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The 0+-2* cross sections for inelastic proton scattering have been calculated for several target nuclei
in the 2s-1d shell. Inelastic cross sections are calculated in the distorted-wave Born approximation. Hartree-
Fock wave functions projected onto states of good angular momentum represent the initial and final states
of the nucleus. The cross sections are generally correct in shape, but too small in magnitude; it is suggested
that the latter feature results from the assumption of an inert core. To test this hypothesis, the Ne? cross
section is recalculated using a 20-particle wave function. The result compares more favorably with

experiment.

1. INTRODUCTION

MA]JOR objective of any theory of nuclear reac-
tions is to relate the observed fluctuations in cross
sections to the detailed structure of the many-body
system composed of the target nucleus plus the pro-
jectile. Heretofore, most reaction studies have made
use of only relatively simple nuclear wave functions,
namely, those based on the spherical shell model or the
macroscopic collective model. The use of these models in
reaction studies has been discussed exhaustively in the
literature.! Although the results so obtained have heen
fairly successful, it is well known that such primitive
nuclear wave functions are inadequate for nuclear-
structure calculations. This raises considerable doubt
as to their reliability for the scattering calculations. The
point has been emphasized by Glendenning and
Veneroni, who, in a study of inelastic proton scattering
from the even nickel isotopes, found that inelastic
scattering is rather sensitive to the details of a micro-
scopic description of the target.? Satchler® has given a
discussion of inelastic scattering based on the shell-
model description of nuclei situated near closed shells;
reaction studies which have been done since, namely,
A(p, p')A* and A(p,n)B, indicate that a more de-
tailed description of the nuclear form factor is required.
The macroscopic model has served a useful purpose
in the study of inelastic scattering from deformed
nuclei. It enables one to determine the multipolarity
of the transition under consideration and provides a
small amount of information about nuclear structure—
namely, the deformation parameter. While such a model
is convenient from a practical point of view, one would
nevertheless prefer a description of such processes in
terms of detailed microscopic wave functions such as
would be used in structure calculations. The use of such
wave functions enables one to study effects which are
difficult or impossible to analyze if the macroscopic
model is used. For example, the use of many-particle
wave functions makes it possible to study exchange
effects between the projectile and target nucleons, and
1 N. K. Glendenning, Phys. Rev. 114, 1297 (1959) ; R. H. Bassel
et al., tbid. 128, 2693 (1962); K. A. Amos, V. A. Madsen, and
I. E. McCarthy, Nucl. Phys. A94, 103 (1967).
2N. K. Glendenning and M. Veneroni, Phys. Rev. 144, 839

(1966) .
3 G. R. Satchler, Nucl. Phys. 77, 481 (1966).
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it becomes relatively easy to study scattering to un-
natural parity states, which could be excited via spin
flip if nucleons are used as projectiles.

A problem which does not arise when the macroscopic
model is used in distorted-wave Born-approximation
(DWBA) reaction calculations is that of choosing an
effective interaction. Instead, it is assumed that the
inelastic processes result from nonspherical components
in the optical potential. A Taylor expansion of the
optical potential in terms of the deformation parameter
is made and the first-order term in the expansion is
retained as the interaction which gives rise to inelastic
scattering.® In the microscopic description, the choice
of effective interaction is not so simple. A sum of
effective two-body forces between the projectile and
the target nucleon will be assumed in this paper. The
justification of such a choice will only be apparent after
the results of detailed calculations are compared with
experiment. As Satchler has suggested, the use of such
an effective interaction assumes that multiple scattering
is not important; however, if one uses phenomenological
optical potentials to describe the distorted waves then
multiple scattering is neglected only in the off-diagonal
parts of the scattering matrix. There is little that can be
said about the analytic form of the effective interaction
since it cannot, as yet, be calculated. The nucleon-
nucleon interaction may be chosen to be either the two-
nucleon ¢ matrix, or a spin-dependent phenomenological
interaction. The nucleon-a@ or nucleon-deuteron ¢
matrix may be chosen in a similar fashion. It is sug-
gested, however, that for the case of nucleon-nucleus
scattering the phenomenological projectile-target nuc-
leon interaction (for intermediate energies, 10-50
MeV) should not be radically different from the
residual two-body force in the structure problem since
the interaction occurs in the field of nuclear matter.

In recent years, there has been considerable progress
in our understanding of the underlying microscopic
structure of deformed nuclei. The Hartree-Fock (HF)
method of deformed orbitals®® has played a major role in

4 E. Rost and N. Austern, Phys. Rev. 120, 1375 (1960).

s F, Villars, in Proceedings of the International School of
Physics “Enrico Fermi”, Course XXIII, Nuclear Physics edited
by V. F. Weisskopf, (Academic Press Inc., New York, 1963);
G. Ripka, in Advances in Nuclear Physics edited by M. Baranger

an(il E. Vogt (Plenum Publishing Corp., New York, 1968),
Vol. 1.
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clarifying many of the ideas which produced a detailed
description of these nuclei. The HF method has been
applied to several nuclei in the (1p, 2s-1d) shells since
many of these nuclei are believed to have deformed
ground-state equilibrium shapes. An advantage of
working in this region of the Periodic Table is that the
number of particles is sufficiently small that it is pos-
sible to carry out calculations in which the usual
closed-shell or inert-core assumption is dropped.

The major objective of this paper is to formulate a
microscopic theory of inelastic scattering from deformed
nuclei using projected HF wave functions and then to
apply the theory to inelastic scattering of protons from
the even-even, N=Z, nuclei in the 2s-1d shell. The
nuclear wave functions for the target and residual
nucleus are obtained by projecting states of good J and
M from the “intrinsic” HF state. These wave functions
are then used to calculate nuclear form factors for
reaction studies.

In Sec. 2, the transition amplitude is discussed and
nuclear form factors are defined; detailed expressions
are given for the nuclear form factors for the case in

which the nuclear states are described by projected.

HF wave functions. The results of DWBA calculations
of inelastic cross sections are presented in Sec. 3, and
some of the details of the calculations are discussed.

2. TRANSITION AMPLITUDE AND
FORM FACTORS

A. General Formulation

Under the assumption that the projectile-target
interaction can be written as a sum of two-body inter-
actions, the DWBA transition amplitude for inelastic
scattering from a target containing 4 nucleons is

Tiy= AW, 0),(1- -+ 4) [ 40, 1) [ ¥i(1-+ - AWtP(0)).
1

The initial and final nuclear states are represented by
¥; and ¥y, and the initial and final projectile states by
the distorted waves ¥, and y,;. We assume that
integration over the internal coordinates of the projec-
tile has already been carried out, so that O stands for
the spin, isospin, and c.m. coordinates of the projectile.
The projectile-nucleon interaction is represented by
(0, 1); it may be the ¢ matrix, for instance, or a phe-
nomenological pseudopotential. For nucleon-nucleus
scattering, the major exchange term may be included
simply by writing

£(0, 1) (1—PuH)

in place of #(0,1), where Py¥ is the (Heisenberg)
operator which exchanges all the coordinates of particles
0 and 1.

Because of the assumption that the projectile-target
interaction is two-body in character, it is possible to
express the transition amplitude in terms of single-
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particle transition amplitudes. We begin by expanding
the initial and final nuclear states in a complete set
{om} of single-particle wave functions, where j stands
for all the quantum numbers (nljr) except for the z
component of angular momentum, which is denoted by
m. (Often, however, we shall write a for the set jom,,
the set 75, or even the set #.0,7, when no confusion will
result.) Thus

Vi(1ee e A)=A712 37 0a(1) W0 (2:+4), (2a)
Vp(1eeeA)=A"12 3 (1) ¥ (2-+-4). (2b)

The scattering amplitude then becomes
Tiy= % o | Wia) T, @A)

where the single-particle transition amplitude T is
given by

Ta= s (0)es(1) [ £(0, 1) | @a(1)¥:P(0)).  (4)

It is convenient to express both Ty and Tg as sums of
amplitudes for transfer of total angular momentum
(J, M),

Tiy= 3 (J:Ms JM | T M;)Tif™, (5a)
JM

Tav= 2, {juma, TM | jsrms)Tus"™, (Sb)
JM

and also to express ®;, and ®p in terms of angular

momentum eigenstates

Vo= D (JaMa, juma | JiM Y ;7444

JaM4

Y= D (JsMp, jsms | JMyy¥p' 545, (6b)
JBMp

(6a)

Then the relationship
Tiy"™= 3 Sy(if | ab) Tu’™ (N
ab
holds, where the spectroscopic amplitude Sy is given
by
S (if | ab) = ; U(jaJcd Tz | Jigs) (¥p’¢ || Wia?@). (8)
c

It is possible to decompose 7V still further into
amplitudes for transfer of definite L and S

Ty™= 3 (s, SMs | sips)
LMr;SMs
X LMy, SMs | JM )T:if“s7Mz,  (9)
TilSTML= " S;(if | ab) Tas2S7Mr, (10)
ab

Here si=s; is the spin of the projectile, and u: and uy
are its initial and final projections upon the z axis.
The sum over initial and final states of the entire system
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may easily be carried out to yield
kr 27,+1

OLSJ

do
(JQ),f (Mﬁ) ki 274157 (2L+1) (25+1) D
arsr= D | Tyt STHL[2, (12)
My,

With Eq. (7), the first step of our program is com-
plete, namely, to separate details of the reaction mech-
anism (given by Tw) from details of the nuclear struc-
ture (given by Sy). The single-partical transition ampli-
tude is of secondary concern to us; it may be evaluated
in a number of ways,® depending on the specific forms
of #(0,1) and the distorted waves. For example, if
£(0, 1) is central and spin-dependent, it may be written

¢(0,1)= Z (= 1) LASHTHMY; o5 (70, 71)
LSTM ‘

X s ™M (0)3rss™ (1), (13)
where the spin-angle tensor operator 3.5/ is defined by
> {LMy, SMg | TM YV ME(F) oM,

MIMS8

SrssM=

The operator gs™5 is a rank—s tensor in the spin space of
the particle; for spln- partlcles we take é,=1 and
6,=2S, where S is the spin operator. The distorted
waves for the projectile are of the form

WP (1) = 3 ¥y (k, 7)
ij
X 2 (i, su | jm )V m(R)*Yum;  (14)

mim

the spin-angle function Y, may be expressed in terms
of the spin states x* of the projectile as

Y= D (lma, su | jm YV im (F)x

mip

The various angular integrations and spin summa-
tions may be carried out using the techniques of Racah
algebra, with the result

TaSTML= 3" >~ (lymg, LMy | Lims)

Limsi lymy

X Vi (k) *¥ Vo (By) D 2 Quss (fi || Swsea |1 dr)

jijy LIS!

X[ W30y 1V s (1) Pl )P, (15)

0
where®

[ Losi ji)
Qussif= (5272028135, 0) {1
L s 7
Gill Buss |1 dr )= (J2/L282) (1282/32) (s: || os || s¢)
XLl Vil 4 )Qrss™,
5 G. R. Satchler, Nucl. Phys. A95, 1 (1967).

6 Symbol % stands for (2x+1)¥2, and { } is a standard 9-j
symbol; see Ref. 19.
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and the single-particle form factor f1g,% is given by
Jusa®(ro)= (go || Bzss [ 4a)

X/ on* (1) trer (1o, n)ea (M) rédn.  (16)

It is convenient to define a nuclear form factor
frss(r) by

Jrsr®(ro) = ; Sy (if | ab)frss™(r0); (17
then one has an equation for T';“S7Mr identical to Eq.
(15) except that frs;%(7s) is replaced by fr.ss™ (7).

The expressions given above are not commonly used
in scattering theory, although Satchler” does refer
briefly to them. We find the calculations easier to pro-
gram in this representation, and a convenient check on
the case with no spin-orbit coupling is provided by the
fact that

2 Ouss® G |l S || 47 )= {si || os || s7)

Jigf
X (i ” Yz ” Iy Y1055

The fact that in general L and .S may be different from
L’ and S’ (which are the angular momenta transferred
to the struck nucleus) simply reflects the fact that spin
flip may also occur before and after the collision as a
result of the spin-orbit interaction.

If the two-body interaction £(0, 1) is isospin-depend-
ent, trs7(re, 1) will be a function of the isospin co-
ordinates of the projectile and bound nucleon. One
could introduce a general formalism for handling isospin
at this point. However, when HF wave functions are
used, there occurs a natural separation of the spectro-
scopic amplitude Sy into a neutron part and a proton
part. This will be discussed in Sec. 2 B.

B. Evaluation of Spectroscopic Factor Using Projected
HF Wave Functions

We turn now to our primary concern, evaluation of
Sy using HF wave functions. As is well known, the HF
method consists of approximating the nuclear wave
function by a single Slater determinant,

®=(41)7* det{a}, (18)

where {¢} is a set of single-particle wave functions, or
orbitals. These functions are determined by the require-
ment that ® minimize the expectation value of the
fuclear Hamiltonian H, which leads to the coupled
eigenvalue equations

hﬁp)\;—e)\‘;o)\; (19)
where
B = 254 3 [ s 0 (00 ) (=Pl ),
(20)

7 G. H. Satchler, Nucl. Phys. 55, 1 (1964).
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with the u sum restricted to those orbitals used to con-
struct ®.

Generally speaking, the determinant ® is not an
eigenstate of J? or Jz, but this deficiency is easily
remedied. Since the rotation operator R(Q) commutes
with the nuclear Hamiltonian, the function R(Q)®
yields the same expectation value of H as ® does. This
“degeneracy’” suggests that we use a linear combination
of the functions R(Q)®, weighted so as to produce an
eigenstate of J2 and Jz. One finds that the appropriate
combination is

2 [ pa @ r@e, (1)
7 K

V=

8

which we write symbolically as

Vyy=Py'®= Y Pux’®. (22)
K

In general, the state ¥;j yields a higher expectation
value of H than ® does, because of the cross terms, but
one hopes the discrepancy is not large. Calculations in
the s-d shell confirm this hope, at least for low-lying
nuclear levels.® A better procedure would be to de-
termine the set {¢x} by minimizing (¥ | H | ¥) directly,
but this is a formidable task and until recently® has
not been attempted.

The nucleus is often represented as N nucleons out-
side a closed-shell core, and the core orbitals are not
varied in the HF procedure. In that case Eq. (20)
becomes

W) =h(@)+ 2 [ dryit ()06, (1= P ),
(23)

where /(2) is the Hamiltonian [Eq. (20)] for the core
orbitals and the sum over u is limited to the extra-core
orbitals in ®. Usually %, is not dealt with directly;
instead, its eigenfunctions are assumed to be shell-
model orbitals (harmonic-oscillator functions, for
instance), and its eigenvalues are taken from experi-
ment. As before, eigenstates of J? and J, are obtained
using Eq. (21), but because of the closed-shell core a
simplification occurs. The determinant ® may be written
as the antisymmetrized product of two determinants,
one of which represents the core nucleons. This latter
determinant has J?=0 and is thus invariant under
rotations. Hence, the net effect of the rotation operator
in Eq. (21) is to rotate only the extracore orbitals in

Whatever method is used to determine {gn}, we
assume that the nuclear wave functions are single

8 W. H. Bassichis, B. Giraud, and G. Ripka, Phys. Rev. Letters
16, 980 (1965) ; M. R. Gunye and C. S. Warke, Phys. Rev. 156,
1087 (1967).

9 M. Bouten, P. Van Leuven, and H. Depuydt, Nucl. Phys.
A94, 687 (1967); L. Satpathy and S. C. K. Nair, Phys. Letters
26B, 716 (1968).
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Slater determinants projected onto states of good J and
M by means of Eq. (22). In most of the calculations,
we assume the existence of a closed-shell core, identical
in initial and final states; however, in our final results
the core can always be taken to contain no particles.
Finally, we assume that the set {¢} has been made
orthonormal, since any nonorthogonal components
would make no contribution to the Slater determinant.

Our first task is to show that the summation over
single-particles in Eq. (3), and consequently in Eq. (7),
is restricted to states outside the core. This is easiest
to show in the notation of second quantization, using
fermion creation and annihilation operators, for then
the overlap integral in Eq. (3) may be written

Wpp | Wia )= ¥y | m5¥na | ¥s)
=0 (W; | Wi )~ (Y5 | nams™ | ¥;). (24)

The first term on the right side of Eq. (24) vanishes for
inelastic transitions, since the initial and final nuclear
states are orthogonal. The second term will also vanish,
if either a or b refers to a core state, because the core
has been unaffected by the projection procedures of
Eq. (22) (except for antisymmetrization) and is con-
sequently still filled.

We next turn to evaluation of the spectroscopic
amplitude Sy. If the nucleus is not spherical, the orbits
o\ will, in general, be of the form

(2% Z ij)‘ﬁpjm:
m
where {¢;m} is the complete set used earlier. Conse-
quently, an expansion of the determinant ® leads to

P=A71 3 Cindom (1) Br(—1), (26)
Nim

(25)

where ®,(—1) is the cofactor of ¢\(1) in ® and is itself
a normalized Slater determinant for 4—1 nucleons.

The projection operator Pyx’ must now be applied
to ®, and for this purpose we need a theorem concerning
it. From the definition of Pyx”, it may be shown that
Pux’ picks out states whose J2 and J, eigenvalues are
J(J+1) and K, respectively, and then changes the J,
eigenvalue from K to M. Consequently, Pyx’ trans-
forms under rotation like an irreducible tensor Aja.
The product of another irreducible tensor A4;, with
Pyrx’’ may therefore be written

AmPr?'= 2 (J'M', jm | JiM1)Broan (5 J'K)

J1My
(27)
and application of Pyx” then yields
Py Aim Py’ = (J'M', jm | JK )Bsy(7; J'K")
="M, jm | JK) 3 (T, jm’ | TM )

mip
X A Poux?’ (28).

(note that Byx has been singled out and then trans-
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formed to Bya). Setting K'=M’ and summing both
sides of Eq. (28) over all J/ and M’ results in

-PMKJAjm= Z Ajm’ E <],M,:jm ! JK>
m! JIM/y

X Ty g’ | TM )Py,

which is the desired theorem.
Using Eqgs. (26) and (29) to construct the nuclear

wave function Wy yields

\I’J}W: Z PMKJ@
K
=A72 Y i (1) D Ty gjm | TMY D, Cin?
NKm! M '

Jm J'u

(29)

X' My jm’ [ TK YPur”'®(—1). (30)

From the definitions of ¥;,74¥4 and V;,78M2 given by
Egs. (2) and (6), it follows by comparison with Eq.
(30) that

U, JaMa= 3 CM{TaMY’, juma | JiK:)
MM/ gimaK 5
XPMAMA'JACI)i)q(—' 1); (31&)
Uy,  BMB= Z C2(JsM5', jymy | J1K; )
MM/ gymaKy
X Papus’B®p(—1).  (31b)

The overlap integral needed for evaluation of Sy is
therefore given by

(Tple || ®7c)y= 3 3. (CR)*CM

AA2 mamb
X 2. ToMa,jama | JiKi ) (T Mg, jom, | J1Ky )
MaM B ,KiKf

X (B | Pararr,7 | ®iny). (32)

For simplicity, the normalization of the initial and
final nuclear states has been ignored in the derivation of
Eq. (32). It is clear, however, that

> Pux’®
K
will not be normalized to unity, even if ® is, and Eq.

(32) should therefore be multiplied by the normaliza-

tion factor
N=(N;Ns)~'2, (33)

where
Ni= ;| Wi)= 2 (®:| Pre’i| @),  (34a)
KK
Ny= (¥ | ¥ )= KZK/ (@r | Prxcr’t | 7). (34D)
The integrals appearing in Eqs. (32) and (34) are
evaluated by means of the integral representation [Eq.

(22)7] for Pux’. Consider the normalization integral,
which contains terms of the form

/ 9 Da (Q)* (@ | &), (35)

where &= R(2)®. The effect of R(2) on ® is to rotate
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each of th~e N extra core orbitals in ®. The core orbitals
in ® and & are identical, and so we find that

(®| &)= det(B), (36)
where B is an N XN matrix, with elements
By={er | 2w )= {en | R(Q) “Pﬂ>- (37)

The integral in Eq. (32) is treated in a similar
fashion, except that now terms of the form
[ 40 Du’ @) (@] 3.) (38)

are encountered. Here &, and &;, are normalized Slater
determinants for 4—1 particles, again with identical
core orbitals. It can be shown in this case that
(B | ®iy) is equal to the cofactor of By, in the deter-

minant det(B). An elementary theorem concerning
cofactors of determinants then permits us to write

(B | By )=y, det(B),

where by, is an element of the matrix b= B,

Most HF calculations are made without isospin
mixing, which means that each orbital is either a pure
neutron state or proton state. The summation in Eq.
(32) is therefore restricted by the condition m\ =17,
and the result vanishes unless 7,=75. One may thus
speak of the proton part .S;? or the neutron part S, of
the spectroscopic factor defined in Eq. (8).

(39)

3. PROTON SCATTERING FROM Ne¥, Mg,
Si%, and S%

A. Structure of 2s-1d Shell Nuclei

The projected HF method has been used with con-
siderable success in nuclear-structure studies of 2s—1d
shell nuclei.’® In most structure calculations it has been
assumed that the nuclei in this region are axially sym-
metric, although Bar-Touv and Kelson have made a
study of intrinsic HF spectra which indicates that there
are regions of asymmetry in the 2s—1d shell® An
additional assumption which is generally made is that
the O closed-shell core is inert; in this case Eq. (22)
becomes

Yyur= Pur’ Pk (40)
and the orbitals ¢, will be of the form
O Z Ci)\@:fm)\ (41)
7

and the subspace of the basis states is limited to the
2s-1d shell (i.e., 1dsj2, 2s12, and 1ds). The radial
dependence of the basis functions is taken to be that
of the harmonic oscillator, and the spherical single-
particle energies appearing in Eq. (23) are taken from
experiment. The residual two-body interaction is chosen

—

10 See Refs. 4a, 8, and 9.
1t J, Bar-Touv and I. Kelson, Phys. Rev. 138, B1035 (1965).
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TasLe 1. Energies and wave functions for axially symmetric, even-even, 2s-1d shell nuclei. Egy is the total HF energy, e, the energy
of each HF orbit, A the gap between occupied and unoccupied orbits, and 7, the s component of angular momentum of each HF orbit.
The last six columns give the projection of each HF orbit onto the spherical basis vectors.

Enp e, A, %f '

Nucleus (MeV) (MeV) (MeV)  mn 1dsi2,12 1ds/2,3i2 1ds/2,502 2s1/2,1/2 1ds2,72 1dasz,r2
Ne» —34.82 —14.27 8.2 3 0.7273 —0.5729 —0.3780
Mg —68.55 —16.12 1.6 i 0.7188 —0.6320 —0.2897

—10.96 2 0.9674 —0.2533
Siz8 —116.41 —17.94 7.0 3 0.5290 0.7967 —0.2922

—17.55 3 1.000

—14.07 3 0.6682 0.7440
Ss2 —159.06 —18.76 5.0 3 0.5757 0.7598 —0.3020

—17.76 £ 1.000

—16.11 3 0.6928 —0.6495 —0.3133

—14.48 2 0.7333 0.6799
Ar3 —211.89 —20.68 7.1 3 1.000

—20.40 3 0.4868 0.8716 —0.0576

—19.81 3 0.9960 0.0895

—16.87 § 0.6828 —0.3386 0.6475

—15.42 3 —0.0895 0.9960

to be a Rosenfeld mixture with Gaussian radial depend-
ence similar to that used by Ripka'?:

v(ij) = Vo exp(—wr®) $7:°%;(0.340.76:+ 6;), (42)

where Vo= —>50 MeV and p=0.29 F2, There has been
no correction for c.m. motion. The determinantal wave
function ®x is constructed in such a way that, along
with each single-particle state [Eq. (41)], one also
includes the time-reversed state

P-\= Z CJ')‘(_ l)j—mh‘Pi-'mx;
J

that is, a proton and neutron are put into each of the
states [Egs. (41) and (43)].
Recently, Bassichis ef al.'® have performed HF cal-

(43)

TasLE II. B(E2) rates in ¢?F* for 25— 1d shell nuclei.

Basis
Nucleus »=0.27 WS Experiment
Ne® 115.3 115.9 286.5
Mg 33.7 30.3 436.7
Si% 225.4 221.2 327.0
5% 20.0 18.1 264.9

12 G. Ripka, in Lectures in Theoretical Physics (University of
Colorado Press, Boulder, Colo., 1965), Vol. VIII c.

1BW. H. Bassichis, A. K. Kerman, and J. P. Svenne, Phys.
Rev. 160, 746 (1967).

culations in which the O core assumption was dropped
and the basis space extended to include the 1s, 1p, 2p,
and 1f states as well as the 2s-1d states. The_over-all
results of, their] calculations_are encouraging, and we
will makejuse of their Ne* wave functions, since the
core-polarization effects are included explicitly.

The results of HF calculations using the residual
two-body force given in Eq. (42), and a value of 0.27
F-% for the harmonic-oscillator parameter »=mw/#,
are given in Table I. The particular choice of » used
here is based on a study of HF spectra and B(E2)
rates" using basis functions with Wood-Saxon radial
dependence.”® The E2 transition rates were calculated
from the expression

B(E2)=(2J:++1) >

wM My

A
| (y | 20 eVt (k) | i) | 2,
k=1

(44)

with e; equal to e for protons and 0 for neutrons. The
results are compare with experiment in Table II. For
completeness we also give the Wood-Saxon results since
only the Ne? result appears elsewhere. The Mg? and
S% results are very low for both sets of basis functions
and it is quite clear that the introduction of the usual
effective charges of 1.5¢ for protons and 0.5¢ for neu-

trons will not be sufficient to yield reasonable agree-

“4W. F. Ford and R. C. Braley, Nucl. Phys. A126, 671 (1969).
(1;62;' F. Ford and R. C. Braley, Bull. Am. Phys. Soc. 13, 1654
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Tapre 1II. Parameters used in the optical-model potential U (r) deﬁned in Eq. (48).
(Radii are obtained in the usual fashion, R, =7,413.)
(£p) Vo W Vi 7o 7s 71 a a a1
(MeV) (MeV) (MeV) (MeV) (¥) (1 (1) (I () (F)
Ne (18.2) 47.45 7.5 5.1 1.185 0.942 1.042 0.721 0.568 0.488
Ne (18.2) 45.2 6.18 8.5 1.20 1.20 1.20 0.65 0.47 0.65
Mg (17.35) 49.14 8.064 5.29 1.174 1.19 1.06 0.736 0.562 0.546
Mg (17.35) 47.3 5.73 7.65 1.20 1.20 1.20 0.64 0.50 0.64
Si% (17.5) 55.54 6.53 7.13 1.10 1.37 1.10 0.633 0.600 0.585
Siz8 (17.5) 42.8 11.3 7.5 1.30 1.25 1.30 0.62 0.44 0.62
S% (17.5) 52.14 6.12 5.56 1.15 1.32 0.85 0.654 0.547 0.41
S% (17.5) 42.4 8.62 7.5 1.30 1.30 1.30 0.62 0.4 0.62
ment with experiment. Future studies of the asymmetric and
solutions for these nuclei should clarify some of the
trag (ro, 11) =5.2(3 470 71) exp[— (/1.85)%]. (47b)

structure problems generally associated with these
nuclei. The value of B(E2) for Ne® using the wave
functions of Bassichis ef al. was found to be 80¢? F*.
This is quite low but is to be expected since they used a
rather large value of »(0.385 F~2; see Ref. 13).

B. Direct Interaction

The calculation of microscopic form factors for in-
elastic scattering requires a knowledge of the nucleon-
nucleus interaction. At the present stage of develop-
ment, theories of the nucleus and reactions are not suffi-
cient to provide such a force. Instead, either a phe-
nomenological interaction or the two-nucleon ¢ matrix
must be used.

We have chosen a phenomenological spin-dependent
interaction which was used by Glendenning and Ven-
eroni in a recent study of inelastic scattering. These
authors assumed_the two-body interaction to be im-
portant only in even states and used an interaction of
the form

V(?’) =—352 exp[—— (7’/185)2] (PTE+06PSE) s
(45)
where Prg and Pgsg are projection operators for the
triplet-even and singlet-even states, respectively. This
force is found, to approximately reproduce the low-

energy neutron-proton data.
In terms of single-particle operators

V(ir)y=— 52[0.3(1+%10'11) —0.1 (%"f“to"vl) Go* 61]
X exp[— (7/1.85)%],

where = and =; refer to the isospin of the projectile and
bound nucleon, respectively. Comparing Eq. (46) with
Eq. (13), we see that

(46)

trog (1’0, 7’0) = 15‘.6(1—"10 11) exp[ (7’/1 85)2] (47&)

Because the isospin state of the projectile does not
change during the scattering event, the matrix element
of 7o+®1 will be 41 when projectile and target nucleon
are like nucleons and — 1 when they are unlike nucleons.
Hence, the form factor can be written as a sum of two
terms, one for protons and one for neutrons. We point
out that the strength of the free two-nucleon potentials
like that above must usually be increased in order to
account for the participation of core nucleons in the
reaction. In Sec. D following, this matter is discussed in
greater detail when the result for a 20-particle cal-
culation on Ne® is presented.

The distorted waves used to represent the projectile
are solutions to the Schrodinger equation with an optical
potential
U(r)=Ve(r)— VoV (r) — (4i/as) Wsps(r)

—Vis(6-awsr)prs(r), (48)

where V,(r) is the Coulomb term, V is the strength of
the real potential, Wy is the strength of the surface

IU?F s AN

—

il iro), mev

Radius, r,F

Fic. 1. Scalar form factors for 2+ states in Ne%, (Macroscopic
model ~—--; Hartree-Fock — ——; unrestricted Hartree-Fock
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absorption, and Vipg is the strength of the spin-orbit dependence:
term. The term pV(r) is the usual Wood-Saxon form . 1
. . . , ro—Ro Ro—n\ |~
factor, and pgs(7) and prs(7) are derivatives of functions Fros (1)) =Cy | 2+ exp |—— ) + exp ,
like pV, but with appropriate radius and diffuseness. a a

C. (0t-2%) Form Factors for Ne20

The microscopic nuclear form factor frs;¥/(r) for
inelastic scattering was defined in Eq. (17). For the
inelastic scattering of nucleons .S will be 0 or 1, since
so=%. The form factor fris¥/(7) is called the vector
form factor and it is this term which gives rise to spin-
flip transitions. The macroscopic form factor is pro-
portional to the derivative of the optical potential
which is used to fit the elastic scattering.* In keeping
with convention, this form factor is assumed spin-
independent, and has a derivative Wood-Saxon radial

(49)

where C; depends on the multipolarity of the transition,
the optical-model parameters, and the deformation
(Bs) of the nucleus. The well parameters, Ry and g,
refer to the radius and diffuseness of the optical poten-
tial, and 7 is the separation between the projectile and
the nuclear surface. If Up is the strength of the optical
potential,

CJ=ﬁJ(UoR0/aj).

In the discussion which follows, we shall refer to re-
stricted and unrestricted form factors. By unrestricted
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we mean that the HF calculations are carried through
without an O core and with the enlarged basis space
(1s, 1p, 2s, 1d, 2p, 1f) as was done by Bassichis et al.
The results of our calculations which were presented
in Table I are of the restricted type.

In Fig. 1, we present the scalar form factors for
Ne®. The other nuclei (Mg, Si®¥, S%2) have form fac-
tors with the same general shapes but the magnitudes
vary widely when the restricted wave functions are
used. The vector form factors for the microscopic cal-
culation are not shown as it was found that their magni-
tudes were smaller by a factor of several hundred than
the scalar form factors, indicating that the spin-flip
mechanism is relatively unimportant in the excitation
of this type of state. A similar result was found by

Ogm; deg

Glendenning and Veneroni for the excitation of the
2;% states in the even Ni isotopes. The radial shapes of
the scalar and vector form factors differ very little.

The projected HF form factors in Fig. 1 differ in
magnitude by a factor of 2—the unrestricted form
factor being the larger. We estimate that about % of
the enhancement is due to the use of different values
of ». Clearly then, the core contribution is very im-
portant. The positions of the maxima of the form fac-
tors differ by about 0.4 F with the unrestricted one
having its peak at 3.1 F. The macroscopic form factor
shown for comparison was calculated using the param-
eters (see Table III):

B;=0.53, Us=452MeV, Ry=3.26F, a=0.65F.
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D. Inelastic Cross Sections (0+=21)

The differential cross sections are calculated in the
DWBA, and exchange effects between the projectile
and target nucleons are neglected. While one would
expect DWBA to be reliable for the excitation of col-
lective states, the question of the importance of
exchange effects cannot be answered hastily without a
careful study in which these effects are accounted for
explicitly.1

The differential cross sections for elastic and in-
elastic scattering have been calculated and the results

18K. A. Amos, V. A. Madsen, and I. E. McCarthy, Nucl.
Phys. A94, 103 (1967).

are compared with experiment?” in Figs. 2-5. The
nuclear wave functions used in each of these inelastic
calculations are of the restricted type. Each set of cross
sections has been calculated with two sets of optical
potentials, Table III gives the optical-model param-
eters [see Eq. (48)] which were used. (For each
nucleus, the first set gives the best fit to the elastic
scattering.) Parts (a) and (b) of each figure correspond
to results obtained using optical potentials which yield
a best fit to the elastic scattering, while in (c) and (d)
the optical potentials yield the best results for inelastic

7 G. M. Crawley and G..T. Garvey, Phys.- Rev. 160, 981
(1967); G. M. Crawley, Ph.D. thesis, Princeton University, 1967
(unpublished).
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(c) Elastic scattering.
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scattering. The numbers in parentheses at the right of
the legends for inelastic scattering are normalizations
in the microscopic cases, and deformations in the
macroscopic cases.;The incident proton energy (lab)
was 17.5 MeV for all cases except Ne®, for which the
incident proton energy was 18.2 MeV.

The results for Ne? and Mg? are presented in Figs.
2 and 3, respectively. For the case of Ne¥, the fit to the
elastic scattering 2(a) is excellent, but the inelastic
results 2(b) are not at all satisfactory for either the
microscopic or macroscopic model. On the other hand,
if the optical-model parameters are varied in such a
way as to obtain the best inelastic results 2(d), then
the quality of the elastic scattering 2(c) is worse. It is
rather clear in this case that the microscopic model
yields the better shape for the inelastic cross section,

eqm', deg

although the magnitude of the theoretical result is
under estimated by a’factor of 4.14. The deformation
parameter obtained from the macroscopic model
(82=0.53) "is 'in poor agreement with experiment
(0.87).18 i B otel w4 B,
In the case of Mg* the situation is quite similar,
with the inelastic fits being of generally low quality—
especially for angles beyond 90° if the optical potential
used is that which yields the best elastic scattering. If
the inelastic optical potential is used then the magni-
tude for the inelastic cross section is still under esti-
mated by a factor of 4.11 in the microscopic case, but
it is difficult to say whether the microscopic model or

18 Nuclear Data, Compiled by K. Way ef al. (Academic Press
Inc., New York, 1965).
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the macroscopic model yields the better shape; both
are quite good.

We turn now to the results for the cases of Si?#® and
S%, which appear in Figs. 4 and 5. The elastic scattering
“best-fit” potentials clearly give unsatisfactory results.
Variation of the optical potential improves matters
considerably for Si?® [4(d)], except in the forward
direction. The S* inelastic results do not have a good
shape and the magnitude is very poorly predicted
compared with results for the other nuclei.

We return now to the Ne¥ calculation which was
discussed in Sec. C above, i.e., the unrestricted (20-
particle) calculation. The inelastic cross sections ob-
tained using the above-mentioned form factors are
presented in Fig. 6. As in the restricted case, the results
obtained using the elastic optical potentials do not
have the proper shape. The shape which results from
use of the inelastic optical parameters (Table III) is
quite satisfactory. Furthermore, we note in this case
that the differential cross section is under estimated by
a factor of only 2.9, indicating the importance of in-
cluding the core nucleons in such calculations. Based on
this result one finds that the vacuum interaction has
to be enhanced by a factor of 1.7.

4. SUMMARY AND CONCLUSIONS

Detailed microscopic wave functions have been used
to study the inelastic scattering of protons from several
2s-1d shell nuclei. The interaction between the projec-
tile and target nucleus was assumed to be a sum of two-
body forces. Transition amplitudes for the inelastic
excitations were calculated using DWBA.

The nuclear wave functions have been obtained by
projecting states of good angular momentum from
deformed intrinsic states, where these states result from
minimizing the HF energy for the system under con-
sideration. Most of the calculations are based on the
assumption that O constitutes an inert core but we
include a reaction calculation for Ne® in which this
assumption is dropped. Relaxation of this assumption
enables one to determine the enhancement of the vac-
uum interaction due to the participataion of core nuc-
leons. For the case of Ne®, it was found that the inclu-
sion of the core reduces the required enhancement
factor from 2.04 to 1.70.

Concerning the over-all comparisons with experiment,
we have seen that the general shapes of the angular
distributions are fairly good if one does not make use of
the optical parameters which best fit the elastic scatter-
ing. However, we did find that the results for Si?® and
S% were not as satisfying as for Ne? and Mg*, Also, as
one would expect, the magnitudes were quite low when
the restricted type form factors were used. The poor
quality of the inelastic results for Si?® and S* could be
due to the fact that the simple HF picture does not pro-
vide an adequate description of these nuclei. There are
indications that both of these nuclei may require some
admixture of spherical components in their wave
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Fi1G. 6. Cross section for inelastic (Q= —1,63 MeV) scattering
of 18.2-MeV protons from Ne2, with form factors calculated
using unrestricted HF wave functions. The solid and dashed
lines show the results using optical parameters which optimize
the inelastic and elastic fits, respectively.

functions in order to obtain a good description of their
structure.?

The fact that the distorted waves which are generated
by ‘“‘elastic” optical potentials do not give good fits
to the inelastic scattering is not surprising. In the
search for such potentials, it is the asymptotic part of
the scattered wave which is important; in the reaction
calculation, the shape of the scattering wave function
in the nuclear interior and near the nuclear surface is
important. There have recently been investigations by
Schenter® in which ‘“true” optical potentials were
calculated in terms of the nucleon-nucleon interaction
and the ground-state wave function for the target. He
found the wave function for the projectile to be greatly
reduced in the nuclear interior when compared to wave
functions generated by a phenomenological potential
having the same phase shifts. The use of scattering
wave functions based on this approach will, hopefully,
be applied to inelastic scattering problems in the near
future.

Some of the structure problems have already been
mentioned. However, the incorrect asymptotic behavior
of the harmonic-oscillator functions must not be over-
looked. It would be more realistic to use radial functions
such as those generated by a Wood-Saxon well. The use
of such functions may have a significant affect on the
form factors and hence the inelastic cross sections. A
program for such a study is being undertaken by the
present authors.
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