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A perturbation study of the NP states of two~electron atoms has been made. In particular,
oscillator strength values for the (1’s, 2'P) and (235, 23P) transitions are obtained. The 2!p
and 2°P states are studied through ninth and tenth order, respectively. In addition, the N'P
and N°Pstates are studied in first order through the 10P member of the series. Perturbation
energy coefficients and other expectation values for several important operators have been
computed. Perturbation energy coefficients for the 1!s state (through 25th order) and 2%s
state (through 17th order) are also reported. Where comparison is possible, these results
are in satisfactory agreement with the results obtained from variational calculations by C. L.
Pekeris and co-workers. The variational-perturbation method for excited states requires
auxiliary conditions on the perturbation wave functions. The condition on the #th~order wave
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function is derived here.
Sinanoglu.

1. INTRODUCTION AND PROCEDURE

This study was undertaken in order to apply the
variational-perturbation methods previously de-
veloped! to a study of the oscillator strengths in
the 2!P to 1'S and the 2%P to 23S transitions for
the helium isoelectronic series. This task neces-
sitated the construction of accurate 2P perturba-
tion wavefunctions through high orders, and, con-
comitantly, the availability of 1'S and 2°S wave
functions of comparable accuracy and order. For
reasons,of computational convenience, a new 1S
ground-state wave function was determined, al-
though similar wave functions already are in ex-
istence. In addition the 2P perturbation wave
functions are themselves of interest, and a study
has been made of their eigenvalues, expectation
values with certain operators, etc. The pertur-
bation energy coefficients for the 1S and 2°S

This is a generalization of the first-order condition given by

states are also reported. The S state calculations
were regarded as of secondary interest, and no
detailed study of them is presented. Further,
first-order studies of the NP states, N from 3 to
10, were completed, and are briefly reported.

1. Notation

The notation used here is as follows, Let the
Hamiltonian be given in atomic units® by

H=Hy+H,=Hy+1/Zr,,, (1)

where Z is the nuclear charge and 1/Z7,, is re-
garded as the perturbation. Then a solution ¥ M)
for the Mth state can be written

\I'W)=Enz—nlp W)’ (2)

n

with eigenvalue
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=Enz—n€nW)° (3)

£0)

The zpn(M) and En(M) are the nth-order perturba-
tion expansion coefficients for the wave function
and eigenvalue of the Mth state. (In the following,
the index M is suppressed when not explicitly re-
quired.) The ¥, and corresponding €, and €, are
exactly known from elementary theory.® An nth-
order variational-perturbation procedure as usu-
ally applied furnishes simultaneously approxima-
tions for the y; and the €; through i=n and j=2n
+1, Let @ be any operator. Define

@191} = [dr zp;."szzpj, )

(ilj)= [ar zp;‘zpj . (5)

In fhese terms, the expectation value of an oper-
ator @ is given by

_n z—b

Q)= L/pZ <Q>p , (6)

where ). = 2 (miQin). (m
m+n=p

An interesting and useful pair of relations,
-1 -1\ -
(rl +7, >p_ (p 2)€p , (8a)

<r12>p= (p+1)e (8b)

p+1°
may be deduced, respectively, from the virial
theorem and from the perturbation equations plus
the requirement of orthonormality.

2. Oscillator Strengths

Oscillator strengths (f values) for the electric-
dipole transitions obtained from time-dependent
perturbation theory may be calculated by means
of three alternative, but exactly equivalent, ex-
pressions; the dipole “length, ” “velocity, ” and
“acceleration” formulas®:

fo= Z(E(NP)_ E(MS))
L
><|<\II(NP)Iz1+zzl\I’WS))I 2, (92)
fye 2(E(J\rp)_ E(MS)) -1
><|(\II(NP)|a/az1+B/Bzzl\I’(MS))lz, (9p)
£, =2(gWP)_ gS))=3
A
X |(\P(NP) lzl/rl3+zz/1'23 I\I’(MS)) 12 . (9¢)

The integral whose magnitude squared appears

above is called the matrix element of the operator..

The three expressions above will give identical
f values provided exact wave functions are used.
Usually only approximate wave functions are
available and three different f values are obtained.
The velocity form of the operator generally gives
the most accurate value when used with a varia-
tionally obtained wave function.

Equations (9) of course are also expressible as
power series in Z-!;

S -n
=527, (10)

Order by order the agreement among the (f),,
should be exact.

3. Procedure
The form of the trial wave functions is®

P = 2
" Fnyl cos£91+Fn'r2 cos@2 (11)

for NP states, and

® =F +F (12)
n n n

for NS states, where

" v coselz) .
The upper sign corresponds to a singlet, the
lower sign to a triplet.

The F, were taken as 100-term expansions of

n
the form

F = (A +B1flz)exp[- Kn(1’2+Nf‘1’1)], (13)

Fn(rl, 7 cos612)= tFn(rz, ¥

with A and B both of the form

-~ n) a+l1 b+1
23 Xe0,0 "1 T2 Pl(coselz). (14)
a,b,l

The Pj are the Legendre polynomials,

The ratio of orbital exponents in Eq. (13) is
the same ratio as for the zero-order wave func-
tions (hydrogenic ratio). This preselection of
ratio leaves only one over-all scale factor as our
remaining nonlinear parameter. The effective-
ness of this choice was tested by comparing the
results for the 3, with those from fully optimized
two nonlinear parameter, 200-term wave func-
tions for the 2P states. The choice made here is
a practical compromise between utility and ac-
curacy, and becomes progressively better for
larger N.

4. Results

The 2'P and 2°P wave functions were determined
through ninth order (19th order in energy) and
tenth order (21st order in energy), respectively.
The energy coefficients are listed in Table I.
Total energies computed from the coefficients for
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the first-few members of the helium isoelectronic

sequence are tabulated in Table II. Tables III
and IV present the perturbation operator expan-
sion coefficients, [the (Q)p of Eq. (7)], for vari-
ous operators over these states. In these and
the following tables it is convenient to use the
definitions

" n n
¥ =%, +7, ;3 W=C080,,. (15)

In Table V the €, calculated directly from the
perturbation equations are compared with those
calculated indirectly from Eqs. (8). Table VI
provides a comparison of several total expecta-
tion values as given here with those calculated
variationally by C. L. Pekeris et al.® These 2P
results are also compared in Table VII with the
calculations of Machacek, Sanders, and Scherr’
and of Knight and Scherr.® The results of the
first-order calculations on the NP states (N=3
to 10) are collected in Tables VI, IX, and X.
Table XI presents a comparison, in first order,
of the €, similar to that of Table V.

The €, for the 1'S and 23S states are tabulated
in Tables XII and XIII. Table XII also compares
the €, for 1'S case with those previously calcu-
lated by Scherr and Knight' and by Mitdal.® Total
energies for the 23S state of two-electron atoms
are presented in Table XIV.

The transitions of interest here are (1S, N'P)
and (23S, N°P). The expansion coefficients for

TABLE 1. The €, in atomic units.

n 2'p 2%p
0 -0.625 0000 - 0.625 00000
1 0.259868 9 0.22572779
2 -0.1570283 —0.072998 91
3 0.0261050 -0.016 58544
4 0.005788 8 —~0.01035309
5 -0,0050413 —-0.005424 84
[ -0.007 0666 -0.00202080
7 -0.0012595 0.000 238 27
8 0.0034051 0.00161032
9 0.001 9209 0.002 269 62
10 -~0.0016087 0.00236171
11 -0.0018785 0.002 02455
12 0.000602 1 0.00140132
13 0.0018118 0.000636 60
14 0.0004090 ~0.00013689
15 —-0.0011412 —0.00080033
16 —-0.0005364 —0.00125741
17 0.0013681 —-0.00146540
18 0.0007027 —0.001363 56
19 -0.0013614 —0.000996 01
20 —-0.00030963
21 0.00048873

TABLE II. The total energies in atomic units.

z 2'p 2°p

1 ~0.499 93952 ~0.501953412
2 —~2.1238423 -2.133163 82
3 —4.9933506 ~5.02771553
4 -9.1107713 —9.174 973 05
5 —14.477 2830 —14.573 137 61
6 —21.0933320 -21.22171063
7 —-28.9591161 —29.120501 68
8 —38.074 7350 —~38.269422 65
9 ~48.440 2440 —48.668427 23
10 —60.055 6765 —60.31748876

aThe Z=1 sums have still not converged in 19th
(2'P) and 21st (2°P) order.

the oscillator strengths of these transitions are
listed in Table XV for N=2, and Table XVI for
N=3 to 10. Table XVII tabulates the total oscil-
lator strengths obtained from these (f >n for
transitions from the 2P states. For the helium
atom case (Z=2) it is possible to compare these
f values with those found™® by Schiff and Perkeris
(Table XVIII). All calculations were performed
in “double precision” (28 decimal figure arith-
metic) on the CDC 6600 located on this campus.

II. DISCUSSION
1. The 2P States

A discussion of the convergence of variational-
perturbation calculations must recognize two
types of convergence: the perturbational con-
vergence of the entire perturbation series, and
the variational convergence of each term in the
series., The most striking feature of the present
calculations is the perturbational convergence of
the 2P states energy coefficients as displayed in
Fig. 1. For comparison, Fig. 2 shows similar
curves (on a different scale) for the 1S and 23§
states. The €, for the 2P states fall off suffi-
ciently fast to permit a satisfactory estimate of
the energy sum for all members of the helium
isoelectronic sequence except H-(Z=1). In this
case we are interested in determining whether the
ion is bound - i. e., whether the energy value sums
to less than — 0.5 a.u. The truncated energy
sums computed through each order are shown in
Fig. 3. Although the perturbation series seems
to be convergent for both these states, the trun-
cation of the series is clearly premature. How-
ever, both states appear to be approaching final
values close to - 0.5 a. u.

For all other values of Z, the accuracy with
which these energy values can be obtained is
limited by the variational convergence of the €,’s.
The degree of convergence to be attributed to
these €,’s may be estimated by comparing them
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TABLE V. The <, calculated three ways.
2lp 2’p
n Via Eq. (8a) Via Eq. (8b) Directly Via Eq. (8a) Via Eq. (8b) Directly
1 0.2598688 0.2598689 0.225 72775 0.22572779
2 -0.157028338 2 -~ 0.157028338 2 —0.072998 914 04 —0.072998 914 04
3 0.0261249 0.026104 6 0.0261050 ~0.01658207 —0.01658550 —-0.016 58544
4 0.0057736 0.0057893 0.0057888 -0.01035272 -=0.010353 10 -~0.010353 09
5 —0.0050090 -—0.0050435 ~0.0050413 ~0.00542080 ~0.00542505 - 0.005424 84
6 —-0.0071002 —=0.0070654 —0.007 066 6 —0.00201974 -0.00202112 —0.00202080
7 —0.0012491 -=0.0012599 —0.0012595 0.000238 10 0.000238 00 0.000 238 27
8 0.0033841 0.0034054 0.0034051 0.00160689 0.001610 28 0.00161032
9 0.0019350 0.0019248 0.0019209 0.002 266 62 0.002 26958 0.002 26962
10 ~0.0016228 -0.0016087 0.002362 29 0.00236171

TABLE VI. A comparison with the results of Pekeris.

P. Rabinowitz (Ref. 6).

For each operator, the first line contains the results obtained
in the present paper, the second line contains the results obtained by B, Schiff, H. Lifson, C. L. Pekeris, and

(@) 2P He 2!p it 2’P He
e —~2.1238423 ~4.9933506 ~2.133163 82
' —2.123 843 085 800 —4.9933510746 —2.133164190534
5@ 8.007 12 27.058 58 7.90970
m(6(x)) 8.007 247 060 27.058 985 77 7.909 653 61
) 0.00233 0.030 95
™ (8(w)) 0.00231 102 0.030 92240
- 2.2463680 3.4931611 2.266 46233
= 2.246 355 0194 3.493 159 082 2.266484 844 8
» 0.245 0084 0.4927759 0.266 6265
ra™) 0.245 023 869 0.492775 102 0.266 641 309
, 5.818 686 3.043 831 5.345 595
™ 5.82136846 3.043 864 02 5.345 792 322
5.1356 2.592 2 4.69741
(712) 5.1383281 2.592468 7 4.699954 93
2 31.4349 8.0827 26.322 97
o 31.531302 8.083 254 2 26.423 478 6
. 31.5021 8.0737 26.542 34
) 31.598508 8.074 208 26.642791

with the results of the 200-term calculations and
by an examination of the —{(r '), of Table V. It
should be noted that the extent of agreement be-
tween — (r-!), and €,, rather than directly re-
flecting the accuracy of the first-order wave
function, is influenced to some extent by the care
with which the scale factors have been obtained.
It can be concluded that the 200-term €,’s are
correct to at least seven and eight decimal places
for the 2'P and 2°P states,!! respectively. If

this is correct, then the 100-term €,’s are con-
verged to within three units in the seventh deci-
mal place for the 2'P state and six units in the
eight decimal place for the 2°P state. The €, of
Table I and the total energies of Table II have
accordingly been rounded off to seven and eight
decimal places for the singlet and triplet states,
respectively. The validity of this procedure is
borne out by a comparison (in Table VI) with the
total energies for the 2P states computed by
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TABLE VII. A comparison of the results of the present paper (PP), arbitrarily truncated to six decimal figures,
with the results of Machacek, Sanders, and Scherr (MSS, Ref. 7) and of Knight and Scherr (KS, Ref. 8).

2'p 2p
(@ PP MSS PP MSS KS
€ -0.157028  —0.157023  —0.157021 —0.072999  —0.072997  —0.072992
& 0.026 105 0.026 06 0.026 124 ~0.016585  —0.01661 —~0.016 558
€ 0.005 789 0.0061 0.006 0462 ~0.010353  —0.01013
€5 —0.005041  —0.006 —0.004 4292 —0.005425  —0.0065
€ —0.007067 —0.006 ~0.004777%
T (6@ ) 0.021832 0.021140 —~0.085 931 ~0.087 287
T (6F 1)) —-0.039931 ~0.039811
oty —0.259869 —0.264064 —0.259865 -0.225728  —0.2250 —0.225724
oty —0.000001  —0.0010 ~0.000 000 0.0014
oty 0.026125 0.03208 ~0.016582  —0.0290
(i~ —0.314057 —0.31434 —0.314 042 —0.145998  —0.1447 —0.145 985
(rhy, 0.078314 0.0787 —0.049757  —0.0490
Tty 0.023 157 0.0131 —0.041412  —0.0518
(W) —0.265190 —0.265194 0.045 492 0.045 474
(ry 5.388425 5.428 5.387 978 3.910606 3.938 3.910008
(r) 5.284 844 4:600 3.951611 3.362
(ru) 5.628 437 5.633 5.594593 3.670319 3.677 3.647599
(T} 5.006 811 4.41 3.775 250 3.20
(7 64.688 850 65.92 64.678 840 47.093 281 47.98 47.080533
(P 97.389 904 74.6 67.428 692 49.6
(7o) 67.949 614 69.2 47.271735 48.2
(712N 97.728 995 75.2 66.583 306 48.7
(7w —1.630382 —1.630300 —0.089 227 —0.089078
2R. E. Knight and C. W. Scherr, unpublished material.
TABLE VIII. Perturbation energy coefficients in atomic units.
N'p NP
N € €3 € €
3 ~0.0607509 —0.0002798 —0.041856 07 —0.00335184
4 —0.0329756 —0.000667 2 —0.025 643 48 ~0.00132327
5 —0.0207645 ~0.000467 1 —0.017 15879 —0.00067190
6 —0.014 2614 ~0.0004265 —0.01224225 —0.00042441
7 —0.0103793 —0.000491 2 —0.009155 61 —0.00030236
8 —0.0078905 ~0.0004175 —0.007 09435 —0.00023989
9 —0.006 2059 —0.0003717 —0.005 65853 —0.000 20986
10 —0.005016 1 —~0.0002329 —0.00461986 —0.00012034

Pekeris and co-workers.® These highly accurate
variational calculations are based on 560-term
expansion approximations (364 terms for the Lit
case). A similar procedure has been applied to
the (), of Tables III and IV. For operators such
as 7%, ‘whose total expectation values receive
significant contributions from higher-order terms
not considered here, the comparisons of Table

VI are not useful.

Machacek, Sanders, and Scherr’ have computed
variational energies and expectation values for
the 2P states of the helium isoelectronic se-
quence. They have recovered the first-few co-
efficients of the perturbation sequence from their
data via a “differencing technique.” Their re-
sults, together with the first-order results of
Knight and Scherr, ® are compared with the pres-
ent data in Table VII.,
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TABLE XI. The €; calculated two ways.

N'p NP
N Via Eq. (8a) Directly Via Eq. (8a) Directly
3 0.113 3575419 0.1133575439 0.104 293 8229 0.104 293 8232
4 0.063 3604550 0.0633604710 0.0596721061 0.0596721050
5 0.0404208139 0.0404208752 0.038562 9352 0.038562 9851
6 0.028 0152955 0.028 0152948 0.026 9496502 0.026 9495099
7 0.020555 3777 0.0205554712 0.019887 0927 0.0198878230
8 0.0157226108 0.0157227077 0.0152775162 0.015 276 9524
9 0.012413 8349 0.012413 8342 0.0121014796 0.0121014926
10 0.0100497292 0.0100494420 0.009827 1149 0.0098221224

TABLE XII. The €, in atomic units — the 1!S state. Comparison of the results of the present paper (PP) with those of
Scherr and Knight (SK, Ref. 1) and the 203-term results of J. Mitdal (JM, Ref. 9).

» PP SK JM
0 ~1.000000 00 ~1.000000 00 -1.000 00000
1 0.625 00000 0.625 00000 0.625 00000
2 -~0.157 66638 ~0.15766641 —0.157 666 24
3 0.008 698 97 0.008 698 99 0.008 69850
4 - 0.,00088850 -0.00088859 -0.00088805
5 -0.001 03635 ~0.00103637 --0.001 036 86
6 -0.00061273 ~0.00061292 -~0.00061270
7 ~0.00037204 ~0.00037219 ~0.,00037225
8 -0.00024275 ~0.000 24287 -~0.00024286
9 —0.00016558 ~-0.000165 65 ~0.00016566
10 -~0.00011612 ~0.00011616 ~0.00011618
11 ~0.000083 26 ~0.000083 28 - 0.00008330
12 -~0.00006085 ~0.00006087 —0.00006088
13 -0.000045 21 ~0.000045 21 -0.000045 23
14 -0.000 034 06 ~0.000034 08
15 - 0.000025 98 -~0.000025 99
16 -~0.000020 02 -0,00002003
17 —0.00001558 -0.00001558
18 ~0.00001222 —0.000012 22
19 -0.00000966 -0.00000966
20 —0.000 007 68 -~0.00000769
21 ~0.00000615 -0.00000615
22 —0.000004 95
23 -0.,000004 00
24 ~0.000003 25
25 -~0.000002 65

it

Since the leading (zero-order) coefficients in the
corresponding matrix element expansions for the
velocity and acceleration forms are both rigor-
states are the same. Thus the lead coefficient ously zero, it follows that the first two f coeffi-
in the length expansion vanishes. If identical ex- cients for both these forms are also rigorously
pansions are to be obtained from each of the three zero. However, the second matrix element ex-
forms of the operator, the first fwo terms of the pansion coefficient for the acceleration form and
velocity expansion, and the first four terms of hence the third and fourth f expansion coeffi-

the acceleration expansions must also vanish, cients must be computed to be zero from the

2. Oscillator Strengths

The zero-order energies for the 2°P and 23S



94

TABLE XIII. The €, in atomic units — the 23S state.
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TABLE XIV. The total energies in atomic units-the
2°S state. Comparison of the results of the present

paper (PP) with the extrapolated results of Pekeris

n

0 -0.625 00000
1 0.187928 67
2 —0.047409 27
3 —0.00487243
4 —=0.003457 57
5 -0.00203006
6 -0.00128702
7 -0.00087145
8 -0.000617 90
9 -0.000454 12
10 —0.000343 38
11 -0.000265 65
12 - 0.00020938
13 -~0.000167 54
14 -~0.00013373
15 -0.00009789
16 —~0.000044 08
17 0.000 048 21

(P) Phys. Rev. 126, 1470 (1962); and 126, 143 (1962).

N

PP

wm

P

W 00 3D U AW N

[y
(=}

—-0.499284 59
~2.175229 36
-5.110727 36
—-9.297166 58
~14.733 89733
~21.420755 88
~29.35768172
~38.544647 30
—48.981638 30

—60.668 646 56

-0.4993
~2.17522938
-5.11072737

The f expansion coefficients for the (11S, 2'P)

and the (2°S, 2°P) transitions, presented in
Table XV, and the total oscillator strengths fur-

approximate wave functions.
the third expansion coefficient for the acceleration
form of the operator was 10~2 and the fourth co-

efficient was 104,

In the present case,

nished by the truncated perturbation sums, shown

in Table XVII, show a satisfactory degree of con-

sistency. For a proper comparison, it should be
borne in mind that the (23S, 23P) total oscillator
strength sums have been truncated at widely dif-

ferent points for the three forms of the operator

TABLE XV. The (f), in atomic units.

als, 2'p) 2’s, 2°P)
n Length Velocity Acceleration Length Velocity Acceleration
0 0.832393 4360 0.8323934360 0.832393 4360 0. 0. 0.
1 ~1.068552 -~ 1.068491 —1.068734 0.680384 0. 0.
2 -0.334404 —0.334 209 —0.333685 0.572321 0.680386 0.
3 0.392916 0.393193 0.392 248 0.414 668 0.572338 -0.000481
4 0.319 247 0.318 963 0.320638 0.221902 0.414735 0.682669
5 -~0.163 645 -0.164139 —0.166 487 0.008914 0.222 063 0.563 913
6 -0.276357 . —-0.277 273 —0.280672 —-0.203524 0.009 049 0.413123
7 0.083525 0.083593 0.083 082 -0.394358 —0.204538 0.239757
8 0.327 886 0.328 290 0.314556 -0.624501 -~0.376310 0.027832
9 0.113510 0.113864 0.145 743
TABLE XVI. First-order f (velocity) expansion coefficients.
a's,N'P) (2°s, N°P)

N o M o M

3 0.158 203 1250 —0.066 620 0.434 8654387 —-0.667372

4 0.057 982 0585 —0.010792 0.102764 6217 —0.095601

5 0.027 876 6878 —0.002398 0.041 9300729 —0.030990

6 0.015598 9854 —0.000522 0.0216293335 —0.014325

7 0.009 6279016 —0.000014 0.0127403828 - 0.008 067

8 0.006 366 8546 —0.000121 0.008 1805578 —-0.005106

9 0.004 4322176 —0.000 146 0.005 583 0816 -0.003571

10 0.003 2107346 —0.000 140 0.003 988 2514 —0.002620

8Similar coefficients for the length and acceleration forms are available upon request.



181 EXCITED STATES OF TWO-ELECTRON ATOMS 95
TABLE XVII. Total f values in atomic units.
(1ls, 2!p) (2%s, 2°P)
zZ Length Velocity Acceleration Length Velocity Acceleration
2 0.276 113 0.276 182 0.276 012 0.540553 0.543 145 0.549327 -
3 0.456 585 0.456 631 0.456 578 0.307 965 0.308 075 0.308 108
4 0.551524 0.551 555 0.551515 0.213 137 ©0.213 151 0.212850
5 0.608893 0.608 914 0.608 881 0.162625 0.162 629 0.162 307
6 0.647 051 0.647 068 0.647 038 0.131381 0.131383 0.131 063
7 0.674 185 0.674 198 0.674 172 0.110177 0.110178 0.109858
8 0.694 439 0.694 450 0.694 426 0.094 854 0.094 855 0.094 531
9 0.710121 0.710131 0.710109 0.083 266 0.083 267 0.082937
10 0.722617 0.722 625 0.722606 0.074198 0.074 199 0.073 863
TABLE XVIII. Total f values for the case Z=2.
(1's, 2'p) (2%s, 2°P)

Form of f pp? spP pp°© spP
length 0.276 113 0.276 102 0.540553 0.539086
velocity 0.276 182 0.276 163 0.543 145 0.539087
acceleration 0.276 012 0.276 036 0.549327 0.537 977

2present paper. Computed through ninth order in wave function, and hence through ninth order in the f-series

summation.

by, Schiff and C. L. Pekeris (Ref. 10); their 220-term results.
" Cpresent paper. Computed through eighth order in wave function and hence through eighth, seventh, and fifth
order in the f-series summation for the length, velocity, and acceleration forms, respectively. Although six
figures are reported, the sums were still being affected in the third significant figure at truncation.

{
-010

-005|

+.005)

FIG. 1. The ¢, in atomic units — the 2P states.

(at 8th, Tth, and 5th order for the length, velocity,

and acceleration forms, respectively).

In Table XVII the total oscillator strengths com-

puted for the helium atom case (Z=2) are com-
pared with the values obtained by Schiff and
Pekeris'® for the same systems from total varia-
tional wave function calculations based on 220-
term expansion approximations.

In the case of

the (1S, 2!P) transition, the present total oscil-
lator strengths agree to five significant figures

with their results.

The internal consistency of

the three sets of oscillator strengths obtained
is also almost quantitatively the same as that of

-.004r~

~.003H!

-.002

€n

-001,

ENERGY (a.u)

.000

.00t

-505

'
o
Q
o

-495

FIG. 3. The total energies for the 2P states of the
H™ ion.
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Pekeris’s data, Thus, as an example, the ab-
solute difference of the velocity and length values
from Pekeris’s data is 0.000 061, from the pres-
ent data 0.000 069 units.

In the (23S, 2°P) transition, only the length form
of the operator has been summed to a sufficiently
high order to begin to reflect the true accuracy
of the present calculations. Thus the degree of
inconsistency between the three forms in the
present results is predominately due to the effects
of truncation, rather than to the inaccuracies in
the expansion coefficients themselves.

APPENDIX
The Orthogonality Conditions In #th Order

Since the variational theorem is used to obtain
the variational-perturbation equations (Ref. 1),

it is sufficient to require that the ¥ ) be orthog-
onal to all energetically lower states:
@™ ®_, (A.1)

Here and in all that follows, K takes on the values
1, 2, ..., M-1. Inserting Eq. (2) into the above
expression, we obtain

n
E 2 W (M)IZP (K), -n

n-1 Z

=0. (A.2)

The above equation can be satisfied only if

n
s~ g (M) 10 N
2 <"’i 19, _; =0 n=0,1,2,..

i=0

.. (A.3)

However, because of the nature of the Hamilto-
nian, the exact total wave functions satisfy Eq.
(A.1) and thus Eq. (A.3). This is generally not
the case for the approximate variational-pertur-
bation wave functions, ¢, M), 1tis necessary to
construct the &, (M) so that they satisfy the an-
alog of Eq. (A, 3)

0a)yy W 00, 00
-1 n

L, <¢ o ) =0;
i=0 0

n=0,1,2,...; (A.4)
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where the # — 1 lower-order wave functions are
assumed to be known exactly. But, by Eq. (A.3),
the condition on &,, (M) is then, simply,

), - (K) ), (K)
@ =G, gy (A.5)
From the general perturbation equation
n-2
Hy =t + Hy =€y 5 i
i=0
it follows that Eq. (A.5) can be written as
W), (K) 1) (x)
A L
n—1
- W), ), (K)
ifll € i <¢z’ HIJO )]
x(eo(M)—eo(K))_ 1; (A.6)

where the expression on the right is now an ex-
actly known quantity. Thus a suitable choice for
a properly orthogonalized wave function, <I>n(M
is given by
M-1
o M_T5 L W, @, 00
n K=1 K 0 n

) (A.7)

where ¢n(M) is a function which satisfies Eq. (11)
or Eq. (12), and where!®

XK(n)=[(¢n_I(M)IHIIZPO(K))
n-1
2 €
i=1 "7

M), (), (&
P P LA 5

(M), (&)
RELTASDS
(A.8)
Equation (A. 8)is the generalization to nth order of

Sinanoglu’s condition on first-order wave func-
tions.®

IC. W. Scherr and R. E. Knight, Rev. Mod. Phys.
35, 436 (1963).

*Units of length Zag and units of energy 2 RhcZ® are
used throughout the text; in the tables, however, units
of length a( and of energy 2 Rkc are used. The a is the
Bohr radius, the R is the infinite mass rydberg.

3F. C. Sanders and C. W. Scherr [compare J. Chem.
Phys. 42, 4314 (1965)] have given extensive numerical
tables of €; for the helium isoelectronic series. A copy

of these tables has been deposited as Document No.
8267 with the ADI Auxiliary Publications Project, Photo-
duplication Service, Library of Congress, Washington,
D. C. A copy may be secured by citing the Document
number and by remitting $2.50 for photoprints, or $1.75
for 35-mm microfilm. Advance payment is required.
Make checks or money orders payable to: Chief,
Photoduplication Service, Library of Congress.

‘See H. Bethe and E. E. Salpeter, in Handbuch der
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Physik, edited by S. Flugge (Springer-Verlag, Berlin,
1957), Vol. 35, part 1, pp. 334 ff,

°G. Breit, Phys. Rev. 35, 569 (1930). It is necessary
to apply orthogonality conditions in all orders. The
general procedure developed here is shownin Appendix I.

8. Schiff, H. Lipson, C. L. Pekeris, and P. Rabinowitz,

Phys. Rev. 140, A1104 (1965).

™. Machacek, F. C. Sanders, and C. W. Scherr, Phys.

Rev. 136, A680 (1964); 137, A1066 (1965).

®R. E. Knight and C. W. Scherr, Rev. Mod. Phys. 35,
431 (1963).

°J. Mitdal, Phys. Rev. 138, A1012 (1965).

108, schiff and C. L. Pekeris, Phys. Rev. 134, A638

PHYSICAL REVIEW

VOLUME 181,

(1964). Also see L. C. Green, N. C. Johnson, and
E. K. Kolchin, Astrophys. J. 144, 369 (1966).

The 200-term results are: €,(2'P)=—0.157 028645,
€,(2°P) == 0.072 998 980; €;(21P)=0.026 106 210,
€,(2°P) = - 0.016 585 304.

1t should be noted that if a trial wave function of the
form A.7 is used diréctly in the variational-perturbation
equations (i.e., with the XK(”) regarded as variational
parameters) that the so obtained xK(”) will be the same
as the values given by Eq. (A.8).

0. Sinanoglu, Phys. Rev. 122, 49 (1961). Also see
W. H. Miller, J. Chem. Phys. 45, 2198 (1966).
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Analy tically Solvable Problems in Radiative Transfer. I

C. van Trigt
Philips Reseavch Laboratovies, N. V. Philips’ Gloeilampenfabrieken, Eindhoven, Netherlands
(Received 6 January 1969)

As is well known, the transfer of radiation in a medium is described by an integral equation,
first given by Biberman and Holstein. They assumed that the emission coefficient is pro-
portional to the absorption coefficient. After a discussion of the relation of this type of
radiative transfer to Brownian motion, we solve the integral equation for a slab and for all
line shapes of interest with and without hyperfine structure in the limit of high optical depth.

INTRODUCTION

The theory of imprisonment of resonance radia-
tion is of fundamental importance for many prob-
lems in low-density plasmas. Compton® tried to
use it to explain the behavior of low-voltage arcs.?
He seems to have been the first who noticed'a
certain, perhaps only formal, analogy between
the phenomenon of repeated absorption and re-
emission, from which the effect stems, and
Brownian Motion, and it was his suggestion that
the phenomenon could be described by a diffusion
equation. A few years later the diffusion equa-
tion was derived rigorously by Milne® from the
basic equations of radiative transfer with the
tacit assumption that the frequencies of the ab-
sorbed and re-emitted quanta are the same. It
was shown that the predictions of the theory were
not in agreement with the experiments.* Atten-
tion, therefore, remained focused on the problem.
The notion that the phenomenon should be de-
scribed by a diffusion equation even misled an
author who had written down the correct initial
equations.® Kenty® seems to have been the first

who succeeded in solving the discrepancy be-
tween theory and experiment by taking into ac-
count the shape of the spectral line. He calcu-
lated an effective diffusion constant for the Dop-
pler profile that was substantially in agreement
with the experiment. The formulation of the
problem in terms of an integral equation by Biber-
man’ and Holstein® about 15 years later was phys-
ically much simpler and led to an expression for
the Doppler profile that was in fair agreement
with the one found by Kenty. Holstein® calculated
the lowest eigenvalue of the integral equation for
a number of line shapes and volumes by a vari-
ational procedure. Later on the Russian litera-
ture® showed progress towards an analytical ap-
proach., Hearn, Hummer and others,° following
a different, but equivalent formulation of the
problem common among astrophysicists, calcu-
lated some interesting quantities numerically for
a slab and Doppler or Voigt profiles, for instance,
the line shape of the radiation emitted by a slab.
In the meantime many experiments™ were per-
formed, mostly with the purpose of verifying the
dependence of the lowest eigenvalue on the num-



