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Inelastic Scattering Calculations with Projected Hartree-Fock Wave Functions
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The 0+-2+ cross sections for inelastic proton scattering have been calculated for several target nuclei
in the 2s-1d shell. Inelastic cross sections are calculated in the distorted-wave Born approximation. Hartree-
Fock wave functions projected onto states of good angular momentum represent the initial and 6nal states
of the nucleus. The cross sections are generally correct in shape, but too small in magnitude; it is suggested
that the latter feature results from the assumption of an inert core. To test this hypothesis, the Ne" cross
section is recalculated using a 20-particle wave function. The result compares more favorably with
experiment.
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MAJOR objective of any theory of nuclear reac-
.I tions is to relate the observed fluctuations in cross

sections to the detailed structure of the many-body
system composed of the target nucleus plus the pro-
jectile. Heretofore, most reaction studies have made
use of only relatively simple nuclear wave functions,
namely, those based on the spherical shell model or the
macroscopic collective model. The use of these models in
reaction studies has been discussed exhaustively in the
literature. ' Although the results so obtained have been
fairly successful, it is well known that such primitive
nuclear wave functions are inadequate for nuclear-
structure calculations. This raises considera, ble doubt
as to their reliability for the scattering calculations. The
point has been emphasized by Glendenning and
Veneroni, who, in a study of inelastic proton scattering
from the even nickel isotopes, found that inelastic
scattering is rather sensitive to the details of a micro-
scopic description of the target. ' Satchler' has given a
discussion of inelastic scattering based on the shell-
model description of nuclei situated near closed shells;
reaction studies which have been done since, namely,
A(p, p')A* and A(p, m)8, indicate that a more de-
tailed description of the nuclear form factor is required.

The macroscopic model has served a useful purpose
in the study of inelastic scattering from deformed
nuclei. It enables one to determine the multipolarity
of the transition under consideration and provides a
small amount of information about nuclear structure—
namely, the deformation parameter. While such a mode1

is convenient from a practical point of view, one would.

nevertheless prefer a description of such processes in
terms of detailed microscopic wave functions such as
would be used in structure calculations. The use of such
wave functions enables one to study eGects which are
difFicult or impossible to analyze if the macroscopic
model is used. For example, the use of many-particle
wave functions makes it possible to study exchange
eGects between the projectile and target nucleons, and

' N. K. Glendenning, Phys. Rev. 114, 1297 (1959);R. H. Bassel
et al. , ibid. 128, 2693 (1962};K. A. Amos, V. A. Madsen, and
I. E. McCarthy, Nucl. Phys. A94, 103 (1.967).

2N. K. Glendenning and M. Veneroni, Phys. Rev. 144, 839

g G. R. Satchler, Nucl. Phys. V7', 481 (1966).

it becomes relatively easy to study scattering to un-

natural parity states, which could be excited via spin
Qip if nucleons are used as projectiles.

A problem which does not arise when the macroscopic
model is used in distorted-wave Born-approximation
(DWBA) reaction calculations is that of choosing an
eGective interaction. Instead, it is assumed that the
inelastic processes result from nonspherical components
in the optical potential. A Taylor expansion of the
optical potential in terms of the deformation parameter
is made and the first-order term in the expansion is
retained as the interaction which gives rise to inelastic
scattering. In the microscopic description, the choice
of eGective interaction is not so simple. A sum of
eGective two-body forces between the projectile and
the target nucleon will be assumed in this paper. The

justification of such a choice will only be apparent after
the results of detailed calculations are compared with
experiment. As Satchler has suggested, the use of such
an eGective interaction assumes that multiple scattering
is not important; however, if one uses phenomenological
optical potentials to describe the distorted waves then
multiple scattering is neglected only in the oG-diagonal
parts of the scattering matrix. There is little that can be
said about the analytic form of the eGective interaction
since it cannot, as yet, be calculated. The nucleon-
nucleon interaction may be chosen to be either the two-
nucleon t matrix, or a spin-dependent phenomenological
interaction. The nucleon-n or nucleon-deuteron
matrix may be chosen in a similar fashion. It is sug-

gested, however, that for the case of nucleon-nucleus
scattering the phenomenological projectile-target nuc-
leon interaction (for intermediate energies, 10-50
MeV) should not be radically different from the
residual two-body force in the structure problem since
the interaction occurs in the field of nuclear matter.

In recent years, there has been considerable progress
in our understanding of the underlying microscopic
structure of deformed nuclei. The Hartree-Fock (HF)
method of deformed orbitals4 has plaved a major role in

4 K. Rost and ¹Austern, Phys. Rev. 120, 1375 (1960).
4'F. Villars, in Proceedings of the International School of

Physics "Enrico Fermi", Course XXIII, nuclear Physics edited
by V. F. Weisskopf, (Academic Press Inc. , New York, 1963);
G. Ripka, in Advances in nuclear Physics edited by M. Baranger
and E. Vogt (Plenum Publishing Corp. , New York, 1968),
Vol. 1.
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clarifying many of the ideas which produced a detailed
description of these nuclei. The HF method has been
applied to several nuclei in the (1p, 2s-1d) shells since
many of these nuclei are believed to have deformed
ground-state equilibrium shapes. An advantage of
working in this region of the Periodic Table is that the
number of particles is suKciently small that it is pos-
sible to carry out calculations in which the usual
closed-shell or inert-core assumption is dropped.

The major objective of this paper is to formulate a
microscopic theory of inelastic scattering from deformed
nuclei using projected HF wave functions and then to
apply the theory to inelastic scattering of protons from
the even-even, E=Z, nuclei in the 2s-id shell. The
nuclear wave functions for the target and residual
nucleus are obtained by projecting states of good J and
M from the "intrinsic" HF state. These wave functions
are then used to calculate nuclear form factors for
reaction studies.

In Sec. 2, the transition amplitude is discussed and
nuclear form factors are de6ned; detailed expressions
are given for the nuclear form factors for the case in
which the nuclear states are described by projected
HF wave functions. The results of DWBA calculations
of inelastic cross sections are presented in Sec. 3, and
some of the details of the calculations are discussed.

particle transition amplitudes. We begin by expanding
the initial and final nuclear states in a complete set
Iy,„}of single-particle wave functions, where j stands
for all the quantum numbers (r&jlr) except for the s
component of angular momentum, which is denoted by
m. (Often, however, we shall write a for the set j,te„
the set j„oreven the set e,L,~, when no confusion will
result. ) Thus

@;(1 A) =A-O' Q q. (1)%;.(2" A), (2a)

4'r(1 ~ A) =A—'I' g qg(1)%;&,(2 ~ A).
b

The scattering amplitude then becomes

T'f= 2 Ht~ I+'.)T.»

(2b)

where the single-particle transition amplitude T~ is
given by

T.,= g,&-&(0)s,(1) I t(O, 1) I v. (1)y,&+&(0)). (4)

It is convenient to express both T,y and T b as sums of
amplitudes for transfer -of total angular momentum
(J, M),

T;r= Q (J;M;, JM
~
JyiVr)T;f ~,

2. TRANSITION AMPLITUDE AND
FORM FACTORS

A. General Formulation

Under the assumption that the projectile-target
interaction can be written as a sum of two-body inter-
actions, the DWBA transition amplitude for inelastic
scattering from a target containing A nucleons is

T;,=a &P,&-&(0)e,(1 ~ ~ a)
~
t(0, 1)

~
e,(1 ~ ~ .a)P;&+&(0) &.

The initial and Anal nuclear states are represented by
4'; and C I, and the initial and final projectile states by
the distorted waves &t,&+& and Pq& &. We assume that
integration over the internal coordinates of the projec-
tile has already been carried out, so that 0 stands for
the spin, isospin, and c.m. coordinates of the projectile.
The projectile-nucleon interaction is represented by
t(0, 1); it may be the t matrix, for instance, or a phe-
nomenological pseudopotential. For nucleon-nucleus
scattering, the major exchange term may be included
simply by writing

t(0, 1) (1 EoP)—
in place of t(0, 1), where I'OP is the (Heisenberg)
operator which exchanges all the coordinates of particles
0 and 1.

Because of the assumption that the projectile-target
interaction is two-body in character, it is possible to
express the transition amplitude in terms of single-

T~= Q (j.r»., J3E
~
Jgr»a)T. g'~,

JM
(Sb)

and also to express 4';, and 4'~b in terms of angular
momentum eigenstates

Vjg= Q (JsMs, j&nsg
~ Jr')+ra s s. (6b)

Then the relationship

T.tzM Qg (zf
~

ob)—T~J&&f

It is possible to decompose T ~ still further into
amplitudes for transfer of de6nite L and 5

LMz„SMg

X (LMr, SMs
~
JiV)T,P"~', (9)

T. Lss&&rg P g (~f ~
ob) T Iss&&fr. (10)

Here s;=sf is the spin of the projectile, and p; and pf
are its initial and 6nal projections upon the s axis.
The sum over initial and anal states of the entire system

holds, where the spectroscopic amplitude SJ is given
by

~~(~f I ~b) = Z fJ(j JcJJt I J'j~) &+t~" II +"') (g)
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(
do re s

ky 2JI+1 o«g
dQ;r 2s jis Is; 2J,+1«g (21.+1)(2S+1) '

) T.p»iver. Is

With Eq. (7), the first step of our program is com-

plete, namely, to separate details of the reaction mech-
anism (given by T,s) from details of the nuclear struc-
ture (given by SJ).The single-partical transition ampli-
tude ls of sccondRry conccI'n to us; lt IHay bc eva1uatcd.
ln R nulnbcr of ways~ depcndlng on the spcclGC forms
of j(0, 1) and the distorted waves. For example, it
t(0, 1) is central and spin-dependent, it may be written

i(0 1)= Z (—1) ""j~»(«, rt)

x3«g {0)Brag (1), (13)

where the spin-angle tensor operator Spate~ is de6ncd by

518m~= Q {IMr., SMs ) JM &I'I~s(r)op~'.
2lfI,M8

Thc opc1'atol 0'8 8 ls a rank-s tensor in thc spin space of
the particle; for spin--', particles we take co=I Rnd

4~=28, where 8 is the spin operator. The, 'distorted
waves for the projecti1e are of the forIn

P~(+) (r) —Q Pi.(+) (P
lj

~Z«, "l~ )I ™(&)*e.;; (14)
fA Ps

the spin-angle function 'tji„"may be expressed in te~~s
of thc spin states X,~ of thc projectile Rs

'gt, g~= g &A)s[, sy, Ijr)$)ri '(r)x,"

Thc various angular lntegratlons and spin suInlna-

tions Inay be carried out using the techniques of Racah
algebra, , vrith the result

T.sn"~' QQ (lyr)sr, LMr, =) I;r)s;)
lygs lyme

xI.-'«;&*I;4) Z Z Q-.'(j'll ~."Il~'&

' )(kr r) fr, s g~(r)Pi, , i+)(k;, r)r'dr, (15)

Q~»"= (.)'S'IL'S'l ~.s' Pi J—)

and the single-particle form factor f«g"' is given by

f~»"(rs) =
& js II &~» II j.&

X Os*(rt) tr,,~r(rS, r))O. (r~') ri'drl. (1t))

It is convenient to dc6ne a nuclear form factor
f«z' (rs) by

f«~" (rs) = Z—S~(~f I
o&)f«~"("o) ' (17)

then one has an equation for T,f'~~~I identical to Eq.
(15) except that f«g (rs) is replaced by fs.»'~(rs)

The expressions given above are not commonly used
in scattering theory, a1though Satchler~ does refer
bricQy to them. Ke 6nd the calculations easier to pro-
graID ln this representation~ Rnd R coDvcnlcDt check on
the case with no spin-orbit coupling is provided by the
fact that

Q Q«z" (j' ll &r' z II jr &= &~; fl os II ~r )

x (j; II Fr, II l) )Br.z, Bss .

The fact that in general L, and 5 Inay be diferent from
I.' and S' (which are the angular momenta transferred
to the struck nucleus) simply rejlects the fact that spin

Rip may also occur before Rnd after the coBision as a
result of thc spin-orbit Interaction.

If the two-body interaction j(0, 1) is isospin-depend-

ent„ tJ»(rs, ri) will be a function of the isospin co-
ordinates of the projectile and bound nucleon. One
could introduce a general formalism. for handling isospin
at this point. However, when HF vravc functions are
used, there occurs a natura1. separation of the spectro-
scopic amplitude S~ into R neutron part and a proton
part. This wl11 bc dlscusscd ln Scc. 2 8,

B. Evaluation of Syectroscoyic Factor Using Projected
HF Wave Functions

%c turn now to our primary concern, evaluation of

SJ using HF wave functions. As is we11 known, the HF
method. consists of approximating the nuclear wave
function by a sing1c S1ater determinant,

C = (A!)-'is det{~},
where {~}is a set of single-particle wave functions, or

orblta1s. These functions are deterlnlned by the require-
ment that C minimize the expectation value of the
nuclear Hamiltonian II, which leads to the coupled
cigenva1ue equations

&j II d«~ Ilia &= (J'll'S') (j"s"IP*') &E* II os II e &

&&&1* II
I'r I)6)Q»~",

' G. R. Satchler, Nucl. Phys. A95, 1 I'1967).
' Symbol t stands for (2@+1)'",and { l is a standard 9-j

symbol; see Ref, 19.

h(s) = —+ 2 dr~ v.+(i)o(sj) (1 I''~~)v"(j)—
21S

' G. H. Satchler, Nucl. Phys. 55, 1 (1964).



with t11e p, sum lestrlcted to those oibltRls used to con-
struct 4.

Generally speaking, the determinant 4 is not an
eigenstate of J~ or Jg, but this deficiency is easily
remedied. Since the rotation operator R(Q) commutes
with the nuclear Hamiltonian, the function R(Q)C
yields the sa.me expectation value of H as C does. This
"degeneracy" suggests that we use a linear combination
of the functions R(Q) C', weighted so as to produce an
eigenstate of J' and Jg. One 6nds that the appropriate
combination is

= 2J+1
dQ Dprx (Q) E(Q) 4'& (21)

x

which we write symboHcally as

Slater determinants projected. onto states of good J and
M by means of Eq. (22). In most of the calculations,
we assume the existence of a closed-shell core, identical
in initial and 6nal states; however, in our final results
the core can always be taken to contain no particles.
Finally, we assume that the set {~}has been made
orthonormal, since any nonorthogonal components
would make no contribution to the Slater determinant.

Our first task is to show that the summation over
single-particles in Eq. (3), and consequently in Eq. (7),
is restricted to states outside the core. This is easiest
to show in the notation of second quantization, using
fermion creation and annihilation operators, for then
the overlap integral in Eq. (3) may be written

(+I I
+-&=(+I

I
~+~.

I +;&

+zII= PII~@'= Q PIIx'c' (22) =~. (+ I +'&—(+I In.~'I +;&. (24)

In general, the state %q~ yields a higher expectation
va, lue of II than C does, because of the cross terms, but
one hopes the discrepancy is not large. Ca,lculations in
the s-d shell conhrm this hope, at least for low-lying
nuclear levels. ' A better procedure would be to de-
termine the set {~}by minimizing (+ I

H
I

4'& directly,
but this is a formidable task. Rnd until recentlye has
not been attempted.

The nucleus is often represented as N nucleons out-
side a dosed-shell core, and the core orbitals are not
varied in the HF procedure. In that case Eq. (20)
becomes

h(i)=h. (i)+ Q' dr, q„+(j)v(i,j)(1—p,, )q (j)

(23)

where k, (i) is the Hamiltonian LEq. (20)) for the core
orbitals and. the sum over p is limited to the extra-core
orbitals in C. Usually h, is not dealt with directly;
instead, its eigenfunctions are assumed to be shell-
model orbitals (harmonic-oscillator functions, for
instance), and its eigenvalues are taken from experi-
ment. As before, eigenstates of J' and J, are obtained
using Eq. (21), but because of the closed-shell core a
simplification occurs. The detern1inant 4 may be written
as the antisymmetrized product of two determinants,
one of which represents the core nucleons. This latter
determinant has J'=0 and is thus invariant under
rotations. Hence, the net effect of the rotation operator
in Eq. (21) is to rotate only the extracore orbitals in

Whatever 111etllod. ls used to determine {~}, we
assume that the nuclear wave functions are single

W. H. Bassichis, B.Giraud, and G. Ripka, Phys. Rev. Letters
N, 980 (i965); M. R. Gunye and C. S. Warke, Phys. Rev. 156,
i087 {1967).

9 M. Bouten, P. Van Leuven, and H. Depuydt, Nucj. . Phys.
A94, 687 (1967); L. Satpathy and S. C. K. Nair, Phys. Let:ters
26B, 716 (1968).

The 6rst term on the right side of Eq. (24) vanishes for
inelastic transitions, since the initial and final nuclear
states are orthogonal. The second term will also vanish,
if either u or b refers to a core state, because the core
has been unaffected by the projection procedures of
Eq. (22) (except for antisymmetrization) and is con-
sequently still filled.

Ke next turn to evaluation of the spectroscopic
amplitude Sg. If the nucleus is not spherical, the orbits
pq will, in general, be of the form

(2S)
Pe

where {y,„}is the complete set used earlier. Conse-
quently, an expansion of the determinant C leads to

C =A '" Q C „"q;„(1)&(—1) (26)
),jm

where Q(—1) is the cofactor of p1(1) in 4' and is itself
a normalized Slater determinant for A —1 nucleons.

The project~on operator E~&~;. must now be applied
to 4, and for this purpose we need a theorem concerning
lt. From the definition of I~rg &

lt Dlay be shown that
I'~~ pick.s out states whose J' and J, eigenvalues are
J(J+1) and E, respectively, and then changes the J,
eigenvalue from E to M. Consequently, I',&z~ trans-
forms under rotation like an irreducible tensor Aq~.
The product of another irreducible tensor A; with
I'~.~.~' may therefore be written

A;„P~x.~' Q(J'M', jm I
JIMI &By——,m, (j;J'K').

Rnd Rppllcatlon of I~E' then yields

P~x~Az~PII~II~ = (J M,j re
I Jx)Bg~(j;Jx')

= (x'M', 1~ I
zz & g (~'I,jm'

I sM )

XA~.P~.~' (2g)

(note that Bg~ has been singled out and then trans-
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formed to J3q~). Settmg E'=M' and summing both
sides of Kq. (28} over all J' and M' results in

I'~rrr~A;„= g A, ~ g (J'M',jm
I JE)

mI J13Ppa

which is the desired theorem.
Using Kqs. (26) and (29) to construct the nuclear

wave function NJ~ yields

+s,v= g J'~x 4'

=A-'@ Q(p;„(1)Z (J'&, jml JM) Z C
O'I XX ~M~

X (J'M',jm"
I JE&I'~ ~'@p,( 1). (30—)

From the de6nltions of 4' ~&~~& and 4'fg~&~&, given by
Eqs. (2) and (6), it follows by comparison with Eq.
{30) that

C,"'(JgMg',j,m
I J;E,)

X&~.~, "4'a, (-1), (3»)
CP&(JrrMs',jre I JrEr &

gg3f~~ m, rJXy

X1'~,~, ~'4'~, (—1) (31b)

The overlap integral needed for evaluation of 5~ is
therefore given by

(@~zg ([ g&. zg) —Q Q (Cxa)+CRT

(JcM&j.m. I J;E,&(JcMsj~m~ I J,Er&

each of the Ã extra core orbitals in C. The core orbitals
in 4 and 4 are identical, and so we find that

(4 I 4)= det(B),

he e8 i EXXmatri, with leme t
(36)

dQ D~rr~(Q)*(4ry I 4; ) {38)

are encountered. Here C~ and C;„arenormalized Slater
determinants for A —j. particles, again with identical
core orbitals. It can be shown in this case that
(4'~

I 4,„&is equal to the cofactor of »„in the deter-
minant det(B). An elementary theorem concerning
cofactors of determinants then permits us to write

(4~ I 4;„&=by„det{8},
where b~„is an clement of the matrix b=B '.

Most HF calculations are made without isospin
mixing, which means that each orbital is either a pure
neutron state or proton state. The summation in Eq.
(32) is therefore restricted by the condition rq„=rq„
and the result vanishes unless v, =7-~. One may thus
speak of the proton part Sg" or the neutron part 5J"of
the spectroscopic factor defined in Eq. (8).

3. PROTON SCATTERING FROM Nelo, Mg24,

Si", and 8"

».= ( ~ I ~.&= (v» I
&(Q) I v. & (3()

The integral in Eq. (32) is treated in a similar
fashion, except that now terms of the form

Myself ~,X&X/'

X (4',-x,
I
1'n.m."I 4'a„). (32)

A. Structure Of 2s-1d Shell Nuclei

For simplicity, the normalization of the initial and
final nuclear states has bccn lgnox'cd ln the derlvatlon of
Eq. (32). It is clear, however, that

Q 1'~x~4'

will not, be normalized to unity, even if C is, and Eq.
(32) should therefore be multiplied by the normaliza-

tion factor
E= (1V,kg) ",

~'=(~'I~'&= 2 (~'I J 'I4'&, (34 )
XX~

~=(~ l~)= Z(~rl~-"j~. & (34b)

The integrals appearing in Eqs. (32) and (34) are
evaluated by means of the integral representation LEq.
(22)g for I'~rr~. Consider the normalization integral,
which contains terms of the form

dQ D~~~(Q)*(4'
I 4},

where j)=E(Q}4.The effect of R(Q) on 4' ls to rotate

The projected HF method has been used with con-
siderable success in nuclear-structure studies of 2s—Id
shell nuclei. "In most structure calculations it has been
assumed that the nuclei in this region are axially sym-
metric, although Bar-Touv and Kclson have made a
study of intrinsic HF spectra which indicates that there
are regions of asymmetry in the 2s—id shell. " An
additional assumption which is generally made is that
the 0" closed-shell core is inert; in this case Kq. (22)
becomes

(40)

(41)

and the subspace of the basis states is limited to the
2s-1d shell (i.e., 1d„,, 2sp2, and 1d3)..). The radial
dependence of the basis functions is taken to be that
of the harmonic oscillator, and the spherical single-
pa, rticle energies appearing in Kq. (23) are taken from
experiment. The residual two-body interaction is chosen

"See Refs. 4a, 8, and 9."J.Bar-Touv and I. Kelso', Phys. Rev. 138, $1035 (1965).
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Tsar.E I. Energies and wave functions for axially symmetric, even-even, 2s-id shell nuclei. E~p is the total HF energy, @the energy
of each HP orbit, 6 the gap between occupied and unoccupied orbits, and mq the s component of angular momentum of each HF orbit.
The last six columns give the projection of each HF orbit onto the spherical basis vectors.

Nucleus
&HV

{MeV)
e7, nlj

(MeV) (MeV) no~ id&/2, 1/2 1A/2, 3/2 1d5/2, 5/2 2$1/2, 1/2 id3/2, 1/2 id'/2, 3/2

Mg24

-34.82 -14.27

-68.55 -16.12

—10.96

0.7273

0.7188

0.9674

—0.5729 —0.3780

—0.6320 —0.2897

—0.2533

Si28 —116.41 —17.94

—17.55

—14.07

—159.06 —18.76

—17.76

—16.11

—14.48

7.0

0.7333

1.000

0.7967 —0.2922

0.7598 —0.3020

—0.6495 —0.3133

0.7440

0.6799

—211.89 —20.68

—20.40

—19.81

—16.87

—15.42

7. 1

0.6828

0.9960

—0.0895

-0.3386 0.6475

0.8716 —0.0576

0.0895

to be a Rosenfeld mixture with Gaussian radial depend-
ence similar to that used by Ripka":

v(~j) = &0 exp( —pr') 8~; ~, (0.3+0.7e; ~ u, ), (42)

where Vo= —50MeV and @=0.29P '. There has been
no correction for c.m. motion. The determinantal wave
function Cz is constructed in such a way that, along
with each single-particle state I Eq. (41)j, one also
includes the time-reversed state

Q Q.x( 1)~ (43)

that is, a proton and neutron are put into each of the
states LEqs. (41) and (43)g.

Recently, Bassichis et al.ls have performed HP cal-

culations in which the 0"core assumption was dropped
and the basis space extended to include the is, 1P, 2p,
and 1f states as well as the 2s-1d states. The over-all
results of. their~~calculations are encouraging,

' and we
will make use of their Ne20 wave functions, since the
core-polarization effects are included explicitly.

The results of HF calculations using the residual
two-body force given in Eq. (42), and a value of 0.27
P ' for the harmonic-oscillator parameter v=mcv/5,
are given in Table I. The particular choice of v used
here is based on a study of HF spectra and B(E2)
rates" using basis functions with Kood-Saxon radial
dependence. "The E2 transition rates were calculated
from the expression

Tash.x II. 8{E2)rates in e'F' for 2s—1d shell nuclei.

Nucleus
Basis

KS Experiment

S82

115.3

33.7

225.4

20.0

30.3

221.2

18.1

327.0

'2 G. Ripka, in Iectzues in Theoretical I'hysics (University of
Colorado Press, Boulder, Colo. , 1965), Vol. VIII c.

"W. H. Bassichis, A. K. Kerman, and J. P. Svenne, Phys.
Rev. 160, 746 (1967).

with eI, equal to e for protons and 0 for neutrons. The
results are compare with experiment in Table II. For
completeness we also give the %ood-Saxon results since
only the Ne" result appears elsewhere. The Mg'4 and
S" results are very low for both sets of basis functions
and it is quite clear that the introduction of the usual
eGective charges of 1.5e for protons and 0.5e for neu-
trons will not be sufhcient to yield reasonable agree-

'4 W. F. Ford and R. C. Braley, Nucl. Phys. A126, 671 (1969).
15%'. F. Ford and R. C. Braley, Bull. Am. Phys. Soc. 13, 1654

(1968).
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'. Amr. III, Parameters used in the optical-model potential U(r) de6ned in Kq. (48) .
(Radii are obtained in the usual fashion, E =r 3'I'.)

(L~)
(MeV)

V0
(MeV)

8;
(MeV) (MeV) (F) (F)

+0

(F) (F) (F)

Ne20 (18.2)

Ne" (18.2)

Mg24 (17.5}

Mg" (17.5)

Si" (17.5)

Si" (17.5)

S" (17.5)

S" (17.5)

47.45

45.2

49.14

47.3

8.064 5.29

i.185

1,20

1.20

0.942

1.20

1.19

1.042

1.20

1.30

0.721

0.65

0.633

0.568

0.47

0.562

0.50

0.44

0 ~ 488

0.65

0.64

ment with experiment. I'uturc studies of the asymmetric
solutions for these nuclei should clarify some of the
structure problems generally associated with these
nuclei. The value of B(E2) for Ne" using the wave
functions of Bassichis et a/. was found to be 80e~ F4.
This is quite low but is to be expected since they used a
rather large value of v(0.385 F '; see Ref. 13).

B.DH'cct IQ481 Rctlon

The calculation of microscopic form factors for in-

elastic scattering requires a knowledge of the nucleon-

nucleus interaction. At the present stage of develop-

ment, theories of the nucleus and reactions are not sufh-

cient to provide such a force. Instead, either a phe-
nomenological interaction or the two-nucleon t matrix
must be used.

%C have chosen a phenomenological spin-dependent
interaction which was used by Glendenning and Ven-

eroni in a recent study of inelastic scattering. These
authors assumed thc two- body lntcl action to bc Im-

portant only in even states and used an interaction of
the form

V(r) = —52 exp[—(r/1.85)'j(ATE+0.6Psz),

(45)

tI1j(rp Y. l) =5.2 (g+ co' 'cl) exp[—(&/1.85)'P (47b)

Because the isospin state of the projectile does not
change during the scattering event, the matrix element
of ~0 ~q will be +1 when projectile and target nucleon
are like nucleons and —1 when they are unlike nucleons.
Hence~ thc folIQ fRctol can bc wllttcn as R suIQ of two
terms, one for protons and one for neutrons. %C point
out that the strength of the free two-nucleon potentials
like that above must usually be increased in order to
account for the participation of core nucleons in the
reaction. In Sec. D following, this matter is discussed in
greater detail when the result for a 20-particle cal-
culation on NC20 is presented.

The distorted waves used to represent the projectile
are solutions to the Schrodinger equation with an optical
potential

V(r) = V.(r) —Vp V(r) —(4i/us) 8'sps (r)

—VI s(d 1//aI sr) pcs(r) (48)

where V, (r) is the Coulomb term, V is the strength of
the real potential, 8'8 is the strength of the surface

where PTE and EsE are projection operators for the
triplet-even and singlet-even states, respectively. This
force is found to approximately reproduce the low-

energy neutron-proton data.
In terms of single-particle operators

V(r) =—52[0.3(1+-,'~g ~g) —0.1(~t+~0 ~g) do dg]

X exp[—(r/1.85)'j, (46)
l I t

0 l 2 3 4 5 {j 7
Radius, r, F

where ~0 and ~& refer to the isospin of the projectile and
bound nucleon, respectively. Comparing Eq. (46) with

Kq. (13), we see that
FIG. 1. Scalar form factors for 2+ states in Ne~o. (Macroscopic

model ———;Hartree-Fock ———;unrestricted Hartree-Pock
tl og (rp, ro) = 15 6(1 ',—~0 ~.g) ex—p—[—(r/1.85)'j (47a) ).
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(a) Elastic scattering. (c) Elastic scattering.
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FIG. 2. Cross sections for
elastic and inelastic (Q=—1.63 MeV) scattering of
18.2-MeV protons from
Ne". In (a) and (b) the
optical potentials are
chosen to optimize the
elastic scattering fit, while
in (c) and {d) the poten-
tials optimize the inelastic
scattering fit.
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(b) Inelastic scattering.
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(4) Inelastic scattering.
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absorption, and VL,g is the strength of the spin-orbit
term. The term pV(r) is the usual Wood-Saxon form
factor, and pq(r) and prq(r) are derivatives of functions
like pU, but with appropriate radius and diGuseness.

C. (0+-2+) Form Factors for Ne"

dependence:

rp —Ep Ep fp
fjpj (rp) =.Cz 2+ exp + exp

(49')

The microscopic nuclear form factor fr,sJ (rr)pfor'
inelastic scattering was defined in Eq. (17). For the
inelastic scattering of nucleons S will be 0 or 1, since
sp ——p. The form factor fIir'r(rp) is called the vector
form factor and it is this term which gives rise to spin-
Qip transitions. The macroscopic form factor is pro-
portional to the derivative of the optical potential
which is used to 6t the elastic scattering. 4 In keeping
with convention, this form factor is assumed spin-
independent, and has a derivative Wood-Saxon radial

where CJ depends on the multipolarity of the transition,
the optical-model parameters, and the deformation
(Pq) of the nucleus. The well parameters, Rp and a,
refer to the radius and diffuseness of the optical poten-
tial, and rp is the separation between the projectile and
the nuclear surface. If Up is the strength of the optical
potential,

Cg=Pg(UpRp/a J).
In the discussion which follows, we shall refer to re-

. stricted and unrestricted form factors. By unrestricted
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hl Elastic scNering,

fb& inelastic scattering„

100
0

id) inelastic scattering.

1PO

Fxo. 3. Cross sections for
elastic and inelastic (Q=—1.37 MeV) scattering of
I "E.S-MeV protons from
Mg'4. In (a) and (b) the
optical potentials are
chosen to optlInize the
elastic scattering 6t, while
in (c) and (d) the poten-
tials optimize the inelastic
scattering 6t.

HF (4. ill————Macroscopic Q 47)
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wc ITlean that thc HF calculations Rlc carrlcd through
without an 0'6 core and with the enlarged basis space
(is, 1p, 2s, 1d, 2p, 1f) as was done by Bassichis et al.
The Icsults of our calcUlations which %'crc presented
in Table I are of the restricted type.

In Iig. I, we present the scalar form factors for
Ne . The other nuclei (Mg", Si", SII) have form fac-
tors with the same general shapes but the magnitudes
vary widely when the restricted wave functions are
used. The vector form factors for the microscopic cal-
culation are not shown as it was found that their magni-
tudes mere smaller by a factor of several hundred than
thc scRIM form factors& lndlcRtlng that, thc spin-Alp
mechanism is relatively unimportant in the excitation
of this type of state. A similar result was found by

Glcndenning and Vcneroni for the excitation of the
2g+ states in the even Ni isotopes. The radial shapes of
the scalar and vector form factors diGer very little.

The projected HI' form factors in Fig. 1 di6cr in
magnitude by a factor of 2—the unrestricted form
factor being the larger. Vfc estimate that about 3 of
the enhancement is due to the use of diGercnt values
of s. Clearly then, the core contribution is very im-

portant. The positions of the maxima of the form fac-
tors di8cr by Rbout 0.4 F with thc unrcstllctcd onc
having its peak Rt 3.l F. Thc mRcloscoplc form factol
shown for comparison was calculated using the param-
eters (see Table III):

Pg
——0.53, VII——45.2 MeV, Ett——3.26 F, u= 0.65 F.
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104
(a) Elastic scattering.

104-= (c) Elastic scattering,

10 —- 10--

E
E.10— 102

Fxo. 4. Cross sections for
elastic and inelastic (Q=—1.78 MeV) scattering of
17.5-MeV protons from Si".
In (a) and'(b) the optical
potentials are chosen to
optimize the elastic scatter-
ing 6t, while in (c) and (d)
the potentials optimize the
inelastic scattering 6t.
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(b) Inelastic scattering.
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(d) Inelastic scattering.
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D. Inelastic Cross Sections (0+-2+)

The diGerentia1 cross sections are calculated in the
DWBA, and exchange eBects between the projectile
and target nucleons are neglected. While one would
expect DWBA to be reliable for the excitation of col-
lective states, the question of the importance of
exchange eGects cannot be answered hastily without a
careful study in which these eGects are accounted for
explicitly. "

The diGerential cross sections for elastic and in-
elastic scattering have been calculated and the results

~a K. A. Amos, V. A. Madsen, and I. K. Mccarthy, Nucl.
Phys. A94, 103 (1907).

are compared with experiment'7 in Figs. 2—5. The
nuclear wave functions used in each of these inelastic
calculations are of the restricted type. Each set of cross
sections has been calculated with two sets of optical
potentials. Table III gives the optical-model param-
eters )see Eq. (48)j which were used. (For each
nucleus, the Grst set gives the best 6t to the elastic
scattering. ) Parts (a) and (b) of each figure correspond
to results obtained using optical potentials which yield
a best 6t to the elastic scattering, while in (c) and (d)
the optical potentials yield the best results for inelastic

"G. M. Crawley and G. T. Garvey, Phys. -Rev. 160, 981
(1967); G. M. Crawley, Ph.D. thesis, Princeton University, 1967
{unpublished) .
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the macroscopic model yields the better shape; both
are quite good.

We turn now to the results for the ca.ses of Si'8 and
S",which appear in Figs. 4 and 5. The elastic scattering
"best-Gt" potentials clearly give unsatisfactory results.
Variation of the optical potential improves matters
considerably for Si" [4(d) j, except in the forward
direction. The S" inelastic results do not have a good
shape and the magnitude is very poorly predicted
compared with results for the other nuclei.

We return now to the Ne' calculation which was
discussed in Sec. C above, i.e., the unrestricted (20-
particle) calculation. The inelastic cross sections ob-
tained using the above-mentioned form factors are
presented in Fig. 6. As in the restricted case, the results
obtained using the elastic optical potentials do not
have the proper shape. The shape which results from
use of the inelastic optical parameters (Table III) is

quite satisfactory. Furthermore, we note in this case
that the differential cross section is under estimated by
a factor of only 2.9, indicating the importance of in-

cluding the core nucleons in such calculations. Based on
this result one finds that, the vacuum interaction has
to be enhanced by a factor of j..7.

4. SUMMARY AND CONCLUSIONS

Detailed microscopic wave functions have been used
to study the inelastic scattering of protons from several
2s-1d shell nuclei. The interaction between the projec-
tile and target nucleus was assumed to be a sum of t~ o-

body forces. Transition amplitudes for the ine1astic
excitations were calculated using DWBA.

The nuclear wave functions have been obtained by
projecting states of good angular momentum from
deformed intrinsic states, where these states result from
minimizing the HF energy for the system under con-
sideration. Most of the calculations are based on the
assumption that 0" constitutes an inert core but we
include a reaction calculation for Ne in which this
assumption is dropped. Relaxation of this assumption
enables one to determine the enhancement of the vac-
uum interaction due to the participataion of core nuc-
leons. For the case of Ne", it was found that the inclu-
sion of the core reduces the required enhancement
factor from 2.04 to 1.70.

Concerning the over-all comparisons with experiment,
we have seen that the general shapes of the angular
distributions are fairly good if one does not make use of
the optical parameters which best fit the ela, stic sca,tter-
ing. However, we did 6nd that the results for Si" and
S"were not as satisfying as for Ne" and Mg'. Also, as
one would expect, the magnitudes were quite low when
the restricted type form factors were used. The poor
quality of the inelastic results for Si" and S" could be
due to the fact that the simple HF picture does not pro-
vide an adequate description of these nuclei. There are
indications that both of these nuclei may require some
admixture of spherical components in their wave

40

10--
E

6-
o 4

——Elastic parameters
Inelastic parameters.

20
I

60 100

Oc.m. de~

120

FIG. 6. Cross section for inelastic (Q= —1,63 MeV) scattering
of 18.2-MeV protons from Ne", with form factors calculated
using unrestricted HF wave functions. The solid and dashed
lines show the results using optical parameters which optimize
the inelastic and elastic 6ts, respectively.

functions in order to obtain a good description of their
structure. '9

The fact that the distorted waves which are generated
by "elastic" optical potentials do not give good fits
to the inelastic scattering is not surprising. In the
search for such potentials, it is the asymptotic part of
the scattered wave which is important; in the reaction
calculation, the shape of the scattering wave function
in the nuclear interior and near the nuclear surface is
important. There have recently been investigations by
Schenter" in which "true" optical potentials were
calculated in terms of the nucleon-nucleon interaction
and the ground-state wave function for the target. He
found the wave function for the projectile to be greatly
reduced in the nuclear interior when compared to wave
functions generated by a phenomenological potential
having the sa,me phase shifts. The use of scattering
wave functions based on this approach will, hopefully,
be applied to inelastic scattering problems in the'near
future.

Some of the structure problems have already been
mentioned. However, the incorrect asymptotic behavior
of the harmonic-oscillator functions must not be over-
looked. It would be more realistic to use radial functions
such as those generated by a Wood-Saxon well. The use
of such functions may have a significant a6'ect on the
form factors and hence the inelastic cross sections. A
program for such a study is being undertaken by the
present authors.
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