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A quickly converging expansion for three-body variational wave functions is obtained by
adding to the usual Hylleraas wave-functions terms which express the correct asymptotic
behavior. This modified expansion is applied to three problems: the H ground state; a
search for a He- e bound state; a search for a H —e scattering resonance below the posi-+ +

tronium threshold. The H calculation shows a marked improvement in convergence over
using Hylleraas functions alone. It is also found that there is no H-e bound state unless the
mass of the positron is greater than 2. 20 electron masses. Similarly, no positron scattering
resonance below positronium threshold exists unless the mass of the positron is less than
about 0.7 electron masses.

I. INTRODUCTION

For many calculations, especially those in-
volving moments of the electron coordinates, it
is important that wave functions derived from a
variational principle have the correct asymptotic
behavior, a feature to which variational principles
are rather insensitive. In our attempts to incor-
porate the correct asymptotic behavior into trial
wave functions, it was found that the effect upon
the calculated ground-state energies was marked.
Indeed, the terms added to the usual Hylleraas
trial functions for H to incorporate the asymp-
totic behavior accounted for 98% of the total func-
tion's modulus; the Hylleraas part which is or-
thogonal to the asymptotic terms devotes only 2%
to the regions closer to the origin.

Also of practical importance is the economy of
terms necessary to achieve a given accuracy of
the eigenvalue. In the next section we demon-
strate this by comparing our results to Pekeris', 'y'

among others, ' ' calculations in H . In Sec. II
we seek (in vain) a bound state of the H —e+ sys-
tem, and finally, in Sec. III we look for the H-e+
scattering resonance below positronium formation
threshold.

In all calculations, atomic units are used, and
it is assumed that the mass of the proton is in-
finite.

where gH is the usual Hylleraas wave function

n. 2l. m.
= (A/vs 8 )e ' Qa. s 't 'tt

H Z
(2)

II. CALCULATIONS

A. Ground State of 8
In this and subsequent examples we write the

normalized variational wave function ip two parts
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-nr, -Pr,
r2

-nr, —Px,

)
-r, e ' —e+e

1 (3)

where n= (2E5)'~'=- (8+0.5 a. u. )'~, and P) a.
The energies E and Ey are the total and binding
energies, respectively. The terms containing P
are there to avoid a singularity when either r, or
r, approach zero, and do not affect the asymptotic
behavior.

Equation (1) was used to minimize the expecta-
tion value of the Hamiltonian for H

1 8 2 8 8 2 8 QX=— 2+ + 2+— +2
2 &r,' ry erg r2 r, er,

with 8=r, +r„ t=r, —r„and u=r». The a~ and

Q are variational parameters. The constant A is
what is later referred to as the "tail coefficient. "
In Eq. (1) g7 is the "tail" function which asymp-
totically approaches the exact wave function:

= (A/2v)

sponding best result from the Rayleigh-Ritz prin-
ciple using (5). It was then found that E~ con-
verged very quickly as a function of M:

E = —0.51446, E' = —0.527 736,
E'= -0.527 7507, E'=- 0. 527750g.

In Table I we summarize the results for the ca1.—
culations of H with X= 1, 2, .. ., 7 [for N= 7, com-
puter limitations allowed us to use only 55 terms
in Eq. (2) rather than the full 57]. We also list
the values of the amplitude of the tail, A [Eq. (3)].
The amplitude A eonverges to the value calculated
by Ohmura and Ohmura' from a 203 term function
of Pekeris.

Comparison of the energy values shown in Table
I with those of other authors' points out how im-
portant the tail function is. Our 5 parameter en-
ergy is lower than Henrich's' 11 parameter va1-
ue, our 15 parameter energy is lower than Hart
and Herzberg's4 21 parameter value, the 23 pa-
rameter energy is better than the 34 parameter
energy of Chung and Hurst, ' and finally, with 45
parameters, we calculate a lower energy than

+r
+— +

r12 arl2 rlr12 erlsr12

Restrictions on the Hylleraas part of the varia-
tional function. [Eq. (2)] were as follows:

n. +2l.+m. &N and e.&3.
Z Z

TABLE I. Energy values and tail coefficients for H

ground state. A was extrapolated from the odd N values;
the absolute values of the differences lA(N= 1) -A(N=3 (,
IA(N=3) -A(N=5) I, lA(¹5)-A(N=7) I converge to 0
very rapidly, and the next difference should not exceed
0.0001. This result is in good agreement with the value
of Ohmura and Ohmura (Ref. 6): 0.790 89.

No. of
N ParametersThe reason for the last restriction is that it was

noticed that results were virtually independent of
m. & 3. To demonstrate, let

z

(5)

This amounts only to a rearrangement of terms
in Eq. (2). In addition, let E~ be the corre-

1 5
2 9
3 15
4 23
5 33
6 45
7 57
extrapolated

—0.527 621
—0.527 648
—0.527 734 66-0.527 746 95
—0.527 749 90
—0.527 750 71
—0.527 750 882

0.761
0.737
0.804 7
0.770 8

0.79181
0.790 47
0.790 89
0.790 84 + 0.000 05

TABLE II. Average values of various operators using H trial functions. The last two operators
are defined in Sec. G-A.

&ri+r2&

Mtot
Ig -I2

5 Parameters

5.415
23.69

150.
1 254.

13 140.
7.454

—10.536

15 Parameters

5.4230
23.876

152.8
1303.

13 908.
7.508

—10.715

33 Parameters

5.420 22
23.825 6

152.03
1 290.

13697.
7.485 1

—10.665

Pekeris

5.420 36
23.827 4

7.484 26
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does Pekeris' with 125 or Frankowski and
Pekeris' with 59 parameters.

. In Table II are listed the first five moments of'

(r, + x,) using our 5, 15, and 33 parameter func-
tions. In addition we list the mor|„complicated
function estimated by Inokuti and Kim':

I —I = f S .(k)k 4d(k')
l,nc

—f [m —k 'S. (k-)] k-'d(k'),

where Mt t=(Ir, +r, I')
tot

if ~ r, ik r,
( '+e

In Table III we list the coefficients for the 5, 15,
and 33 parameter functions. In all cases, e
= (0.027 751 016PI', the exact value of Frankowski
and Pekeris. '

B. Search for a Bound State of the 8 -e+ System

The search, using the Rayleigh-Ritz principle,
for a bound state whose existence is in doubt is
a precarious busine'ss, since, when the state is
not found, one is always plagued with the fear of

having been caught in a local minimum, or of not

y"-2mVy=2mE yb

with the boundary conditions

y(0) =0;

(6)

y -exp[- (2mE )'+r], r»(E /b) 'I4. (7)

At the critical mass mp

yp"- 2mp Vyp 0

with

y0(0) = 0; y -1, r» (Eb/b)-'I'.

having a trial function of high enough accuracy.
It is much more satisfying to change a parameter
(such as a mass) so that binding is achieved and
then, after calculating the binding energy as a
function of this mass, extrapolating it back to its
physical value. We have followed such a proce-
dure in an attempt to find a bound state of the
H —e+ system, the variable mass being that of
the positron.

We first develop an extrapolation formula. Let
m, be the mass of the positron at which binding
is just achieved. Then for m slightly greater
than m„ the positron is bound at a distance which
is great compared to a„ the Bohr radius. As-
ymptotically the positron is in a static potential
V= —b/r~, b& 0. Near the origin the potential is
V= 1/r Th. us for m & mo, and r»ao, the wave
function for bound positron satisfies

TABLE III. Coefficients for H variational functions nonlinear coefficients of g& and g&.

0.235 588 692
0.235 588 692
0.235 588 692

0.85
0.9
1.712

1.572 259 77
1.757 910 254
1.860 807 68

0.760 817 91
0.804 755 14
0.791 974 00

No. e 2E m N=5
Linear Coefficients of g&
N=3 N=1 No. n 2E m

I
2

3
4
5

6
7
8

9
10
ll
12
13
14
15

0 0 0
1 0 0
0 0 1
2 0 0
0 2 0
1 0 1
0 0 2
3 0 0
1 2 0
2 0 1
0 2 1
1 0 2

0 0 3
4 0 0
2 2 0

-3.372 8293
0.209 33749
0.345 17926

—0.069 809 807
—0.008 715 223 6

0.039 6S2 831
—0.054 118628

0.000 575 042 16
0.010 181674

—0.002 901 0294
—0.015308 818

0.010 788 827
0.005 860 7318

-0.000 053 162 557
—0.000 890 865 34

—1.088 300 8
-0.228 81926

0.321 579 91
0.002 169692 3
0.014 431 692
0.018 278 886

—0.029 438 149
—0.002 601 913 6
—0.003 398 556 0

0.001 278 1311
—0.001 565 62V 4

0.003 822 738 2

0.000 141 91111

—0.888 544 58
—0.112566 00

0.263 528 05

16 0 4 0
17 3 0 1
18 1 2 1
19 2 0 2

20 0 2 2

21 1 0 3
22 5 0 0
23 3 2 0
24 1 4 0
25 4 0 1
26 2 2 1
2V 0 4 1
28 3 0 2

29 1 2 2

30 2 0 3
31 0 2 3

0.000 353 575 43
0.000 816 928 36
0.000 411234 53

—0.000461 31305
0.001 050 822 8

—0.001 535 963 6
—0.000 022 246 859
—0.000 175 094 39
—0.000 041 184 624

0.000 005 049451 6
0.000 365 759 60

—0.000 010 615391
—0.000 014 SVV 062
—0.000 242 625 04

0.000 095 995 V93

0.000 029 620 10V
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(mz~)' '= c(m —rn )

correct to first order in (nz —m, ). '0

In order to implement Eq. (10) the following
Hamiltonian was minimized

1 82 2 8 8 2 8
2+— +P 2+—

2

8 2+(1+p) +

(io)

From Egs. (6)- ('I} it is found that it is the asymp-
totic contribution which is energy dependent. By
multiplying Egs. (6}, (8) by y, and y, respectively,
subtracting and integrating over r one obtains

function of N. The results are summarized in
Table IV. Figure 1 contains the plot of (gZb)' '
against p, . The graph is a precise straight line
and extrapolates to p=0.454, or nz, = 2.20, which
corroborates other" theoretical evidence that
there is no H- e+ bound state.

C. Search for a Scattering Resonance of the
H-e+ System

The method used in searching for a bound state
of the H —e+ system is also applied to the search
for a scattering resonance below the threshold

2 2 2

+ +1 +2 + +12

+1+12

Q2

8&1~&12

2 2 2

+g &2 —&1 +&12

+2+12

1 1 1——+——
) (11)er er, r, y

where r, and r2 are the electron and positron co-
ordinates, respectively, and p=1/m, m being
the mass of the positron. The variational wave
function takes the form gy= $7 + graf, where

—P
1

T 2' r2

CV

LIJ

C)

and

a=(2Z /i )» Z =-(Z+O.26) a. u.
b ' b

= (D/v&8) exp(-A, r, -A, r, A»r»-)H

n. l. m.
Z Zxga. ri r2 r12 (Is)

0.40
I

0.42 0.44 0.46

where rs +l + ¹

Note that the symmetry restriction has been
lifted from Eqs. (12) and (1S). The binding ener-
gy was calculated for p, =0.40, 0.41, ... , 0.45
with N=4, 5, 6. The energy for N= ~was esti-
mated by assuming geometric convergence as a

FIG. 1. Binding energy of the positron in the H —e+

system as a function of inverse positron mass. The
points show the computed values; the straight line is
given by Eq. (10). The lirie extrapolates to p(}=0.454
or ma= 2. 20 electron masses for zero binding. The
data are taken from Table IV.

TABLE IV. Binding energy of the positron in the H-e system as a function of positron mass. The values in the
last column were used in Fig. 1.

p (=1/m)

0.40
0.41
0.42
0.43
0.44
0.45

Eb
N=4

0.000480 8

0.000 308 2

0.000 177 0
0.000 083 7
0.000 023 5
0.000 001 15

0.000 491 5
0.000 3177
0.000 183 1
0.000 088 6

0.000 028 6
0.000 001 93

Eb
N=6

0.000 494 5
0.000 320 5

0.000 186 5
0.000 090 5
0.000 030 0
0.000 002 35

Extrapolated

0.000 496
( 0.000322
0.000 191
0.000 092
0.000 031
0.000 002 8

10'(pE )"'
b

14.10
11.45
8.95
6.30
3.7
1.1
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for positronium formation. " The resonance prob-
lem is converted to a bound state problem by
projecting out the ground state of hydrogen from
the trial function. A method for accomplishing
the projection numerically is described in the
Appendix.

For very small binding energy, the variational
function describes positronium bound to an infi-
nitely massive proton. That is, instead of using
the form of Eq. (12) for the tail function, we use

cv 2
CD

(14)

where x, is the positron-proton distance. We use
r, instead of —,

'
) r, + r, ) for convenience.

Relation (10) should roughly hold in this case
also, with two restrictions: (1) The potential
depends strongly on m and this dependence causes
the binding to occur for m &m, . The constant C
also becomes strongly m dependent. (2) ln the
range of p, where the binding energy could be
calculated (p, & 1.6), r» is of the same order of
magnitude as —,'Ir, + r, I, and, therefore, Eg. (10)
need not be valid. Nevertheless, empirically we
found that

1.5 1.6 1.7
I

1.9 2.0
I

FIG. 2. Binding energy of a positron in the auto-
ionizing level below positronium threshold as a function
of inverse positron mass. The points show the computed
values; the straight line is given by Eq. {15). The line
extrapolates to @0=1.47 or mp=0. 68 electron masses.
All reasonable estimates of the errors in the computed
binding energies give values of 1.4 & @0&1.5, ol mp
= 0.7 + 0.03 electron masses. The data are taken from
Table V.

4E =C'(m ' —m '), 0.5&m& 0.6.b= ' 0'- (15)

The binding energy is calculated for p, =1.V,

1.8, . ~ . , 2.0. Convergence as a function of N is
not as strong as in the previous case, especially
near p,„' nevertheless, extrapolation of the data
to Ey=0 gives p,0=1.45. Table V and Fig. 2
summarize the results. While we cannot rigor-
ously rule out the existence of a resonance below
the positronium threshold, we cannot see any
reasonable change in Fig. 2 which will bring p, 0
near 1.

APPENDIX

In this Appendix, "an approximate, but arbitrar-
ily accurate method for calculating the projection
operator Q in variational calculations is given.

K

i=1
Then a typical term in Qgy is

(Al)

(A2)

We assume that the integral in (A2) can be ex-
pressed as a Laguerre series either exactly, or
to arbitrary accuracy,

We suppose the unprojected variational function
is composed from a basis (yf}

TABLE V. Auto-ionization levels in the H-e system
below positronium threshold using 4th, 5th, and 6th
order wave functions, as a function of positron mass.
{Because of storage limitations only 70 terms of |tl~ were
used for N= 6 instead of the 84. ) The values of the last
column are used in Fig. 2.

The corresponding approximation to Q will be
determined by

J'QM(P;~, ~2, ~12)~(~1 ~2 ~,2)u0( 1)

—ps~ k'
xe 'x, r,r, r»d~, Ch, dr» =0

1.7
1.8
1.9
2.0

0.000 17
0.000 50
0.000 91
0.001 51

0.000 275
0.000 62
0.001 08
0.001 64

0.000 32
0.000 65
0.001 10
0.001 65

10 E
{N=6)

1.80
2.55
3.30
4.05 a =(v IXlv ); 1V =(v lv ), (A6)

for k = 0, 1, 2, . .. , M. (A4)

We now proceed to find the eigenvalues of QMHQM
without actually realizing QM itself.

(a) Construct the two (%+M+ 1) order matrices
H andN:
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where

and

=u (y )~ p ', fork=0 I, . .. , M
—pg~012

(A6)

for A. =M+1,M+2, ... , M+K (A7)

{v, ... , v,v, . .. , v ) to obtain

{O' ' ' M' M+1' ' M+K'
where

u, = v„w, = w/( w, lw, &"';

w, =v, —(w, Iv, &w„u, =w, /(w, lw, &"', etc;
H =(w iXlw ).

Ap
(b) Invert N using the standard Gauss elimina-

tion process

N =SRR S '

++K M+K-1 ~I

R =5, for pA. , or p=X and v ~A.
pv pp

= —N /N, for p, =X, v& A.
X-1

A,v VV

0 A. X X —I~ A.)T

PP p, v

and apply the same process to H

H= SRHR S (A8)

(c) The Keigenvalues of Hi j=H~+M j+M-,
(i,j=1,2, ... , K) are the eigenvalues of QMHQM
which we are seeking.

The matrix H of Eq. (AS) is identical to the ma-
trix one would obtain by applying the Gramm-
Schmidt orthogonalization process to the set

Not only are the zvy mutually orthogonal, but the
Gramm-Schmidt process has the property of
leaving the se& orthogonal to all the v& such as
the p & &. Therefore the subset W-={wM+ 1, ... ,
wM+Kj is orthogonal to the subset V-={v„... ,
vM). The subset V forms the basis for the ground
state, therefore W must span {@Mal,QMy2, ... ,
@M&d

In Table VI are shown the lowest eigenvalues of
H as a function of M, for p. =1.7, K=36. At M=6
all the spurious levels below the resonance disap-
pear, and the eigenvalue is correct to five signif-
icant digits. At M = 9, the energy is correct to
seven significant digits. Since the ground state
of positronium for g=1.V is —0.185185 a.u. , M
= 6 yields a binding of —0.00017 a. u.
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TABLE VI. Lowest eigenvalues of H as functions of M with p, =1.V, X=36, N=4, P=0.5. The first eigenvalue in
each row corresponds to the resonance energy in a.u. and converges to -0.1853557. The other eigenvalues are
spurious and disappear as I increases. (The positronium ground state is -0.185185185.)

—0.185 05V
—0.185 062
—0.1S5 186
—0.185 298
-0.185332
—0.185 347
—0.1853533
—0.185 3545
—0.185 3556
—0.1853557

-0.18V 534
-0.225 642
—0.298 356
—0.201 617
—0.334 191
—0.255 474

Lowest eigenvalues

—0.325 283
—0.361905
—0.421 187
—0.386 016

—0.411351
—0.445 492

—0.465 034
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Elastic Scattering of 145-, 279-, 412-, and 662-keV y Rays from &ad*
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The differential cross section for elastic scattering of 145-, 279-, 412-, and 662-keV y rays
from lead has been measured in the angle interval 30 to 150' using a lithium-drifted germa-
nium detector. The experimental results are in general agreement with the theory of Brown
et a/. Approximative formulas for the differential cross section of Rayleigh scattering are
discussed.

I. INTRODUCTION

The good energy resolution of lithium-drifted
germanium detectors lead to an enormous in-
crease in the accuracy of many experiments in
y-ray spectrometry. One of these experiments
is the determination of the differential cross sec-
tion for elastic scattering of y rays which re-
quires the separation of the elastic- and inelastic-
scatteriag components. The elastic scattering
is composed of four different processes: Ray-
leigh scattering, nuclear Thomson scattering,
nuclear-resonance scattering, and Delbruck scat-
tering. Of these four processes the Delbruck
scattering is by far the most interesting one since

it yields in addition to the Lamb shift an informa-
tion about the vacuum polarization. Unfortunate-
ly this process is also the weakest one, so that
its contribution to the cross section can only be
detected when the competing processes are very
weO known. This is one reason for being in-
terested in an accurate determination of the dif-
ferential cross section for Rayleigh scattering.

An exact calculation of the differential cross
section for Rayleigh scattering has been carried
out by Brown et al. ' 4 for the X electrons of
mercury and the y-ray energies 163, 327, 654,
and 1308 keV. The main purpose of the present
work was to check these calculated cross sec-
tions experimentally. For this reason the ex-


