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Single-Particle Energy Levels Based on the Velocity-Dependent Potential'
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An effective velocity-dependent nucleon-nuclear potential based upon a relatively realistic N-N interaction
has been used in this work. This effective potential has been approximated by the analytically solvable
Morse function in a simple way. The neutron energy states characterized by the Morse parameters have
been calculated for nuclides with 2(A'13(7 using the independent-particle model. The Morse parameters
have been expressed as functions of A and l. The single-particle energy levels obtained from this work
have been compared with the available data and other theoretical and numerical results.

1. INTRODUCTION

T,is well understood from recent studies of nucleon-
. . nucleon interactions based on meson theory' that
the fundamental nuclear force has a signi6cant amount
of dependence on the relative velocities of the particles
involved. It is, therefore, expected that the over-all
nucleon-nuclear potential should exhibit some depen-
dence on the velocities of the individual particles.
Consequently, velocity-dependent potentials have ap-
peared in many recent studies pertaining to nuclear
and particle physics. Most of the workers who have
dealt with velocity-dependent potentials have used
numerical techniques' in solving the Schrodinger
equation. There is nothing wrong with numerical
methods; in fact, the results thus obtained have proved
quite satisfactory. They tend to favor the proposition
that velocity-dependent terms should be included in the
nuclear potentials for 6nite nuclei calculation. However,
an analytic method for treating velocity-dependent
potentials is more desirable. There is an inherently
greater insight into a problem overed by explicit
analytic solutions, and the analytic expressions for the
wave functions and eigenvalues are generally easier to
handle in applications of radial wave functions than
their corresponding counterparts numerically obtained.
In principle, one can approximate a potential containing
velocity-dependent terms by an analytic potential so
that the Schrodinger equation can be solved in closed
form giving analytic wave function and eigenvalue
formulas.

The main purpose of these studies is to give a simple
method for using a velocity-dependent nucleon-nuclear
potential in nuclear problems. The nucleon-nuclear
potential, studied in this work, is based on a relatively
realistic nucleon-nucleon interaction and is presented in
Sec. 2. In Sec. 3 an eGective potential is obtained with
which to replace the original interaction operator, and

*Work initiated and done in part at the University of Florida,
Gainesville, Fla.' See Rev. Mod. Phys. 39, (1967), Session D.

~,O. Rojo and L. M. Simmons, Phys. Rev. 125, 273 {1962) in
X-E potential study; P. J. Wyatt et al. , ibid. 119, 1031 (1960);3. Rozsnyai, ibid. 124, 860 (1961) in nuclear models study.
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in Sec. 4 a simple method for approximating the so-
called effective potential by an analytically solvable
potential is given. In Sec. 5, using the independent-
particle model, this approximation is applied to neutron
states for nuclides with 2(A'~'&7. The results thus
obtained are then compared with other results and
experimental data.

2. VELOCITY-DEPENDENT POTENTIAL

In 6nite uniform nuclear matter the properties are
the same at all points of space, and the energy of a
particle cannot depend on its location, but may depend
on its velocity. If this is so, then the potential can be
considered as a nonlocal potential in ordinary space.
This means that the energy of a particle at a point r
depends not only on the wave function at r, but also
on the wave function at other points r' near r. More
precisely, the energy operator is not diagonal in
coordinate space. Such a nonlocal potential can be
introduced into the Schrodinger equation in the form

A2

2M
h„P(r)+ IC(r, r')f(r')dr'=EP(r), (1)

where the convenient kernel, given by'

X(r, r') = —Vo f(,'(r+r'))bb(~ -r —r' ~), (2)

may be used in (1) . The last factor, 8b, represents the
nonlocal character of f; it is any kind of normalized

'W. E. Frahn and R. H. Lemmer, Nuovo Cimento 5, 1564
(1957); 6, 664 (1957). The kernel (2) may nevertheless be a
reasonable approximation, and it can certainly be handled with
relative ease. The authors have shown that Eq. (2) leads to the
single-particle operator of the form

4 ~2m m 2m
—

i

—u'+u —u+u' —+~(r),

where

1 1 3fV(r) b2

M 25'

In the central portion of the nucleus, where V(r) is presumably
constant, the eGect is simply the introduction of eGective mass.
In the nuclear surface, where V(r) varies, the effect is more
complicated, but, for practical purposes, simple potentials can be
empirically adjusted to give reasonable single-particle functions.
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distribution of short range b. Besides the velocity-
dependent contribution, an over-all potential of the
form (1) can be understood as reflecting the nucleon
correlations existing in nuclear matter, whereby the
presence of a particle at position r inQucnces the
probability of 6.nding another particle at point r' in the
neighborhood of r. This in turn Rejects the energy of the
particle at r and leads to a potential energy of the form
of the integral in (1).

Consider a nucleus ot mass number 8+1 as a system
consisting of a nucleon of mass m moving in an average
field duc to the remaining part of thc glvcn systcm-
say, a nucleus of mass number A. Lct this average Geld
be represented by the nonlocal potential. Frahn and
Lemmer' have shown that in the so-called effective-mass
approximation this nonlocal potential can be represented
by a single-particle potential operator. The form of this
potential operator is equivalent to one which has been
studied extensively by several workers, ~13 both in the
nucleon-nucleon and nucleon-nuclear contexts. The
potential that we consider is of the form

V(r) =—Vof(r) —(@'/g~)

Xgf(r)+2V f(r)V+f(~)~j, (3)

where p, is the reduced mass of the system and 8 is a
parameter characterizing the degree of velocity depen-
dence of the potential and given by'

b= Vopb'/2fP,
with

Vp= 70 MCV.

3. FORM FACTOR AND EFFECTIVE POTENTIAL

The form factor f(r) in (3) is the real part of the
average nuclear potential. Its form is best described as
having an approximately uniform interior region and a
diGuse surface which falls OG rapidly within 2—4fm
beyond the rms radius. A great variety of potential
shapes satisfying these criteria are readily available and
have been used in the past. For computational sim-

plicity and because of its continuity properties, we have
used the well-known Saxon-Wood form factor

f(~) = 1/(1+s'" "'")
where'4 8= j..2A'~' fm and d=0.6485 fm.

4 A. E. S. Green, Phys. Rev. 76, A460 (1949);76, 8701 (1949);
Phys. Rev. Letters 14, 380 (1965).

~A. M. Green, Phys. Letters 1, 136 (1962); 3, 60 (1962);
Nucl. Phys. 33, 218 (1962).

6 M. Razavy et g/. , Phys. Rev. f26) 269 (1962).
7A. Scotti and D. Y. %ong, Phys. Rev. 138, 8145 (1965}.
SM. H. Johnson and E. Teller, Phys. Rev. 98, 783 (1955).
9 A. A. Ross et u$. , Phys. Rev. 104, 401 (1956).
OH. Duerr, Phys. Rev. 103, 469 (1956); 109, 117 (1958).
"A. M. Green, in I'roceedings of the ENtherford Jubike Inter-

national Conference, 3funchester, England, 1NZ, edited by J. 3.
Sirks (Academic Press Inc. , New York, 1961),, p. 401."R.C. Herndon et e/. , Nucl. Phys. 42, 113 (1963)."F.Tabakin and K.T.R. Davies, Phys. Rev. 150, 793 (1966).

"A.K. S. Green and P. C. Sood, Phys. Rev. 111,1147 (1958).

It can easily be shown on solving the Schrodinger
equation of a system with potential (3) that the radial
part of the wave function may be put into the form"

x"(*)—V(*, ~s)x(*)—&~'/(1+b) jx(*)=o, (6)

where V(x, es) is the energy- and state-dependent
potential equivalent to (3) and is given by

e02f 1 bf" 1 bmf"

1+bf 4 (1+bf) 4 (1+bf)'

1 bf' l(l+1) beg' f 1—
2 (1+Sf)x x' 1+b 1+bf

Equations (6) and (7),introduce x= r/u as the distance
variable where a is a convenient unit oi length (= 1 im) .
Eo= fP/2pa' is used as the corresponding unit ot energy.
The function x(x) =$1+bf(x)]'12G(x), where G(x)/x
is the usual radial wave function. The dimensionless
energy parameters are dedned as

where 8 is the eigenvalue which will be characterized
below as the particle separation energy. Using these
definitions, the parameter b becomes V0/6E, a'. Al-
though the potential (7) has a direct dependence on
the energy E, it is found upon generating this potential
for nuclei with 2&2'13& 7 in /= i and 2 states that this
dependence is rather insensitive to E.This is what was
expected since the factor f 1 is usu—ally a relatively
small residual quantity in bound-state problems.

4. MORSE FUNCTION AND APPROXIMATION

The form of potential (3) used in this work has the
same velocity dependence which appears to charac-
terize the fundamental nucleon-nucleon interaction. ~~
However, the over-all eGective potential (7) which was
derived from (3) is a simple form of the nucleon-nuclear
potential. For finite-nuclei ca1culations, there are several
important factors not included in (7) which should be
considered in predicting nuclear properties, e.g., spin-
orbit coupling, the Coulomb effect, the asymmetry
term (which contributes largely to the line of P sta-
bility), the pairing energy, the shell effect, etc. These
studlcs Rlc cxploI'Rtory ln 11RtuI'c. Slncc Rt thc outset. of
this work the primary concern is with qualitative results
only and with keeping the calculations as simple as
possible, the aforesaid terms have been ignored.
Actually, aside from the gross effect due to the spin-
orbit term the absence of these terms from (7) should
be of little consequence. The CouloInb term is elim-
inated by itself since only the neutron states are being
considered, and the remaining terms Inay be regarded
as being taken care of in soIne way by the form factor
(3).

The complicated. effective potential given by (7) is
approximated by an analytically solvable function, so

@ A. E. S. Green et a/. , Phys. Rev. 157, 929 (1967).
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that the eigenfunctlons x($) and the eigenvalues E can
be obtained in closed forms. A class of simple potentials
18 RvallRblc foI' which thc SchI'odlIlgcr cqURtlon cRn bc
solved in terms of special functions, "In order to replace
the potential (7) by some analytic function, the well-
know'n Morse function is used as an illustrative example:

-IO

where D, D&, p, and g& are the adjustable parameters.
Since almost any reasonable matching procedure gives
about the same parameters of thc Morse function. "a
relatively simple device has been employed to obtain
them. The least-squares and g2 curve-6tting methods
used for matching {7) and (8) give almost the same
parameters for 6nite nuclei such as '70 and 4'Ca. As
expected, the minima of the two potentials are not
signiacantly diGerent and both are, roughly speaking,
around the 8ame point xo. This tendency 18 some%'hat
distorted because l and A vary. However, the coin-
cidence of xo seems to favor slightly smaller values of
l and 3, whereas the minima tend to favor larger / and,
A. Since the purpose of this work is to develop the nu-
clear systexnatics with the simplest possible methods
without involving mUch sophisticated calculRtlons Rnd

programs, a simple procedure in replacing (7) by (8)
has been adopted. Essentially, the minimum of the
Morse potential (8) was matched to the minimum of
the original effective interaction {I)at xp. In order to
obtain more reasonable expressions for the Morse
parameters, a little matching was then allowed in the
surface region. These parameters are expressed as
empirical functions of A and l as follows:

D= Eo/9 —13.8A-'i'+0. 21(l+1)A 'I'—0.121(1+1)1,

Do ——Eot 2.72—1.5A-'"—0.31(l+1)A 'iI+0.0121(I+1)g,

p= 1/at 3 8+0 3A'"+0 15t(I+1)jA—'" (11)
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Using the Morse potential (8) the wave equation (6)
can easily be solved for x as long as exp(Pro) is con-
siderably larger than unity. '~ Thus only nuclides with
A &8 are considered in this work. The allowed eigcn-
values and eigenfunctions of (6) are obtained approxi-
mately fol the 6I'st pIlnclpal quantum nUmber Rs"'

E= (1+o)EDo P—(DE.)"+-'o—'O'Eol (12)

where s= 2(D/Eo) '" expt —P(x—xo) g/PA and k'= $D-
De El(1+&)IIEo&—'p'

'6 A. K. Bose, Nuovo Cimento 32,&679 (1964).
'~ P. M. Morse and H. Peshbach, Methods of Theoretic'el Physics

(MeGraw-Hiil Book Co., New York, 1953), p. 16/2.

FIG. 1. Solid curves are the single-particle energy levels as
functions of 3'@calculated from the velocity-dependent potential.
Closed circles are also the single-particle energies for some finite
nuclei but from Hartree-Pock calculations (Ref. 22). Open
circles indicate the mean values of the observed data (Ref. 18}.
Dashed lines are merely to guide the eyes. The resu1ts of Hartree-
Fock correspond to «'C ~60 ~88i and 40Ca. The observed values
belong to '2C '60 '9F '8Si, ~Ca, "Ti, "Fe, and '8¹i.

Figure 1 shows the single-particle energies for the
neutron states 0&i&7 in nuclei having 2&3'I'&7.
These energies have been calculated from the eigenvalue
formula (12) using the empirical expressions (9)-(11)
for D, Do, and P, respectively. Also, Fig. 1 shows the
mean separation energies (without showing errors bars)
experimentally determined fol soIIlc nuclcl Rnd
energies calculated by other authors~ using the Hartree-
Fock method. Table I lists results for the neutron energy
states without spin-orbit splitting for some of the finite
nuclei. Although these energies have been calculated for
all nuclei with 2&2'"&7, Tables I and II show only
the results for those nuclei for which the same results
Rrc availRblc clsc%'hcr'c either froIQ othel CRlculatlons
using thc velocity-dependent potcntlR1 ol fI'OIQ cxpcI'1-
ments. The velocity-dependent nucleon-nucleon inter-
action with a Gaussian form factor was used in, the
Hartree-Fock calculations, "but the spin-orbit term was
not included. That is vrhy no spin-orbit splitting occurs
in their results. '~ The other numerical Rnd semianalytical

"M.Riou, Rev. Mod. Phys. 3V, 375 (1967);G. Jacob and Th.
A. J. Maris, ibid. 38, 121 (1966); U, Amaldi, Jr. et al.„Phys.
Letters 22, 293 (1966).

'9 H. Tynen et u/. , Nucl. Phys. VQ, 321 (1966).
~0 F. Ajxenberg-Selove and T. Lauritzen, Amencee Ilstitlte of

Physics JIwsdbook (Mcoram-Hill Book Co.„Neer Pork, 1963),
2nd ed.

~' P. M. Endt and C. van der Lenn, Nucl. Phys. 34, 1 (1962).
2~ S. J. Krieger et al., Phys. Letters 22, 607 (1966)."P.C.Sood, Ph.D.thesis, Florida State University, Tallahassee,

Florida, 1957 (unpublished).
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This
work HF' GOB b Num'

25, 0 35.2 34.Od

15.0d

22. 0

41.0 39.0 44.0~9'

21, 6- 20.9 19.0~1 17~

14.6 13.7 12.4&1 f

Tsar.K I. Comparison of experimental and calculated separa-
tion energies of neutron (MeV) in nuclides "C 'le 'ISi, and
"Ca. The two numbers, whenever they occur in the same rom,
correspond to spin-orbit splitting. The upper number belongs to
j=l+~ values and the lower one to j=l——, values.

Saxon-Wood type (6). Experimental values for the
separation energies as functions of the mass number are
available for the last particles but not for those in inner
states. They are imprecise though for lower mass num-
bers. Unlike the other states, a discrepancy in the
energy values for the s state was essentially expected
due to the presence of the centrifugal term in potential
(7) . In order to ehminate or minimize this discrepancy,
the energy values 'n the s state were extrapolated from
higher states. While this discrepancy could not be
completely removed this way, it was substantially
reduced. From Fig. 1 it is apparent that the energy
values for the s state obtained from these calculations
di6er consistently from other calculated or experimental
values for nuclei in the same state. Some higher levels
were also projected by extrapolating, and they are in
good agreement with the previous numerical results. -"

"Si

4.0

36.5

30.5

16.5

42.0

37.5

8, 0

57.0

5. 1 4.1

0.9'

59, 0d

26.0&

16.0d

52.3 50.9 77.0&14d

34.3 36.3 32.0+4&

31.1 32.0

19.1 21.7 15.5~ 19'

11.3 13.7 8.3

5.6 8.1 8.36~

3.6

In this work. the single-particle energies calculated for
neutrons are in rough agreement with the available data
Rnd with the results obtained from other calculations.
The exception for the s level was explained in Sec. 5.
Nevertheless, it seems appropriate to make a few
1cmarks ln gener Rl on thc relatively smRll dlsRgI'cc-
ments that one observes between this work and that
compared with it. These discrepancies may be caused
partly by the uncertainties associated with the previous
results used in this comparison. In this regard one must
bear in mind the following. (i) The separation energies
of the particles in strongly bound states are imprecise.
The inner particle data for 2z-1d shell nuclei have
particularly very large uncertainties. (ii) The nucleon-
nucleon force used in the Hartree-Fock calculations'"'
was not very accurate and was oversimplified. The

~ Reference 22.
b Reference 1&.
Quoted in Ref. 35.
d Reference is.
~ Reference 19.
f Reference 20.
~ Reference 2 i.

primary purpose of those calculations" was to study
the method itself and to apply it to a few sample nuclei
as illustrative examples and not to give precise energy
levels. Accordingly, they should not be regarded as
exact. (iii) The numerical and semianalytical results"
inherited several uncertainties. Similar uncertainties are

results" obtained using a velocity-dependent potential
with a polynomial-type form factor have spin-orbit

splitting. Their spin-orbit interaction is of the Thomas

type, and the polynomial form factor is given by"

f(t) = 1 for r(ar
= s r st+ r sP rst for (at'r( as(14)
=0 for r& a2,

where t=2Lr —-', (at+a, ) j/(as —ar). The constants a,
and a2 were dc6ned in terms the surface thickness T and
half-falloff radius R(—rod'") as ar R—7 and as

E+T. This form factor is somewhat similar to the

Nuclide

Expt
This work (Ref 18)
f state 1fz, 2 State

48Ti

51+

52Cr

13.0

11.4

8.0

10.5

TsM,E II. Neutron separation energies (MeV) in the f states
of nucHdes. The experimental values have spin-orbit splitting
corresponding to the f~I~ state.

~4 P. J.Wyatt et ul. , Phys. Rev. 119, 1031 (1960).
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involved in the present work. Hence they are explained
in connection with the possible source of errors noted in
these calculations. In viewing these small disagreements,
one must bear in mind the particular way this problem
was treated considering the following facts. (a) The
potential (7) used in these calculations was over
simplified and did not include some of the important
terms discussed earlier. (b) Although the criterion for
matching the Morse potential to the effective potential
(7) is fairly workable for the bound-state problem, one
must not overlook the fact that the very method of
approximation is rather cursory and does not have a
strong mathematical foundation. (c) The form factor
(6) is too fiat (so is (14), used in Ref. 15]at the origin
to make the effective potential look Morse-like, for the
s state at least. The same form is used for static as well
as velocity-dependent components of (7). (d) The
values of the parameters (4) used in these calculations
(and also in Ref. 15) are based upon the bound-state
and scattering data of the last decade. %bile determin-
ing those values of the parameters (4) no consideration
was given then to the data on the tightly bound states.
(e) The differences of the order of a few MeV should be
viewed in relationship to the value of the depth param-
eter Vo, which is 70 MeV.

The motivation for these studies has been to provide
a simple technique for producing single-particle energy
levels based on the velocity-dependent nucleon-nuclear
potential and to maintain the beauty and simplicity of
the independent-particle model. To sum up, a method
of treating a velocity-dependent potential analytically
has been presented here. This potential has its founda-
tion in the basic nucleon-nucleon interaction. ~" A
simple procedure of replacing the e6'ective velocity-
dependent potential by approximating Morse functions
for nuclei of mass number A = 2' to 7' in various states
has been prescribed and used. The Morse parameters
are given as explicit functions of 2 and t. The approxi-
mation method in this work makes the application of a
velocity-dependent potential to nuclear problems as
simple as the frequents. y used harmonic-oscillator

potential, which is static and unfortunately highly
unrealistic. The eigenvalue formula (12) is almost as
convenient as the one belonging to harmonic-oscillator
potential. Unlike the parameters used in calculating the
energy in the harmonic-oscillator well, the parameters
involved in the energy formula (12) have a direct
dependence on A and f given by (9)—(11).Equation
(12) together with (9)—(11) provides a simple means of
calculating single-particle energy states analytically
based on the velocity-dependent potential, thus avoid-
ing the use of large electronic computers used previously
for numerical solutions. ' The choice of the velocity
dependence of interaction (2) plays a significant part in
determining the trend of energy levels. For example,
comparing these results with the Hartree-Fock calcula-
tions, " fortuitously one finds that these calculations
tend to produce the falloG of the energy levels with A
whereas the Hartree-Fock calculations do not (see
Fig. 1). This trend is in the right direction, and one
would expect it because of the saturation property of
nuclear forces.

Finally, it may be remarked that further definite
many-body calculations based upon a rather more
realistic nucleon-nucleon interaction for 6nite nuclei
need to be performed and more reliable data taken.
Then further studies such as the present work, but
incorporating the aforesaid terms not included in
potential (7), may be done which should predict the
single-particle energy levels more conMently and be
applicable to other nuclear problems.
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