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The Ad spin-$ elastic and total cross sections are calculated for incident A laboratory momentum pp <
400 MeV/c¢ using a Faddeev three-body formalism. Only 3S; AN and 3S; np interactions are used. The
former is represented by a sum of two separable potentials, one attractive, the other a repulsive core. The
np interaction is represented by two such potentials adjusted to both the low-energy data and the phase
shift at 150 MeV in the c.m. system, or by a single separable potential adjusted to only the low-energy
data. The presence of the #p core potential changes the S-wave Ad cross sections by at most 159, (this at
p1=400 MeV/c), while with all significant partial waves included the maximum change in the Ad cross

sections is less than 29,

I. INTRODUCTION

N a previous paper! a simple model was used to show
that low-energy lambda-deuteron (Ad) elastic and
total cross sections were strongly dependent on the
presence (or absence) of a repulsive core in the S-wave
lambda-nucleon (AN) interaction. In this paper for the
same model it is shown that these cross sections are
insensitive to the short-range behavior of the neutron-
proton (np) potential.

The motivation for investigating the Anp system is
that it is the simplest multinucleon system containing a
A. What is desired from a study of such a multiparticle
system is that it say something about the two-body
scattering amplitudes that cannot be obtained from
two-body calculations and experiments directly. Both
low-energy (say, incident A laboratory momentum
P4 2200 MeV/c) Ap*? and Ad* scattering experiments
are now feasible. With the aid of a theoretical model
low-energy AN scattering parameters (that is, the low-
energy AN “on-shell” amplitude) may be extracted
from the former.??® A theoretical study of the latter
could then be used to obtain information on the AN
off-shell amplitude, or the AN on-shell amplitude at
higher energies, or the ANN amplitude. At somewhat
higher energies, near or above the threshold for AN—
ZN, the sensitivity of the Ad elastic, breakup, and =
production cross sections to various symmetry models
for the AN interaction could be investigated.®

Certainly a major condition for the successful im-
plementation of such an undertaking is that “noise”
from the uncertainties as to the correct form for the np
amplitudes does not wash out the information on the
features of the ANV and ANN amplitudes being studied.

* A preliminary report of this work was given at the 1968 San
Diego meeting of the American Physical Society, Bull. Am. Phys.
Soc. 13, 1642 (1968).

1 L. H. Schick, Nuovo Cimento Letters 1, 313 (1969).

2 B. Sechi-Zorn, B. Kehoe, J. Twitty, and R. A. Burnstein,
Phys. Rev. 175, 1735 (1968).

3G. Alexander, U. Karshon, A. Shapira, G. Yekutieli, R.
Engelmann, H. Filthuth, and W. Lughofer, Phys. Rev. 173,
1452 (1968).

4 G. Alexander (private communication).

5 Results of this type of study could, of course, be analyzed
further in variation calculations of light hypernuclear binding
energies; see, e.g., Ref. 26 and work cited therein.
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In fact, it is necessary that rather rough treatments of
the np amplitude be adequate. Along with the com-
plexities of the AN amplitude, which is a multichannel,
spin-dependent, and possibly non-charge-symmetric
amplitude, the necessity for using a ‘“realistic”’ np
potential (e.g., a full-blown one-boson-exchange poten-
tial) would make the calculation unfeasible.

The bound state of the Anp system—the J=3,
T=0 hypertriton sH*—would seem to be a prime can-
didate for study in this regard. Because the binding
energy of the A is so small (Bx=0.064-0.06 MeV)*¢ the
effect of the np3S; amplitude in ,H? is completely
dominated by the deuteron pole.” However, the present
uncertainty in the experimental value of Bj is a serious
drawback.? Not much can be gained from calculations
of By using different sets of low-energy AN scattering
parameters other than to confirm that the values ob-
tained from analyses of Ap scattering experiments are
the right size.?

For the Ad scattering problem considered here, the
hope was that calculations could be carried out at
energies that were, on the one hand, low enough that
the deuteron pole still dominated the contribution of
the 35 np amplitude and, on the other hand, were high
enough that the Ad scattering cross sections were
sensitive to the details of the AN amplitude. With the
use of a simplified model it was shown in Ref. 1 that,
unlike the bound-state case, the presence of a AN
repulsive core shows up very strongly in the Ad cross
sections with pp=100-300 MeV/c. With the use of the
same sort of simplified model it is shown below that the
above hope is fulfilled for at least this same range of pj.

The simplified problem considered was that of Ad

6 B. Bohm, J. Klabuhn, U. Krecker, F. Wysotski, G. Coremans,
W. Gajewski, C. Mayeur, J. Sacton, P. Vilain, G. Wilquet, D.
O’Sullivan, D. Stanley, D. H. Davis, E. R. Fletcher, S. P. Lovell,
N. C. Roy, J. H. Wickens, A. Filipkowski, G. Garbowska-
Pniewska, T. Pniewski, E. Skrzypczak, T. Sobczak, J. E. Allen,

V. A. Bull, A. P. Conway, A. Fishwick, and P. V. March, Nucl.
Phys. B4, 511 (1968).

7 See, e.g., B. Ghaffary Kashef and L. H. Schick, Nuovo Cimento
50B, 395 (1967).

8 The three-nucleon system does not suffer from these defects.
See, e.g., R. Stagat, Ph.D. thesis, Rensselaer Polytechnic In-
stitute, 1968 (unpublished); or A. N. Mitra, Rutherford Labora-
tory Report No. RPP/A 50, 1968 (unpublished).

9°A.J. Toepfer and L. H. Schick, Phys. Rev. 175, 1253 (1968).
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scattering in the spin- state with only S-wave two-
body potentials present. The neutron and proton were
taken to be identical spin-} particles so that with the
. A having spin %, only two potentials (351 #p and 351 AN)
were needed. Each of these was represented by a non-
local separable (NLS) potential or a sum of two NLS
potentials. These potentials are discussed in Sec. II. A
Faddeev? type of multiple-scattering formalism that
incorporated these potentials was used to calculate elas-
tic and total Ad cross sections for c.m. energies £ <43
MeV (i.e., pa<400 MeV/c).1t The results of these cal-
culations are given and discussed in Sec. ITT.

The “model” nature of these calculations must be
emphasized. Even at the low energies considered here,
tensor forces as well as non S-wave forces in both the
np and the AN interactions would not be negligible.
Further, even though the threshold for = production is
~40 MeV above the highest energy considered, the
results of Ref. 9 on the effect of A-Z conversion in
AH3 indicate the effect of the closed £ channel is not
negligible. The values used for various AN potential
parameters as well as the numerical results obtained
for the Ad cross sections may bear little resemblance to
the “correct” values of a more realistic calculation.
However, what is being discussed in this work—the
effect of the np 3S; repulsive core potential on the Ad
cross sections—is in all practicality independent of
these other considerations.

II. AN AND NP POTENTIALS

Each 35; two-body potential was taken to have the
configuration space matrix elements

V(r, ”) = u(n) (") Frm(n(), (1)
where

v(r)=(4rr)texp(—Byr)  (j=1,2) (2)
and 7(7") is the distance between the two particles. This
potential has been previously discussed in some detail. 12
Conventionally the subscript 1 was used for the attrac-
tive potential and the subscript 2 for the repulsive
potential. To represent a purely attractive potential
A2=0 was used. Otherwise, to insure a strong repulsion
at short distances,

M>—A>0 and Bi1<By

were used. Potential 2 was therefore designated as the
“core” and V(r,7") with A;=0 designated a “no-core”
potential.

It is straightforward to show that for two particles of

©I. D. Faddeev, Mathematical Aspects of the Three-Body
Problem in Quantum Scattering Theory (Daniel Davey and Co.,
Inc., New York, 1965).

11 Nonrelativistic kinematics were used throughout this work.
( ‘261';') H. Schick and J. H. Hetherington, Phys. Rev. 156, 1602

1967).
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reduced mass p at a c.m. energy & the potential given
above yields (in units where 7i=1) the following form
for the off-shell momentum-space matrix elements of
the ¢ matrix £(p, q; k= (2u8)12):

2 2
tp, g k) = 2 z;vz(ﬁ)w(k)vj(q), 3

where
v(p)=1/(p*+82),
ru=N{1—N;g;;(k)1/D(k) (i),
Ti=N\igi; (k) /D (k) (i47),
and

" g (k) = (—u/2m) [L(B:+8;) (B.—ik) (Bi—ik) ].
The Fredholm denominator D (%) has the form
D(k)=[1—Ngu(k) ][1—>\zgzz(k)]—)\1>\zl;gm(k)]”- 4)

The on-shell scattering amplitude f(%) is given by
fR)=—(u/27)t(k, k3 k), (5)

but £(p, g; k) itself is referred to below as the two-body
(off-shell) amplitude.

Ideally in the true spirit of this work the above
potential parameters should be determined by direct
appeal to the experimental phase shifts. However, for
the AN potential such phase shifts are not well enough
determined to serve the purpose of fixing the potential
parameters. For the #p potential it makes more sense
to use the phase shifts predicted by local potentials
that give good results for the physical parameters of
three- and four-nucleon systems than to fit experi-
mental phase shifts at high energies that do not directly
enter the three-body problem at hand.

For the AN potential the 35 scattering length ax and
effective range 7, determined from the charge-sym-
metric (CS) part of the Herndon-Tang (HT) poten-
tial H 1

ar=—195F, rup=350F (6)
were the low-energy AN scattering parameters fit in all
cases. The 35; part of this HTCS potential is a local
potential consisting of a hard core inside an attractive

exponential well:

V(r)=c r<7,

(7
==V, expE—- k(r—70)]

3R, C, Herndon and Y.IC{Tang, Phys. Rev. 159, 853 (1967).

r>7,
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TasLe I. AN 35 potentials with ay=—1.95 F and 73 =3.50 F.
1/B: 1/B: -\ A2 s (deg) at c.m. energy (MeV)
Potential (F) () (MeV)?/(207)3 (MeV)?%/(20x)® 20 40 60 80
N 0.766 0.952 0.0 25.20 20.20 16.30 14.00
B 0.335 0.300 2326 5898 21.95 11.88 2.854 —4.933
21.96 11.61 2.215 —6.074

Local

with V,=676.9 MeV, x=3.935FY, and 7.=0.60 F.1?
When a no-core NLS AN potential was used, ax and 7oy
as given in Eq. (6) were sufficient to determine all the
AN potential parameters, namely, M\ and 8;. In addition,
when a core was included, the core range 1/8, was fixed
at some arbitrary value and the value of the 3S; phase
shift d at an appropriate energy was matched to that
calculated from the potential of Eq. (7). It was shown
in Ref. 1 that the Ad cross sections were independent of
the precise value of 8, used in this procedure if 1/8; lay
in the range 0.2-0.35 F. Since in most of the Ad cal-
culations performed here the AN c.m. energy was
<20 MeV, this value was the energy at which §a was
fit.

The parameters for the AN potentials used in this
work are shown in Table I. Potential N is the no-core
potential. Most of the results of the Ad calculations
with this potential were taken from Ref. 1. They were
used here for comparison of the effect of a AN core
relative to the effect of an #np core in the three-body
problem.

The bulk of the Ad calculations were performed using
potential B of Table I. The phase shift s for this
potential, as well as that for potential N and the Jocal
potential of Eq. (7), at AN c.m. energies from 20 to
80 MeV are also given in this table. Note that 8 for B
gives a good fit to the local potential §ps throughout
most of this range. Note also how rapidly dpa for B
differs from that of NV as the energy increases. This is
due to the relatively long core range, 1/8; being almost
as large as 1/6;. This in turn may be related to the lack
of a long-range one-pion-exchange potential as exists
in the np interacticn.

For the 3S; np potential a procedure almost identical
to that used for the AN potential was carried out. The
low-energy “scattering” parameters used here were the
deuteron binding energy ¢ and the 35y scattering length

€=2.225MeV and @=5.3858 F. (8)
The local potential used to fix the phase shift at higher
energies was taken from Herdon and Tang.! It has the
same form as the potential of Eq. (7) but with Vo=

14 This is a reasonable range to consider because it may be shown
that for \a— ©2/8; plays the role of the core radius when the intrin-
sic ranges of the potentials in Egs. (1) and (7) are compared.

15 R. C. Herndon and Y. C. Tang, Phys. Rev. 153, 1091 (1967).

549.26 MeV, k=2.735 F!, and 7,=0.45 F. The phase
shift § from the sum of NLS potentials was chosen here
to vanish at the same value of the np c.m. energy
(156.35 MeV) as. did that from this local potential.
This energy for do=0 is somewhat higher than the value
120 MeV used by other authors,*® but this local poten-
tial does give good results in the two-, three-, and four-
nucleon systems.?®

Table IT contains the potential parameters, effective
range, and phase shifts for a number of different separ-
able potentials as well as the phase shifts obtained from
the HT local np potential. Note how much shorter the
range of the core is here (as compared to the range of the
attractive potential) than in the AN potentia] B and
the consequent slow deviation of the phase shifts for
potentials with cores from the no-core phase shift as the
energy increases. Note also the large variation in A,
(two orders of magnitude) between potentials 1 and 3.

For completeness and to aid in the later discussion
the poles in the % plane, k; through ks, of the off-shell
two-body #p amplitude {(p, ¢; k) are given in Table III
for the. NLS #p potentials listed in Table II. These
singularities were found by setting D(%k) of Eq. (5)
equal to zero for each set of potential parameters. Note
that the introduction of the core leads to two new poles,
ks and k4. These are very far away from the region of
interest (see Sec. ITT) in either the low-energy two- or
three-body. problems. The fact that they are not on the
imaginary k axis, as they should be,” is of little con-
sequence. The &y #p singularity is of course the deuteron
pole.®

The on-shell amplitudes have further poles at
k=18, and (when a core is present) k=10, where the
9;(k) become infinite. These are denoted %; and k¢ in
Table III. They are “range singularities,” being the
analogs of the well-known infinite set of poles on the
positive imaginary % axis that occurs when the local
potential of Eq. (7) is used to calculate the on-shell
amplitude. The two-body amplitudes that appear in
the three-body problem are, of course, off-shell ampli-

tudes.
Finally, the deuteron radial wave function #(r)=

16 See, e.g., F. Tabakin, Phys. Rev. 174, 1208 (1968).

17T, R. Mongan, Phys. Rev. 175, 1260 (1968).

18 The Ad amplitude has k; on the negative imaginary k axis but
the rest of its singularity structure is similar to that of the np
amplitude.
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TasLE II. np 3S; potentials with ¢=25.3858 and e=2.225.

1/B1 1/B2 —M A2 70 8 (deg) at c.m. energy (MeV)
Potential (F) (F) (MeV)2/(207)3 (MeV)2/(20x)3 (F) 30 90 150
0 0.6952 3.33 0.0 1.7266 59.35 32.93 22.61
1 0.4981 0.155 29.9 49 950 1.7357 55.72 19.97 1.529
2 0.4973 0.165 29.4 4 288 .1.7358 55.71 19.96 1.528
3 0.4858 0.225 32.0 400.1 1.7359 55.65 19.84 1.510
4 0.4550 0.300 54.3 180.7 1.7362 55.54 19.62 1.474
Local 1.7287 56.49 21.11 1.686
ry(r) is given by can be reduced is of interest, it should be noted that for
spin-3 Ad scattering with the central S-wave AN and
u(r)=NDu®:i(r) +A/®e(r) ], (9) np potentials used here the number of equations is the

where
@;(r)=[exp(—Byr) — exp(—ar) 1/ (87—a?),
A =Mahigne (i) /[1—Nagea (i) ],
a=(2ue)"",

and N is a normalization factor. This function is plotted
in Fig. 1 for three of the NLS potentials given in Table

II. The wave function for the potentials with A, non-

zero only differ significantly from the no-core wave
function for  <0.7 F. Unlike the wave function for a
local hard-core potential [such as given in Eq. (7)]
the wave functions for the sums of the NLS potentials
used here do not vanish completely for small 7, but they
do become very small and they change sign. Potentials
which give a ground-state wave function with a node'
have been previously unfavorably criticized by other
authors.”® The Ad bound-state and scattering-state
results discussed in Sec. ITI, however, indicate that no
great violence has been done to the three-body calcula-
tions by the use of the #p potentials described above.

III. Ad SCATTERING

The details of the Faddeev equations as applied to
the present problem have been covered elsewhere.2
The modifications of previous work to accommodate the
sums of NLS potentials for the two-body interactions
used here are straightforward and will not be discussed
further except for the following two points.

First, since the number of coupled one-dimensional
integral equations to which the three-body formalism

¥ J. E. Levinger, A. H. Lu, and R. Stagat, Rensselaer Poly-
technic Institute Report (unpublished); and Bull. Am. Phys.
Soc. 13, 1401 (1968).
(12" ].)H. Hetherington and L. H. Schick, Phys. Rev. 139, B1164
965).

same as for three spinless particles. With the neutron
and proton treated as identical particles there are two,
three, or four such equations depending on the use of a
core potential in none, one, or both two-body inter-
actions. In fact, for the elastic-scattering problem the
multiple-scattering amplitude which begins (or ends)
with an #np scattering may be entirely eliminated from
the formalism.?* This reduces the number of equations
to one or two depending only on the absence or presence
of the AN core independent of the number of separable
terms used to represent’ the #p interaction. Although it
was not needed here, this latter procedure will no
doubt prove useful when a separable series expansion
for the ¢ matrix of a local potential?®® is used for the np
interaction.

Second, most of the scattering calculations were per-
formed for energies above the threshold for deuteron
breakup. For these calculations the on-shell relative
momentum variable for any pair of particles, 2 of Eq.
(4), was given by k= (2ulWW)2, with

W=E—3¢(M-+m) (10)
and Imk>0. Here u is the reduced mass and M is the
total mass of the scattering pair, # is the mass of the
third particle, and E is the c.m. energy at which the
Ad scattering occurs. E is positive (negative) above
(below) the deuteron breakup threshold. The integra-
tion variable in the Faddeev formalism is ¢, the momen-
tum of the third particle relative to the c.m. of the
scattering pair. The original contour of integration lies
along the positive real ¢ axis with the usual 0% being
added to E to define the integrals., Here the contour
rotation method* was used to smooth the integrands of

21G. Doolen, Ph.D. thesis, Purdue University, 1968 (un-
published).

22 M. G. Fuda, Phys. Rev. 174, 1134 (1968).

2 7, S. Ball and D. Y. Wong, Phys. Rev. 169, 1362 (1968).
(1;‘6]5.)}1. Hetherington and L. H. Schick, Phys. Rev. 137, B935
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TaBLE III. k-plane poles of the #p amplitude.

k] kz k3,{ kﬁ k‘
Potential (MeV/c) (MeV/c) (MeV/e) (MeV/e) (MeV/e)

0 45.706 —14330 1284 oo

1 445.706 —1835 +19 064—41274 2396 21273

2 45.706 —1815 +5 722—41207 1397 71196

3 745.706 —4725 +1 924—4943 7406 877

4 #45.706 —1655 +1 264—4787 7434 7658
the integral equations; i.e., the replacement the Ad c.m. energy E—and, as labeled in the right-hand
. X columns, different combinations of the AN and np
g—x exp(—ip) (0<p<im) potentials of Tables I and II, respectively. For each
value of pi, row 1 was obtained with purely at-
0<w<+o (11)  tractive AN and np potentials, row 2 was obtained

was used.

In Fig. 2 the original contour and the rotated contour
in the % plane are both shown. The segment 0<%<
(2uE)2 is just the physical region where the on-shell
two-body ¢ matrix has been adjusted to predetermined
values. From Table III none of the singularities of the
np amplitude (or of the AN amplitude either’®) has
been crossed by the contour during the process of
distortion.

For all values of E considered the Ad elastic angular
distribution was calculated directly from a partial-
wave expansion of the Ad elastic scattering amplitude,
the elastic cross section was obtained by integration of
this angular distribution, and the total cross section
was obtained, by use of the optical theorem, from the
forward-scattering amplitude. The results for the cross
sections are given in Tables IV and V.2

Table IV contains the S-wave Ad S-matrix element
(So) as well as the elastic (oo1) and total (atot) Ad cross
sections. Each of these is shown for five values of the
incident A laboratory momentum py—or, equivalently,

ulr)

- 02—

00 : 50 100 150

=-0lf

| 1 |
1.0 20 r(F)

Fic. 1. The deuteron radial wave function for three of the
potentials of Table IT. The distance scale on the #=0 axis applies
only to the tail of the wave function.

25 All numerical work was performed on the Honeywell H-800
at the U.S.C. Computer Science Laboratory.

with a core only in the AN interaction, and row 3 was
obtained with a core in both interactions. Due to
limitations of the numerics used in these calculations the
values for ge1 and oot are estimated to be accurate only
to within 19%. For example, it is reasonable that the
differences that exist between the use of the #p poten-
tials 0 and 3 in oe1 and oot for the ANV potential B and a
fixed pa be as shown, but these differences cannot be
guaranteed to be real.

The first thing to note in this table is that for a fixed
set of potentials, So,= exp(2i8), considered as an
energy-dependent vector in the complex plane with its

Im(k)
(MeV/c)
400 — _
300~ T T T T T
A
200~~~ T T~
100+
-
-
P
L~
7
7/
/Ay Y Re(k)
0 100 200 (MeV/e)

Fic. 2. Typical paths of integration in the np & plane for the
original (A4) and the rotated (B) g-plane contour. The dashed
lines connect corresponding points on the two curves. The case
shown is E=42.8 MeV and §=15°, The deuteron pole is at k=
445.706 MeV/ec.
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TasirE IV. Ad scattering.

Py E Gol Trot Potential
(MeV/c) (MeV) So (mb) (mb) np AN
50 —1.52 —0.891+14.455 4700 4700 0 N
—0.962+4.262 4870 4870 0 B
—0.955+4.293 4870 4870 3 B
100 0.59 —0.950-+:.680 1210 1220 N
—0.702+:.694 1060 1070 B
—0.688+:.708 1050 1060 B
200 9.02 —0.27744.741 194 244 N
0.078+-4.887 153 190 B
0.0914-2.891 151 188 B
300 23.1 0.278+414.727 53.4 92.4 N
0.662+14.640 34.0 60.8 0 B
0.676-+14.631 33.5 59.9 B
400 42.8 0.609+44.570 16.6 40.2 0 N
0.944--4.260 6.43 17.5 B
0.950+:.246 6.23 17.4 3 B

tail at the origin, is rotating counterclockwise as E in-
creases from —e; i.e., as the Ad KE increases from zero.
In all the cases shown there is a Anp J=4% bound state;
do=m at zero KE. The binding energy B, of the A was
calculated for the potential combinations shown in the
table. It was found that B, <0.01 MeV in all cases.

B, decreases when a AN core is used but, as in a pre-
vious work on the J=% hypertriton bound state,” the
np core has no effect on By. The existence of this quartet
bound state is not peculiar to NLS potential calcula-
tions. Its presence has been noted before by Herndon
and Tang.® Because of its small size and the uncertain-

TaBLE V. Ad S-wave scattering.

Py E e’ Giot’ Potential
(MeV/c) (MeV) So (mb) (mb) np AN
300 23.1 0.267-+4.729 37.6 51.6 0 N
0.662--7.640 18.1 23.4 0 B
0.6834-4.628 17.1 21.9 1 B
0.682-+1.629 17.1 22.0 2 B
0.676+14.631 17.4 22.4 3 B
0.673+414.632 17.5 22.6 4 B

400 42.8 0.614+14.567 9.15 15.0 0 N
0.944-2.260 1.37 2.19 0 B
0.952+47.241 1.17 1.86 1 B
0.952+414.242 1.19 1.88 2 B
0.950+3.246 1.22 1.96 3 B
0.948--7.248 1.25 2.01 4 B

2 R. C. Herndon and Y. C. Tang, Phys. Rev. 165, 1093 (1968).
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ties in the experimental values of the AN scattering
parameters, it is certainly not to be worried over at
this time.

The primary conclusions of this work may also be
drawn from Table IV. For each value of $,<400 MeV/c
a comparison of the cross sections given in rows 2 and
3, on the one hand, and a comparison of the cross sec-
tions in rows 1 and 2, on the other, shows that inclusion
of the np core in this calculation changes the cross
sections by a negligibly small amount. The percentage
change in either ge1 or o404 is in almost every case <29%,.
Further, the absolute change in ge; or g0t due to the np
core is between one and two orders of magnitude smaller
than the corresponding change due to the AN core.

Although S-wave Ad scattering completely dominates
the elastic and total cross sections at the low-energy end
of Table IV, for the higher energies shown higher partial
waves become important. A comparison at these higher
energies of the Ad P- and D-wave S-matrix elements
when cores are used in both AN and np interactions
with the case when only AN cores are used showed that
the #p core has, within the accuracy (=19%) of the
calculations, absolutely no effect. Further work was
therefore confined to just S-wave Ad scattering.

In Table V the Ad elastic and total S-wave cross
sections, oo’ and o.)° respectively, along with Sy, are
given for the two highest energies used in Table IV. At
each of these energies not only were results obtained
for no cores (first rows) and AN cores only (second
rows), but also for a AN core plus an #p core with each
of the four different #p cores of Table II being em-
ployed (rows 3-6 at each energy).

At pa=300 MeV/c the presence of the np core de-
creases the Ad cross sections by 3-79%, while at p,=400
MeV/c this decrease measures 9-189,, depending on
which #np core potential is used. A comparison of the
size of the pa=400 MeV/c cross sections here with
those in Table IV shows that the effect of the np core is
cut down to &~29%, by the fact that the S-wave cross
section contributes such a small part to ge1 Or oot at
this energy. Thus, results for ge or ot calculated with
any of the Table-II NLS #p potentials not used in
Table IV will not differ significantly from those in Table
IV calculated with potential 3. The effect of the np
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core at the two higher values of pa is certainly con-
sistent with the above discussion of Fig. 2 and the np
phase shifts at 30 MeV shown in Table II.

The reason for this insensitivity of the low-energy Ad
cross sections to the #p core is undoubtedly the presence
of the deuteron pole in the #p amplitude. From Table
III and Fig. 2 it is seen that not only is the deuteron
pole that singularity of the off-shell #p amplitude that
lies closest to the original integration contour in the %
plane, it is the only one that lies “right in the middle”
of this contour; i.e., it lies on the contour at a value
of k for which the contribution of the #p amplitude to
the Ad scattering amplitude is not drastically reduced
by the small values of the other functions (e.g., the
propagator, or the deuteron wave function itself) that
get folded into the calculation. Because of its location,
the deuteron pole makes the effects of variation of the
location (and the residues) of the other poles in the np
amplitude unimportant.

It should not be thought, however, that the values of
the #p phase shift 8 play no role in the calculation. It is
clear that the above argument breaks down if the core
strength is made so large (i.e., if &, goes to zero at a
much faster rate than the §, used here) that the np
amplitude for a potential with a core differs significantly
from the no-core amplitude even for relatively small
values of &.

By way of contrast there is the strong dependence of
the Ad cross sections as shown in Table IV on the
presence of the AN core. The AN amplitude does nol
have a bound-state pole. The AN S-wave phase shift
with the AN core present does go to zero relatively
rapidly compared to the no-core phase shift.

Calculations extending the present work to other
forms of #p potential are in progress. It is of special
interest to test whether the sensitivity of the Ad cross
sections to the presence of the np core is significantly
increased by the use of an np potential whose deuteron
wave function at short distances more closely approxi-
mates that of a local potential with a hard core. This is
one feature which might prevent any arbitrary #p
potential fit to the deuteron budding energy and the
low-energy scattering data from yielding Ad scattering
results similar to those found here.



