150 MeV, and the scattering
angle varied between 45° and 80°. The (e, ¢/)EX form

o) .
S50, 8 FERYON R 5] P— }
pre
1] P
1,0 1 1ol ™
1
X expenmen
x
x "
X x
JO— \:
—
T T T T T T T T T
(+) .
5,0, 8 I e11)2 =gt ¥ = o2t
1.0k L 410
Lo
—x
x %
ool | %oy : Hmomnmg 0.0
N T T T T T T

F16. 2. Spectroscopic factors Sy (0%, Ji*) for (d, p) reac-
tions on the even tin targets with 4 =116 and 118, leading to the
lowest state of spin J~ of the odd-mass isotopes. The experimental
values (Ref. 20) are indicated as X, the present results are con-
nected by a dashed line (variant I of the QSTD theory) and a
solid line (variant II). The nuclear force is that of Yale-Shakin.

( 28 1;) Barreau and J. B. Bellicard, Phys. Rev. Letters 19, 1444
1967).
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factors squared are extracted from the differential
cross sections as

| Fin [2= 0 (Eo, 8) /2% (Mott) (Z=1).

In Fig. 1 we give the angular distribution of | Fi, |2
for the excitation of the 2% state in Sn' [the reaction
Snl6(e, ¢’) Sn6(2,+)] at 150 MeV. The theoretical
curve A was calculated as in Ref. 24 with the theoretical
effective E2 operator here based on the HF s.p. energies
of the present paper and with the QSTD (I) eigen-
vectors | O/7) and | 2;t). It is compared with the
theoretical curve B of Ref. 24 and with the error bars of
the data of Ref. 28. The angular distribution of the
theoretical curve A is reasonably consistent with the
data, but the absolute values are too small by a factor
of the order of 2-2.5. The theoretical prediction of Ref.

s @0
2 x + x +
2F 1 e F =32 1 T
0 ‘}p. ¢ vork
1,04 1.0 W—
.
- expenment quoted b
X
—— .
M /,’6 ’
e . m
% CI g
X
. T T T
i@ 0 T !
2F ¥ 1 e a2t ¥ =52t
1.0 1.0
« @
i P .
—_—
R e
]
_____ PR
¥ — 0.0

¥ T T T T T T
115 17 119 115 17 119 115 117 119

Fi16. 3. Spectroscopic factors .S, (J17, 0;F) /2J+1 for pickup
reactions on the even tin targets with 4=116, 118, and 120
leading to the lowest state of spin J~ of the odd-mass isotopes
with A =115, 117, and 119, respectively. The experimental data
of Ref. 21 for Sn!8(p, d)Sn!'7 are marked [1; the experimental
data for (d, ¢) reactions quoted in Ref. 3 are marked X. Present
results are connected by a dashed line (variant I) and by a solid
line (variant II). The nuclear force is that of Yale-Shakin.

24 (curve B) is in much better agreement with experi-
ment than the results of the present work. This fact is
consistent with the too small values of the B(E2) of
Table VIII. Had the constant effective charge e;=1
been assumed, curve A would have been shifted upwards
by 35%, still below the experimental error bars.

4, SPECTROSCOPIC FACTORS FOR ONE-
NEUTRON TRANSFER REACTIONS

In computing the spectroscopic factors® for stripping
(d, p) and pickup (p, d), (d,?) reactions both on the
even- and the odd-mass tin isotopes, we have used the
formulas and the FORTRAN codes of Refs. 5 and 19.
In Figs. 2-4 we compare our results with the spec-

‘troscopic factors extracted in the experimental works of

Refs. 20 and 21. The nuclear force is that of Yale-
Shakin but almost equal results were obtained for the

20 . Baranger and T. T. S. Kuo, Nucl. Phys. A97, 289 (1967).
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»t) for (d, p) reactions on the odd-mass targets

with 4 =115, 117, and 119, respectively, with J*=0% and 2* up to 3-MeV excitation energy. Present results are plotted on the right.
Among the experimental data (Ref. 20), plotted on the left, the states not labeled explicitly have an ambiguous (1%, 2+, 3*) spin as-
signment. The nuclear force is that of Yale-Shakin. (d) Spectroscopic factors Si=g)(Ja™, $17) for the (p, d) reactions on Sn!??, lead-
ing to the states of Sn'18 with J#=0% and 2+ up to 3-MeV excitation. Present results are plotted to the right and the experimental values

of Ref. 21 to the left. The nuclear force is that of Yale-Shakin.

Tabakin potential. The two variants of the QSTD
theory for the eigenvectors of the even isotopes, dis-
cussed in Sec. 3 and labeled I and II, are considered.
The agreement between the predicted and the “experi-
mental” data are about as good as that found by two of
us'® with the renormalized Tabakin potential of Ref. 10
and s.p. energies of Bando.!® The results of the variant
IT are always lower than those of the variant I and in
the case of the reactions on even targets the experi-
mental data generally lie between them. Figure 4
shows that the experimental peaks for the lowest O+
and 2;* final states of the reactions on the odd-mass
targets are well reproduced. In particular, for the 0"
states the variant I of the QSTD theory gives better
results, the peaks of the variant II always lying too
low. This depression of the results with the variant II
can be explained by the depletion of the | §) component
of the ground state eigenvectors | 0/F) as already
pointed out in Sec. 3.

5. SPECTROSCOPIC FACTORS FOR TWO-
NEUTRON TRANSFER REACTIONS

The two-nucleon transfer reactions have recently
received much attention both from the experimental
and theoretical sides. The importance of these reactions
lies in the natural, simple excitation of levels having
. two or more nucleons excited, particularly those of
collective character. In 1962, Yoshida® pointed out the
importance of the BCS pairing enhancement of the

8 S, Yoshida, Nucl. Phys. 33, 685 (1962).

spectroscopic factors in ground-to-ground transitions in
even-even vibrational nuclei where the superfluidity
effect is present. Recently, Gyarmati and Sawicki®
analyzed the problem of the spectroscopic (fractional
parentage) factors of the two-nucleon transfer reactions
in the framework of the qp theories QTD and QSTD
of vibrational superfluid nuclei. These spectroscopic
factors turn out to be quantities particularly sensitive
to the details of the wave functions (QTD and QSTD
eigenvectors). In particular, even small four-qp com-
ponents of a QSTD eigenvector can lead to important
two-qp—four-gp cross terms and significantly modify
the two-nucleon transfer amplitudes.

Several experimental groups have studied the double-
stripping and double-pickup [ (¢, ) and (p,f)] re-
actions in the even tin isotopes.® These nuclides do
indeed well exemplify the vibrational region, and that

"is why a detailed analysis of these reactions is important.

In the present work we do not attempt to analyze the
angular distributions in terms of the DWBA or another
theory, nor do we calculate the cross sections or their
branching ratios. We merely confine ourselves to a study
of the factors Gyrssr defined by Glendenning® for
states described in terms of harmonic-oscillator s.p.
wave functions. The quantum numbers L, S, J, and T
denote the orbital, spin, and total angular momenta and

31 B. Gyarmati and J. Sawicki, Phys. Rev. 169, 966 (1968);
Nucl. Phys. Al11, 609 (1968).

32 G. Bassani ef al., Phys. Rev. 139, B830 (1965) ; G. E. Holland
et al., Bull. Am. Phys. Soc. 12, 19 (1967); J. H. Bjerregaard
et al., Nucl. Phys. A110, 1 (1968).

# N. K. Glendenning, Phys. Rev. 137, B102 (1965).
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TasLE IX. Spectroscopic factors Gyy for the reaction Sn8(p, £) Sn16(J,*) calculated with the QTD and QSTD (I and II) eigenvectors
of Tables VI and VII of the Yale-Shakin force.
01+—-)01+ 01+->02+ 0{*’—)2 1+ 01+—)41+ 01+’—>51~
QTD QSTD QSTD QSTD QSTD QTD QSTD QSTD QSTD QSTD
N (9] [esy) 9] (II) €9) (I1) (I1) [€89)
0 0.0044  0.0041 0.0029 0.0017 0.0029 0.0062 0.0058  0.0042 0.0117 —0.00003
1 —0.0119 —0.0110 —0.0079 0.0007 —0.0079 —0.0261 —0.0250 —0.0195 —0.0873 —0.0361
2 0.0344  0.0305 0.0214 0.0164  0.0214 0.1017 0.0983 0.0768 0.5541 0.0925
3 —0.1599 —0.1464 —0.1053 0.0055 —0.1053 —0.6484 —0.6198 —0.4715 —0.0027
4 0.6396 0.5972 0.4188 0.2354 0.4188 0.0031 0.0037 0.0016
5 —0.0392 —0.0351 —0.0240 —0.0065 —0.0240

the isospin of the transferred pair, respectively. The
branching ratios and the absolute values of the cross
sections are essentially determined by these G factors.
They are specific superpositions of the actual fractional
parentage factors of all the possible configurations of
the two s.p. states of the two nucleons to be transferred.

In computing the G factors we have used the formulas
and the FORTRAN codes of Ref. 31. We confine ourselves
to the variant of the theory which takes into account
the differences between the qp vacuum of the nucleus 4
and that of the nucleus 442 (described as the case with
Au7%0 in Ref. 31). In fact, neglecting this effect leads to
serious errors. In the case of (¢, p) or (p, ¢) reactions we
have S=0, (L=J).

In Table IX we present some of our typical results for
the factors Gys, N=0, 1, 2, +-. for the reaction
Sn18(p, ) Sn'8(J,") calculated with the eigenvectors of
Sec. 3 corresponding to the Yale-Shakin force. Since the
characteristic phase factor with which Gws contributes
to the forward scattering amplitude is (—)?¥, it is
those states for which all the Gys with even IV are of
sign opposite to all the Gys with odd NV which are really
strongly excited. In fact, it is the case with the O;+—0,"
transition and with all the collective states. As stated
above, the differences between the Gysy of QTD and
QSTD (II) are rather important (smaller G for QSTD),
the G of QSTD (I) are intermediate between the two
(more similar to those of QTD). Similar results were
obtained for the Tabakin potential. For the latter force
we found Gy only somewhat (by 5-309,) smaller on
the average except for the 0;+—04s+ transition for which
some of the Gy are reduced by about a factor of 2 in
relation to those of Table IX.

By comparing the Gy factors of the present work
with those of Ref. 31 we note that although they all
have the same general qualitative and even semi-
quantitative features, they differ considerably in detail.
Unfortunately, we have as yet no DWBA or other
results on the angular distributions or the cross sections
in order to be able to examine critically the consequences
of these differences. Some related DWBA calculations

are now in preparation by Glendenning.?* What we can
say at the moment is that the general aspect, the
coherence, and the order of magnitude of our Gys of

Table IX are quite reasonable.

6. CONCLUSIONS AND FINAL REMARKS

The method of the IGE provides a unique deter-
mination of the s.p. HF energies of the valence nucleons.
The fundamental assumption of the method is the
interpretation of the appropriate energy levels of the
odd-mass isotopes of the single closed-shell vibrational
nuclei as simple pure one-qp excitations or, in the best
case, such excitations corrected for some residual qp
excitations. This assumption constitutes one of the
weaknesses of the method. While a statistical-mechanical
description such as the BCS model seems to be a reason-
able approximation for the even isotopes where all the
nucleons are paired off, it may be too crude for the
neighboring odd isotopés of the same elements. In fact,
the spectra of odd isotopes are generally rather delicate;
i.e., sensitive to details of the nuclear force assumed.
For example, if the excitations of the core nucleons are
taken into account only via a core-polarization re-
normalization of the nuclear force, the IGE results may
be poor owing to an incorrect treatment of the core
parts (e.g., the s.p. energies of the core). The nucleon-
number nonconservation and the related spuriousness
may influence any IGE results significantly. One must
at least minimize the fluctuation of the nucleon-
number expectation value in the ground state. In the
IIGE results of the present paper the number fluc-
tuations 8V are quite small (<8%). A warning should
be given here that all the conclusions are dependent on
the uncertainties of the input data (e.g., the choice of
the force, odd-even mass difference, observed levels
with assigned spin and parity of odd-mass nuclei).
This point has been demonstrated explicitly by one of

3D, Gv. Fleming, J. Cerny, and N. K. Glendenning, Phys. Rev.
165, 1153 (1968).
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us in Ref. 15 for the case of Ni isotopes. This feature is
not revealed in the present paper; it constitutes one of
its general weaknesses.

The results of the present work seem to be, at least in
part, disappointing. They are limited to only two types
of realistic nuclear forces. These forces are, however,
very reasonable and, in a number of previous analyses
of the structure of the Sn isotopes, have given satis-
factory results.

For the odd isotopes the first levels of each J~ are
brought to agreement with experiment by definition of
the method. The second levels of the same J7™ are
essentially pure three-qp states (with very small
one-gp components). The positions of the levels (51)s,3
are in very poor agreement with the available experi-
mental data. This may be due to the incorrectness of
the QTD13 theory for describing any but the lowest-
lying J~ levels; or it may be due to the incorrectness of
the HF s.p. energies resulting from possibly inappro-
priate input data of the IGE method. The disagreement
of the (§%)2;5 levels of QTD13 with the data is less
marked for 4=119 and 121.

The level positions of the first few low-lying even-
parity states of the even isotopes are in remarkably
good agreement with experiment except for the isotope
120. The QSTD eigenvectors have only small four-qp
components and the pure two-qp approximation of
QTD is reasonable except for calculating some
““delicate” observables. The odd-parity states are, for
all the even isotopes considered, in rather sharp dis-
agreement with the available data. This is probably
due mainly to the incorrectness of the HF energy of the
1%11/2 orbital following from the IGE method and the
(317), experimental levels.

The lack of coherence of all the two- and four-qp
components of the QSTD eigenvectors involved is
mainly responsible for the too small predicted transition
rates B(E2, 2;%—0,%) and the 2+ quadrupole moments,
Q(21%). The disagreement with the observed B(E2) is
particularly bad for 4=120. The specificity of 4 =120
is connected with a probably incorrect HF s.p. level
sequence, in this case as predicted by IGE. The mag-
netic moment of the 5;~ level is in tolerable agreement
with experiment for 4=116 and in poor agreement for
A=120. The inelastic electron scattering form factors
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for the excitations of the 2;* and 3, states at 150-MeV
bombarding electron energy are in poor agreement with
the data. The spectroscopic factors for the one- and
two-neutron transfer reactions are not at all inconsistent
with the existing data. There are serious uncertainties
in the extraction of the “experimental” spectroscopic
factors. On the other hand, careful DWBA and other
calculations of the cross sections and of the angular
distributions are necessary before we can really critically
evaluate the correctness of our predictions for the
spectroscopic factors. The present study has been con-
cerned with many aspects of several types of states of a
number of odd and even isotopes of one element. We
have seen how dangerous it is to draw general conclu-
sions about the value of a theory based on only partial
results. Indeed, while some properties of a given nuclear
structure can be well reproduced, others may be in
sharp disagreement with the data.

In summing up we may say that the present results
are a warning against too much optimism about the
indiscriminate applicability of the IGE method. It
appears that, at least in some cases, the method de-
mands too much and is a crude oversimplification of the
physical reality due to its very rigid conditions, particu-
larly suspect for the odd isotopes of single closed-shell
vibrational nuclei. An explanation of the failures of the
method could be sought in a stable deformation of the
HF field (the present calculations are based on the
assumption of a spherical nuclear s.p. basis). However,
the above-mentioned criticisms, on the one hand, and
the success of other non-IGE calculations based on a
spherical basis (cf. Refs. 10, 11, 23, and 24) on the
other, indicate that we are not yet obliged to abandon
the spherical picture of the average nuclear field for tin
and similar nuclei.
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