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A perturbation study of the && states of two-electron atoms has been made. In particular,

oscillator strength values for the (1 8, 2 P) and (2 S, 2 P) transitions are obtained. The 2 P
and 2 I' states are studied through ninth and tenth order, respectively. In addition, the N I'
and N Pstates are studied in first order through the 10P member of the series. Perturbation

energy coefficients and other expectation values for several important operators have been

computed. Perturbation energy coefficients for the 1 8 state (through 25th order) and 2 S

state (through 17th order) are also reported. Where comparison is possible, these results

are in satisfactory agreement with the results obtained from variational calculations by C. L.
Pekeris and co-workers. The variational-perturbation method for excited states requires

auxiliary conditions on the perturbation wave functions. The condition on the nth-order wave

function is derived here. This is a generalization of the first-order condition given by

Sin anoglu.

I. INTRODUCTION AND PROCEDURE

This study was undertaken in order to apply the
variational-perturbation methods previously de-
veloped' to a study of the oscillator strengths in
the 2 P to I S and the 2 P to 23S transitions for
the helium isoelectronic series. This task neces-
sitated the construction of accurate 2P perturba-
tion wavefunctions through high orders, and, con-
comitantly, the availability of I'S and 2'S wave
functions of comparable accuracy and order. For
reasons+of computational convenience, a new I'S
ground-state wave function was determined, al-
though similar wave functions already are in ex-
istence. In addition the 2P perturbation wave
functions are themselves of interest, and a study
has beeri made of their eigenvalues, expectation
values with certain operators, etc. The pertur-
bation energy coefficients for the I'S and 2'S

states are also reported. The S state calculations
were regarded as of secondary interest, and no
detailed study of them is presented. Further,
first-order studies of the NP states, N from 3 to
10, were completed, and are briefly reported.

1. Notation

The notation used here is as follows. Let the
Hamiltonian be given in atomic units' by

H = Ho+ H, = Ho+ 1/Zr, 2, (1)

where Z is the nuclear charge and 1/Zr» is re-
garded as the perturbation. Then a solution @'lMl

for the Mth state can be written

with eigenvalue



(iIA I j) = Jdv$. A'). ,i (4)

(i I j)= 1'd~ II*. y. .
In these terms, the expectation value of an oper-
ator is given by

(A)=P Z (A),
p p'

(M) & Z-n, (M) (3)
n n

The Pn(M) and &„(M) are the nth-order perturba-
tion expansion coefficients for the wave function
and eigenvalue of the Mth state. (In the following,
the index M is suppressed when not explicitly re-
quired. ) The p, and corresponding &, snd e, are
exactly known from elementary theory. ' An nth-
order variational-perturbation procedure as usu-
aQy applied furnishes simultaneously approxima-
tions for the gi and the e through i=n and j=2n
+1. Let A be any opera or. Define

The three expressions above will give identical
f values provided exact wave functions are used.
Usually only approximate wave functions are
available and three different f values are obtained.
The velocity form of the operator generaQy gives
the most accurate value when used with a varia-
tionally obtained wave function.

Equations (9) of course are also expressible as
power series in Z ';

f=Z~ &f&„.

Order by order the agreement among the (f)„
should be exact.

3. Procedure

The form of the trial wave functions is'
4 = F z cos8 + I' x cos8

n n 1 1 n2
for NP states, and

where (A) = Q (m IA I n).
m+n=p

An interesting and useful pair of relations,

for NS states, where

S' (r, r, co s8 )=a/ (r, r, oc8s).
(rl '+r ') =(p —2-)~

(r ) =(p+1)~

may be deduced, respectively, from the virial
theorem and from the perturbation equations plus
the requirement of orthonormality.

The upper sign corresponds to a singlet, the
lower sign to a, triplet.

The E„were taken as 100-term expansions of
the form

P =(A+sr )exp[-Z (r +N 'r )],-
n 12 n 2

with A. and 8 both of the form

(~(NP) (Ms)) 2

(NP) (MS) —1
V

(9a)

xI(e Is/s~, +s/as, Ie )I, (9b)

(NP) (Ms) —3
A

I(@(NP)
I /

3
/

3 I@(MS)) 2
(9 )

The integral whose magnitude squared appears
above is called the matrix element of the operator. .

2. OscQlator Strengths

Oscillator strengths (f values) for the electric-
dipole transitions obtained from time-dependent
perturbation theory may be calculated by means
of three alternative, but exactly equivalent, ex-
pressions; the dipole "length, " "velocity, " and
"acceleration" formulas':

(
(NP) (MS))

I

The PE are the I egendre polynomials.
The ratio of orbital exponents in Eq. (13) is

the same ratio as for the zero-order wave func-
tions (hydrogenic ratio). This preselection of
ratio leaves only one over-all scale factor as our
remaining nonlinear parameter. The effective-
ness of this choice was tested by comparing the
results for the g, with those from fully optimized
two nonlinear parameter, 200-term wave func-
tions for the 2P states. The choice made here is
a practical compromise between utility and ac-
curacy, and becomes progressively better for
larger ¹

4. Results

The 2'P and 2'P wave functions were determined
through ninth order (19th order in energy) and
tenth order (21st order in energy), respectively.
The energy coefficients are listed in Table I.
Total energies computed from the coefficients for
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the first-few members of the helium isoelectronic
sequence are tabulated in Table II. Tables III
and IV present the perturbation operator expan-
sion coefficients, [the (A)~ of Eq. (7)], for vari-
ous operators over these states. In these and
the following tables it is convenient to use the
definitions

n n n.=x, +r» ~=cos8».

In Table V the &n calculated directly from the
perturbation equations are compared with those
calculated indirectly from Eqs. (8). Table VI
provides a comparison of several total expecta-
tion values as given here with those calculated
variationally by C. L. Pekeris et al. ' These 2P
results are also compared in Table VII with the
calculations of Machacek, Sanders, and Scherr'
and of Knight and Scherr. ' The results of the
first-order calculations on the NP states (N=3
to 10) are collected in Tables VIII, IX, and X.
Table XI presents a comparison, in first order,
of the &, similar to that of Table V.

The &n for the 1'S and 2'S states are tabulated
in Tables XII and XIII. Table XII also compares
the &n for 1'5 case with those previously calcu-
lated by Scherr and Knight' and by Mitdal. ' Total
energies for the 2'8 state of two-electron atoms
are presented in Table XIV.

The transitions of interest here are (1'S, N'P)
and (2 S, N P). The expansion coefficients for

TABLE II. The total energies in atomic units.

1

3

5

6
7
8

9
10

—0.499 9395
—2.123 8423
-4.993 3506
—9.110771 3

—14.477 283 0
—21.093 332 0
—28.959 1161
—38.074 735 0
-48.440 244 0
—60.055 676 5

—0.501 953 41
—2.133 163 82
—5.027 715 53-9.174 973 05

—14.573 137 61
—21.221 710 63
—29.120 501 68
-38.269422 65
-48.668 427 23
-60.317488 76

The Z=1 sums have still not converged in 19th

(2 P) and 21st (2 P) order.

B. DISCUSSION

$. The 2J'States

the oscillator strengths of these transitions are
listed in Table XV for K= 2, and Table XVI for
N= 3 to 10. Table XVII tabulates the total oscil-
lator strengths obtained from these (f)s for
transitions from the 2P states. For the helium
atom case (Z = 2) it is possible to compare these
f values with those found'0 by Schiff and Perkeris
(Table XVIII). All calculations were performed
in "double precision" (28 decimal figure arith-
metic) on the CDC 6600 located on this campus.

10
11
12
13
14

15
16
17
18
19
20
21

—0.625 000 0
0.259 868 9

—0.157 028 3

0.026 105 0
0.005 788 8

—0.005 041 3
—0.007 066 6
—0.001 259 5

0.003 405 1
0.001 920 9

—0.001 608 7
—0.001 878 5

0.000 602 1
0.001 8118
0.000 409 0

—0.001 141 2
—0.000 536 4

0..001368 1
0.000 702 7

—0.0013614

—0.625 000 00
0.225 727 79

—0.072 998 91
—0.016 585 44
—0.010353 09

—0.005 424 84
—0.002 020 80

0.000 238 27
0.001 61032
0.002 269 62

0.002 36171
0.002 024 55
0.001 40132
0.000 636 60

—0.000 13689

—0.000 800 33
—0.001 257 41
—0.001 465 40
—0.001 363 56
-0.000 996 01
—0.000 309 63

0.000 488 73

TABLE I. The &z in atomic units.
A discussion of the convergence of variational-

perturbation calculations must recognize two
types of convergence: the perturbational con-
vergence of the entire perturbation series, and
the variational convergence of each term in the
series. The most striking feature of the present
calculations is the perturbational convergence of
the 2P states energy coefficients as displayed in
Fig. 1. For comparison, Fig. 2 show& similar
curves (on a different scale) for the 1'S and 2'S
states. The &n for the 2P states fa],l off suffi-
ciently fast to permit a satisfactory estimate of
the energy sum for all members of the helium
isoelectronic sequence except H (Z=l). In this
case we are interested in determining whether the
ion is bound —i.e., whether the energy value sums
to less than —0.5 a. u. The truncated energy
sums computed through each order are shown in
Fig. 3. Although the perturbation series seems
to be convergent for both these states, the trun-
cation of the series is clearly premature. How-
ever, both states appear to be approaching final
values close to —0.5 a. u.

For all other values of Z, the accuracy with
which these energy values can be obtained is
limited by the variational convergence of the &,'s.
The degree of convergence to be attributed to
these &,'s may be estimated by comparing them
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TABLE V. The e calculated three ways.n

1
2

3
4
5
6
7
8

9
10

Via Zq. (sa)

0,259 868 8

0.026 124 9
0.005 773 6

—0.005 009 0
—0.007 100 2
—0.001 249 1

0.003 384 1
0.001 935 0

2P
via Eq. (sb)

—0.157 028 338 2

0.026 104 6

0.005 7893
—0.005 043 5
—0.007 065 4
-0.001 259 9

0.003 405 4
0.001 924 8

-0.001 622 8

Directly

0.259 868 9
—0.157 028 338 2

0.026 105 0
0.005 788 8

-0.005 0413
—0.007 066 6
—0.001 259 5

0.003 405 1
0.001 920 9

-0.001608 7

Via Zq. {8a)

0.225 727 75

—0.016 582 07
—0.010 352 72
—0.005 420 80
—0.002 01974

0.000 238 10
0.001 606 89
0.002 266 62

2P
Via Zq. (Sb)

—0.072 998 914 04
—0.016 585 50
-0.010353 10
—0,005 425 05
—0.002 021 12

0.000 238 00
0.001 610 28

0.002 269 58
0.002 362 29

Directly

0.225 727 79
—0.072 998 914 04
—0.016 585 44
—0.010353 09
—0,005 424 84
—0.002 020 80

0.000 238 27
0.001 61032
0.002 269 62
0.002 361 71

TABLE VI. A comparison with the results of Pekeris. For each operator, the first line contains the results obtained
in the present paper, the second line contains the results obtained by B, Schiff, H. Lifson, C. L. Pekeris, and
P. Rabinowitz (Ref. 6).

x (h{rgg) )

2 P He

—2.123 842 3
—2.123 843 085 800

8.007 12
8.007 247 060

0.002 33
0.002 31 102

2.246 368 0

2.246 355 0194

0.245 008 4
0.245 023 869

5.818 686
5.821 368 46

5.135 6

5.138328 1

31.434 9
31.531302

31.502 1
31.598 508

2iP Ll'

-4.993 350 6
-4.993 351 074 6

27.058 58
27.058 985 77

0.030 95
0.030 922 40

3.493 1611
3.493 159082

0.492 775 9
0.492 775 102

3.043 831
3.043 864 02

2.592 2

2.592 468 7

8.082 7

8.083 254 2

8.073 7
8.074 208

2 P He

—2.133 163 82
—2.133 164 190534

7.909 70
7.909 653 61

2.266 462 33
2.266 484 844 8

0.266 626 5

0.266 641 309

5.345 595
5.345 792 322

4.697 41
4.699 954 93

26.322 97
26.423 478 6

26.542 34
26.642 791

with the results of the 200-term calculations and
by an examination of the —(r '), of Table V. It
should be noted that the extent of agreement be-
tween —(r-'), and e„rather than directly re-
flecting the accuracy of the first-order wave
function, is influenced to some extent by the care
with which the scale factors have been obtained.
It can be concluded that the 200-term &,'s are
correct to at least seven and eight decimal places
for the 2'P and 2'P states, " respectively. If

this is correct, then the 100-term &,'s are con-
verged to within three units in the seventh deci-
mal place for the 2'P state and six units in the
eight decimal place for the 2'P state. The &z of
Table I and the total energies of Table II have
accordingly been rounded off to seven and eight
decimal places for the singlet and triplet states,
respectively. The validity of this procedure is
borne out by a comparison (in Table VI) with the
total energies for the 2P states computed by
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TABLE VII. A comparison of the results of the present paper (PP), arbitrarily truncated to six decimal figures,
with the results of Machacek, Sanders, and Scherr {MSS, Ref. 7) and of Knight and Scherr (KS, Ref. 8).

E'2

E3

E'4

66

w (6(r))q
w (6(rg2))g
(+ )1

(+12 )1

(r&,

(+)2

&&u&i

(&n)2

PP

—0.157 028
0.026 105
0,005 789

—0.005 041
—0.007 067

0.021 832
—0.039 931
—0.259 869
—0.000 001

0.026 125

—0.314 057
0.078 314
0.023 157

—0.265 190
5.388 425

5.284 844
5.628 437
5.006 811

64.688 850
97.389 904

67.949 614
97.728 995

—1.630 382

2'P
MSS

—0.157 023
0.026 06
0.006 1

—0.006
—0.006

—0.264 064
—0.001 0

0.032 08

—0.31434
0,078 7
0.013 1

5.428

4;600
5.633
4.41

65.92
74.6

69.2
75.2

KS

—0.157021
0.026 124
0.006046

—0.004429'
—0.004 777

0.021 140
—0.039811
—0.259 865

—0.314042

—0.265194
5.387 978

5.594 593

64.678 840

—1.630 300

—0.072 999
—0.016 585
—0.010353
—0.005 425

—0,085 931

-0.225 728
—0.000 000
—0.016 582

—0.145 998
—0.049 757
-0,041 412

0.045 492
3.910606

3.951 611
3.670 319
3.775 250

47.093 281
67.428 692

47.271 735
66.583 306

—0.089 227

2P
MSS

-0.072 997
-0 ~ 016 61
-0.010 13
—0.006 5

—0.225 0

0.001 4
—0.029 0

-0.144 7
-0.049 0
—0.051 8

3.938

3.362
3.677
3.20

47.98
49.6

48.2
48.7

KS

—0.072 992
—0.016 558

-0 ~ 087 287

—0,225 724

-0.145 985

0.045 474
3.910008

3.647 599

47.080 533

—0.089 078

aR. E. Knight and C. W. Scherr, unpublished material.

TABLE VIII. Perturbation energy coefficients in atomic units.

N

3
4
5
6
7
8
9

10

—0.060 750 9
-0.032 975 6-0.020 764 5
-0.014 2614
—0.0103793
—0.007 890 5
-0.006 205 9
—0.005 016 1

—0.000 279 8
—0.000 667 2

-0.000467 1
—0,000 426 5
—0.000 491 2
—0.000 417 5
—0.000 3717
-0.000 232 9

—0.041 856 07
—0.025 643 48
—0.017 158 79
—0.012 242 25
—0.009 155 61
—0.007 094 35
-0.005 658 53
—0.004 61986

—0.003 35184
—0.001 323 27
—0.000 671 90
—0.000 424 41
—0.000 302 36
-0.000 23989
—0.000 209 86
—0.000 12034

Pekeris and co-workers. ' These highly accurate
variational calculations are based on 560-term
expansion approximations. (364 terms for the Li+
case). A similar procedure has been applied to
the (Q)~ of Tables III and IV. For operators such
as x', whose total expectation values receive
significant contributions from higher-order terms
not considered here, the comparisons of Table
VI are not useful.

Machacek, Sanders, and Scherr7 have computed
variational energies and expectation values for
the 2P states of the helium isoelectronic se-
quence. They have recovered the first-few co-
efficients of the perturbation sequence from their
data via a "differencing technique. " Their re-
sults, together with the first-order results of
Knight and Scherr, ' are compared with the pres-
ent data in Table VII.
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TABLE XI. The &~ calculated two ways.

3

5

6
7
8

9
10

Via Kq. (8a)

0.113357 5419
0.063 360 4550
0.040 420 8139
0.028 015 2955
0.020 555 3777
0.015 722 6108
0.012413 8349
0.010 049 7292

Directly

0.113357 5439
0.063 360 4710
0.040 420 8752
0.028 015 2948
0.020 555 4712
0.015 722 7077
0.012 413 8342
0.010 049 4420

Via Eq. (8a)

0.104 293 8229
0.059 672 1061
0.038 562 9352
0.026 949 6502
0.019887 0927
0.015 277 5162
0.012 1014796
0.009 827 1149

Directly

0.104 293 8232
0.059 672 1050
0.038 562 9851
0.026 949 5099
0.019887 8230
0.015 276 9524
0.012 1014926
0.009 822 1224

TASLR XII. The e+ in atomic units —the 1 S state. Comparison of the results of the present paper (PP) with those of
Seherr and Knight (SK, Ref. 1) and the 203-term results of J. Mitdal (JM, Ref. 9).

0
1

3

5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

—1.000 000 00
0.625 000 00

-0.157 666 38
0.008 698 97

—0.000 888 50
—0.001 036 35
—,0.000 612 73
—0.000 372 04
-0.000 242 75
-0.000165 58
-0.000 11612
-0.000 083 26
—0.000 060 85
—0.000 045 21
-0.000 034 06
—0.000 025 98
-0.000 020 02
—0.000 015 58
—0.000 012 22
—0.000 009 66
—0.000 007 68
-0.000 006 15
—0.000 004 95
—0.000 004 00
—0.000 003 25
-0.000 002 65

SK

—1.000 000 00
0.625 000 00

—0.157 666 41
0.008 698 99

—0.000 888 59
—0.001 036 37
—0.000 612 92

0.000 372 19
0.000 242 87

—0.000 165 65
—0.000 11616
-0.000 083 28
—0.000 060 87
—0.000 045 21

JM

—1.000 000 00
0.625 000 00

-0.157 666 24

0.008 698 50
—0.000 888 05
—0.001 036 86
—0.000 612 70
-0.000 372 25
—0,000 242 86
-0.000 165 66
—0.000 11618
—0.000 083 30
—0.000 060 88
—0.000 045 23
—0.000 034 08
-0.000 025 99
-0.000 020 03-0.000 015 58
—0.000 012 22
—0.000 009 66
-0.000 007 69
—0.000 006 15

2. OsciQator Strengths

The zero-order energies for the 2 P and 2 S
states are the same. Thus the lead coefficient
in the length expansion vanishes. If identical ex-
pansions are to be obtained from each of the three
forms of the operator, the first theo terms of the
velocity expansion, and the first four terms of
the acceleration expansions must also vanish.

Since the jeading (zero-order) coefficients in the
corresponding matrix element expansions for the
velocity and acceleration forms are both rigor-
ously zero, it follows that the first turo f coeffi-
cients for both these forms are also rigorously
zero. However, the second matrix element ex-
pansion coefficient for the acceleration form and
hence the third and fourth f expansion coeffi-
cients must be computed to be ero from the
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TABLE XIII. The e in atomic units —the 2 S state.

0
I

3

5
6

7

8

9
10
11
12
13
14
15
16
17

—0.625 000 00
0.187 928 67

—0.047 409 27
—0.004 872 43
—0.003 457 57
—0.002 030 06
—0.001 287 02
—0.000 871 45
—0.000 617 90
—0.000 454 12
—0.000 343 38
—0.000 265 65
—0.000 209 38
—0.000 167 54
—0.000 133 73
—0.000 097 89
—0.000 044 08

0.000 048 21

approximate wave functions. In the present case,
the third expansion coefficient for the acceleration
form of the operator was 10 ' and the fourth co-
efficient was 10 ~.

TABLE XIV. The total energies in atomic units-the
2 S state. Comparison of the results of the present
paper (PP) with the extrapolated results of Pekeris
(P) Phys. Rev. 126, 1470 (1962); and 126, 143 (1962).

I
2

3
4
5
6

7
8

9
10

—0.499 284 59
—2.175 229 36
—5.110727 36
—9.297 166 58

—14.733 897 33
—21.420 755 88
—29.357 681 72
-38.544 647 30
-48.981638 30
—60.668 646 56

—0.499 3
—2.175 22938
—5.11072737

The f expansion coefficients for the (l'S, 2'P)
and the (2'S, 2'P) transitions, presented in
Table XV, and the total oscillator strengths fur-
nished by the truncated perturbation sums, shown
in Table XVG, show a satisfactory degree of con-
sistency. For a proper comparison, it should be
borne in mind that the (2'S, 2'P) total oscillator
strength sums have been truncated at widely dif-
ferent points for the three forms of the operator

TABLE XV. The &f) in atomic units.

0.832393 4360
—1.068 552
—0.334 404

0.392 916
0.319247

—0.163 645
—0.276 357 .

0.083 525
0.327 886
0.113510

(I1g 21~)

Velocity

0.832 3934360
—1.068 491
—0.334 209

0.393 193
0.318 963

—0.164 139
—0.277 273

0.083 593
0.328 290
0.113864

Acceleration

0.832393 4360
—1.068 734
—0.333 685

0.392 248
0.320 638

—0.166 487
-0.280 672

0.083 082
0.314 556

'

0.145 743

Length

0.
0.680 384
0.572321
0.414 668
0.221 902
0.008 914

—0.203 524
—0.394 358
—0.624 501

(2'S, 2'I)
Velocity

0.
0.
0.680 386
0.572 338
0.414 735
0.222 063
0.009 049

-0.204 538
—0.376 310

Acceleration

0.
0.
0.

—0.000481
0.682 669
0.563 913
0.413 123
0.239 757
0.027 832

TABLE XVI. First-order f (velocity) expansion coefficients.

3
4
5
6

7
8

9
10

&f&o

0.158 203 1250
0.057 982 0585
0.027 876 6878
0.015 598 9854
0.009 627 9016
0.006 366 8546
0.004 432 2176
0.003 210 7346

(I'S, N'I)

—0.066 620
—0.010 792
—0.002 398
—0.000 522
—0.000 014
—0.000 121
—0.000 146
-0.000 140

&f&o

0.434 865 4387
0.102 764 6217
0.041 930 0729
0.021 629 3335
0.012 740 3828
0.008 180 5578
0.005 583 0816
0.003 988 2514

(2 S, KP)

—0.667 372
—0.095 601
—0.030 990
—0.014 325
—0.008 067
—0.005 106
—0.003 571
—0.002 620

Similar coefficients for the length and acceleration forms are available upon request.
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TABLE XVIl. Total f values in atomic units.

2
3

5
6
7
8

9
10

0.276 113
0.456 585
0.551 524
0.608 893
0.647 051
0.674 185
0.694 439
0.710 121
0.722 617

(]1S 2fP)

Velocity

0.276 182
0.456 631
0.551 555
0.608 914
0.647 068
0.674 198
0.694 450
0.710 131
0.722 625

Acceleration

0,276 012
0.456 578
0.551 515
0.608 881
0.647 038
0.674 172
0.694 426
0.710 109
0.722 606

Length

0.540 553
' 0.307 965
0.213 137
0.162 625 '

0.131381
0.110177
0.094 854

. 0.083 266
0.074 198

(2'S, Z'P)

Velocity

0.543 145
0.308 075

' 0.213 151
0.162 629
0.131383
0.110178
0.094 855
0.083 267
0.074 199

Acceleration

- 0.549 327
0.308 108
0.212 850
0.162 307
0.131063
0.109858
0.094 531
0.082 937
0.073 863

Form of f-

TABLE XVIII. Total f values for the case 2= 2.

(1 S, 2P)

SPb

(2'S, 2'P)

0.540 553
0.543 145
0.549 327

0.276 113
0.276 182
0.276 012

length
velocity
acceleration

0.276 102
0.276 163
0.276 036

0.539 086
0.539 087
0.537 977

Present paper. Computed through ninth order in wave function, and hence through ninth order in the f-series
summation.

B. Schiff and C. L. Pekeris (Ref. 10); their 220-term results.
Present paper. Computed through eighth order in wave function and hence through eighth, seventh, and fifth

order in the f-series summation for the length, velocity, and acceleration forms, respectively. Although six
figures are reported, the sums were still being affected in the third significant figure at truncation.

-.010

-.003

-.005

.000

-.001

.000 I I

6 8 10 12 14 18 ~ 18

+.005

FIG. 1. The e'„ in atomic units —the 2P states.

.001—

FIG. 2. The e in atomicunits —the 1 S and 2 S states.3

(at 8th, Vth, and 5th order for the length, velocity,
and acceleration forms, respectively).

In Table XVII the total oscillator strengths com-
puted for the helium atom case (Z=2) are com-
pared with the values obtained by Schiff and
Pekeris" for the same systems from total varia-
tional wave function calculations based on 220-
term expansion approximations. In the case of
the (I'S, 2'P) transition, the present total oscil-
lator strengths agree to five significant figures
with their results. The internal consistency of
the three sets of oscillator strengths obtained
is also almost quantitatively the same as that of

—.505

(y -.500
ft:
LU

4J

-.495—

FIG. 3. The total energies for the 2P states of the

H ion.
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Pekeris's data. Thus, as an example, the ab-
solute difference of the velocity and length values
from Pekeris's data is 0.000061, from the pres-
ent data 0.000069 units.

In the (2'S, 2'P) transition, only the length form
of the operator has been summed to a sufficiently
high order to begin to reflect the true accuracy
of the present calculations. Thus the degree of
inconsistency between the three forms in the
present results is predominately due to the effects
of truncation, rather than to the inaccuracies in
the expansion coefficients themselves.

&e(M) le(K)&=0 (A. 1)

Here and in all that follows, K takes on the values
1, 2, . . . , M-1. Inserting Eq. (2) into the above
expression, we obtain

8
(M) (K)& -n

@=0 i=0
The above equation can be satisfied only if

(A. 2)

n
Z &g. !g . )=0; =0, 1, 2, .. .. (A. 3)

z=0

However, because of the nature of the Hamilto-
niau, the exact total wave functions satisfy Eq.
(A. 1) and thus Eq. (A. 3). This is generally not
the case for the approximate variational-pertur-
bation wave functions, e„(M). It is necessary to
construct the 4'„(M) so that they satisfy the an-
alog of Eq. (A. 3),

APPENDIX

The Orthogonality Conditions In nth Order

Since the variational theorem is used to obtain
the variational-perturbation equations (Ref. 1),
it is sufficient to require that the @(M) be orthog-
onal to all energetically lower states:

where the n- 1 lower-order wave functions are
assumed to be known exactly. But, by Eq. (A. 3),
the condition on 4&(M) is then, simply,

&4 (M)l~ (K)&
&~

(M)l~ (K)
g 0 n 0 (A. 5)

From the general perturbation equation

(H —e )g +(II —& )g

i=0
it follows that Eq. (A. 5) can be written as

(M), (K)&
1 0

&@( )(~()&

(M)& (M) (K)
~

~
'n-i i 0i=- 1

(
(M) (K))-1

(A. 8)

where the expression on the right is now an ex-
actly known quantity. Thus a suitable choice for
a properly orthogonalized wave function, 4„(M),
is given by

(M) + (n) (K) (M)
0K=1

(A. 7)

x '")=[&& '
)iaaf iC

' '&E n-1 1 0

n —1
(M)&& (M) (K)

j6 —2 i 0

(M) (K) —1 (M) (K)

(A. 8)

where Q„( ) is a function which satisfies Eq. (11)
or Eq. (12), and where"

(M) (K)
&

(M) (K)&
n —i n 0z=0

&=0~ »» ~ ~ ~ y (A. 4)
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As is well known, the transfer of radiation in a medium is described by an integral equation,
first given by Biberman and Holstein. They assumed that the emission coefficient is pro-
portiona1 to the absorption coefficient. After a discussion of the relation of this type of
radiative transfer to Brownian motion, we solve the integral equation for a slab and for all
line shapes of interest with and without hyperfine structure in the limit of high optical depth.

INTRODUCTION

The theory of imprisonment of resonance radia-
tion is of fundamental importance for many prob-
lems in low-density plasmas. Compton' tried to
use it to explain the behavior of low-voltage arcs. '
He seems to have been the first who noticed:a
certain, perhaps only formal, analogy between
the phenomenon of repeated absorption and re-
emission, from which the effect stems, and
Brownian Motion, and it was his suggestion that
the phenomenon could be described by a diffusion
equation. A few years later the diffusion equa-
tion was derived rigorously by Milne' from the
basic equations of radiative transfer with the
tacit assumption that the frequencies of the ab-
sorbed and re-emitted quanta are the same. It
was shown that the predictions of the theory were
not in agreement with the experiments. 4 Atten-
tion, therefore, remained focused on the problem.
The notion that the phenomenon should be de-
scribed by a diffusion equation even misled an
author who had written down the correct initial
equations. ' Kenty' seems to have been the first

who succeeded in solving the discrepancy be-
tween theory and experiment by taking into ac-
count the shape of the spectral line. He calcu-
lated an effective diffusion constant for the Dop-
pler profile that was substantially in agreement
with the experiment. The formulation of the
problem in terms of an integral equation by Biber-
man' and Holstein' about 15 years later was phys-
ically much simpler and led to an expression for
the Doppler profile that was in fair agreement
with the one found by Kenty. Holstein' calculated
the lowest eigenvalue of the integral equation for
a number of line shapes and volumes by a vari-
ational procedure. Later on the Russian litera-
ture' showed progress towards an analytical ap-
proach. Hearn, Hummer and others, "following
a different, but equivalent formulation of the
problem common among astrophysicists, "calcu-
lated some interesting quantities numerically for
a slab and Doppler or Voigt profiles, for instance,
the line shape of the radiation emitted by a slab.
In the meantime many experiments'~ were per-
formed, mostly with the purpose of verifying the
dependence of the lowest eigenvalue on the num-


