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Continuity of Phase Shift at Continu1nn Bound State*
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When a separable potential has a bound state in the continuum, there are two possible definitions of the
phase shift. It is shown that if the phase shift is chosen to be the boundary value of the phase of an analytic
function, then it has a jump discontinuity of magnitude m at each continuum bound state. Some advantages
of this definition, as opposed to one giving a continuous phase shift, are presented.
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guchi' of separable potentials as a tool for in-
vestigating scattering phenomena, there has been a
substantial effort devoted to investigating their
properties. In particular, several papers' 4 have treated
the special case in which there occur discrete states in
the continuum. This paper is intended to clear up some
apparent conQicts in the literature. The notation used
is that of a previous paper' (I), in which the formulas
were given for determining the separable potential from
the phase shift (units A= 2p= 1, where p is the reduced
mass) .

If there is an s-wave separable potential of the form

V(k, k') =gv(k) v(k') (1)

in momentum space, with v(k) real and g either +1 or
—1, then the 5 matrix is given by

t(k, k', s) =gv(k) v(k')/D(s), (2)

where s is a complex variable and

and hence

Moreover,
exp(2i8) =D /D+.

D (E)=D'(E)*

so that 8 can bo chosen to be the phase of D (E). We
lable this choice B~(E):

ag(E) = phase&D-(E) 5,

and since D(s) is analytic in the cut plane and, by (3),
goes to unity as s becomes infinite (all integrals are
assumed to converge), we can choose 8~(E) to be zero

, at E= ~, and it is then uniquely defined for all E. The
phase bz(E) is the boundary value of the phase of the
function D(s) analytic in the cut plane.

An alternative definition of 8(E) is obtained by solv-
ing for the scattering wave function in the potential (1)
and determining 8(E) from the asymptotic behavior at
energy E as r—+~:

P(r)~A sinPE02r+8(E) 5/r. (12)1 "r(e)deDs =1+-
7r 0

r(k') = —(k/4n) gv'(k);

the function D(s) is analytic in the cut plane (cut fr
0 to +~ ) .The phase shift b(E) is related to t by

expt ib(E) 5 sinB (E)=—(Esm/4n ) t (E'", E'~', E+i0)
=r(E)/D'(E), (5)

(3)
The result is'4

(13)

and this is obviously consistent with (11).However,
if we impose the additional condition that the phase shift
determined in this way be continuous, and call the
resulting phase shift bo(E), then it is not necessarily
true that 8o(E) and o&(E) are the same. It is only
required that

where
D+(E) = lim D(E&ie) (6)

Since it follows easily from (3) that

D+(E) D(E) = 2ir(E—), — &o(E) =4(E)+n(E)s., (14)
we also have

where n(E) is a function that takes on only integral
values.

To illustrate that these distinctions are not completely
trivial, consider the example of Refs. 2—4. Here v is
chosen so that r(E) and ReD (E) both vanish at
E=E0. Since (4) shows that r cannot change sign, r is
made quadratic in E Eo near Ez, while ReD (—E) is
chosen to be linear in E Eo near Ea. Then, by (13—),
tanb clearly changes sign at Eo, and therefore sinbo(E)
changes sign.
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exp(Q) sin8= (D —D )/2iD",
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Qnite imaginary part (, that is, the behavior of D(E i$—)
for g small and fixed.

1 " r(p) (E p)—
D(E i'g)—= 1+—

pr p (E p)'+—P

FIG. 1.Paths followed by the function D(E) . See text for explana-
tion of various cases.

On the other hand, it is shown in I that (3) and (11)
together allow the inverse problem of finding v(k) in
terms of 8~(E) to be solved, with the result (assuming
no bound state)

/P ~ 8g (p) dp
r(E) = sinh~ (E) exp I—

E—e
(15)

=by(E), E&Ep.

The sign of the jump in bg follows from

(d/dE) D(E) l~ x.= —— E, (1&)
1 " r(p)dp

0

where the integral is nicely convergent. If v.&0, then
ImD )0, dD/dE(0 at Ep, and D follows curve a of
Fig. 1.If r(0, then ImD (0, dD/dE)Oat Ep, and D
follows curve b of Fig. 1. In both cases, the phase of D
jumps by+x at E=Ep.

%e can further verify this behavior of bz by looking
at the behavior of D(z) as s goes past (below) Ep with a

Since the exponential is positive and r(E) cannot
change sign, it follows that sin4 (E) cannot change sign.

The resolution of this apparent contradiction is most
simply seen by considering the path on an Argand
diagram of the function D (E) near the point Ep. Since
its real and imaginary parts are, respectively, linear and
quadratic in E—Ep, D (E) follows a parabola as in
Fig. 1. Clearly, as E goes through Ep, D (E) goes
through zero, and its phase jumps by m. At the point
E=Ep, the function n(E) of Kq. (14) jumps by —1.
If 8c is chosen so that 5o(~) =0, then

go(E) =by(E)+x, E(Ep

.()
(E—p)'+P

It can easily be seen that D(E i]) f—ollows the path c or
c' of Fig. i, so that the phase of D is, in fact, increased
by x on the curves a and b.

The sign of the jump is also consistent with (15); it is
easy to see that a jump of x at Ep gives a contribution
lnl E Ep

I
to th—e exponent in (15), so that near Ep

r(E) =y(E)»»~(E) I
E—Ep

I (19)
with f(E) slowly varying. Since sinhz(E) is proportional
to

I
E—Ep I near Ep, we again obtain r(E) ~ (E—Ep)'

as required for consistency.
This jump in 8~(E) is also connected with the fact

that the solution of the Schrodinger equation at Ep is
not a scattering state at all, but has the Fourier trans-
form

Pz, (lr) =XLs(k)/(Ep —k') 7 (20)

with E a normalization factor. A scattering state would
have an additional term 8(k—p), with pp=Ep. As
shown in I, it is consistent and convenient to let bg(E)
have a jurnp of x at the energy —8 of a bound state;
similarly, bz jumps by pr at the special state (20), which
can be regarded as a "bound state in the continuum, "
since its configuration-space wave function goes to zero
at in6nity.

Of course, with b~ it is easy to prove Levinson's
theorem in the standard way by using the domain of
analyticity of D(s); it follows that

8~(0) —8g(~ ) =Niipr, (21)

where ts~ is the number of bound states in the potential
(1) (at most one). If 8c is used, Levinson's theorem
requires the elaborate arguments of Ref. 3.

Finally, it is clear that a "bound state in the con-
tinuum" is the same as a resonance with zero width.
Such a resonance would be a special type of accidental
degeneracy, and hence unphysical. In an actual physical
situation there are always interactions (electromagnetic,
weak) that spread such a resonance. It follows that it is
more reasonable not to require the exact coincidence of
the zeros of r(E) and ReD(E) .Then there is a resonance
in the scattering, and the phase shift goes from near
zero to near m in a continuous way.
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