Theory of Random Noise (Gordon and Breach, Science Publishers, Inc., New York, 1963), Vol. I.

³¹W. E. Lamb, Jr., in <u>Quantum Optics and Electronics</u>, edited by C. deWitt, A. Blandin, C. Cohen-Tannoudji (Gordon and Breach, Science Publishers, Inc., New York, 1965), p. 377

³²B. Picinbono and E. Boileau, J. Opt. Soc. Am. <u>58</u>, 785 (1968).

³³See for example, E. F. Keller, Phys. Rev. <u>139</u>, B202 (1965).

³⁴L. Mandel, in <u>Progress in Optics</u>, edited by E. Wolf

(North-Holland Publishing Company, Amsterdam, 1963), Vol. II, p. 181. See also <u>Proceedings of the Symposium</u> <u>on Modern Optics</u> (Polytechnic Press of the Polytechnic Institute of Brooklyn, Brooklyn, N.Y., 1967), Vol. XVII, p. 143.

³⁵See for example C. L. Mehta, <u>Lectures in Theoretical</u> <u>Physics</u>, edited by Wesley E. Brittin *et al.* (University of Colorado Press, Boulder, Colorado, 1965), Vol. VII C p. 345.

³⁶L. Mandel and E. Wolf, Rev. Mod. Phys. <u>37</u>, 231 (1965).

PHYSICAL REVIEW

VOLUME 181, NUMBER 1

5 MAY 1969

Perturbation Study of Some Excited States of Two-Electron Atoms

Frank C. Sanders and Charles W. Scherr

University of Texas at Austin, Austin, Texas 78712 (Received 30 January 1969)

A perturbation study of the NP states of two-electron atoms has been made. In particular, oscillator strength values for the $(1^{1}S, 2^{1}P)$ and $(2^{3}S, 2^{3}P)$ transitions are obtained. The $2^{1}P$ and $2^{3}P$ states are studied through ninth and tenth order, respectively. In addition, the $N^{1}P$ and $N^{3}P$ states are studied in first order through the 10P member of the series. Perturbation energy coefficients and other expectation values for several important operators have been computed. Perturbation energy coefficients for the $1^{1}S$ state (through 25th order) and $2^{3}S$ state (through 17th order) are also reported. Where comparison is possible, these results are in satisfactory agreement with the results obtained from variational calculations by C. L. Pekeris and co-workers. The variational-perturbation method for excited states requires auxiliary conditions on the perturbation wave functions. The condition on the *w*th-order wave function is derived here. This is a generalization of the first-order condition given by Sinanoğlu.

I. INTRODUCTION AND PROCEDURE

This study was undertaken in order to apply the variational-perturbation methods previously developed¹ to a study of the oscillator strengths in the $2^{1}P$ to $1^{1}S$ and the $2^{3}P$ to $2^{3}S$ transitions for the helium isoelectronic series. This task necessitated the construction of accurate 2P perturbation wavefunctions through high orders, and, concomitantly, the availability of $1^{1}S$ and $2^{3}S$ wave functions of comparable accuracy and order. For reasons of computational convenience, a new $1^{1}S$ ground-state wave function was determined, although similar wave functions already are in existence. In addition the 2P perturbation wave functions are themselves of interest, and a study has been made of their eigenvalues, expectation values with certain operators, etc. The perturbation energy coefficients for the $1^{1}S$ and $2^{3}S$

states are also reported. The S state calculations were regarded as of secondary interest, and no detailed study of them is presented. Further, first-order studies of the NP states, N from 3 to 10, were completed, and are briefly reported.

1. Notation

The notation used here is as follows. Let the Hamiltonian be given in atomic $units^2$ by

$$H = H_0 + H_1 = H_0 + 1/Zr_{12}, \tag{1}$$

where Z is the nuclear charge and $1/Zr_{12}$ is regarded as the perturbation. Then a solution $\Psi(M)$ for the *M*th state can be written

$$\Psi^{(M)} = \sum_{n} Z^{-n} \psi_{n}^{(M)}, \qquad (2)$$

with eigenvalue

$$\varepsilon^{(M)} = \sum_{n} Z^{-n} \epsilon_{n}^{(M)}.$$
(3)

The $\psi_n^{(M)}$ and $\epsilon_n^{(M)}$ are the *n*th-order perturbation expansion coefficients for the wave function and eigenvalue of the *M*th state. (In the following, the index *M* is suppressed when not explicitly required.) The ψ_0 and corresponding ϵ_0 and ϵ_1 are exactly known from elementary theory.³ An *n*thorder variational-perturbation procedure as usually applied furnishes simultaneously approximations for the ψ_i and the ϵ_j through i=n and j=2n+1. Let Ω be any operator. Define

$$\langle i | \Omega | j \rangle = \int d\tau \, \psi_i^* \Omega \psi_j, \qquad (4)$$

$$\langle i | j \rangle = \int d\tau \, \psi_i^* \psi_j \, . \tag{5}$$

In these terms, the expectation value of an operator Ω is given by

$$\langle \Omega \rangle = \overline{\sum}_{p} Z^{-p} \langle \Omega \rangle_{p}, \qquad (6)$$

(7)

where $\langle \Omega \rangle_p = \sum_{m+n=p} \langle m | \Omega | n \rangle$.

An interesting and useful pair of relations,

$$\langle r_1^{-1} + r_2^{-1} \rangle_p = (p-2)\epsilon_p,$$
 (8a)

$$\langle r_{12} \rangle_p = (p+1)\epsilon_{p+1},$$
 (8b)

may be deduced, respectively, from the virial theorem and from the perturbation equations plus the requirement of orthonormality.

2. Oscillator Strengths

Oscillator strengths (f values) for the electricdipole transitions obtained from time-dependent perturbation theory may be calculated by means of three alternative, but exactly equivalent, expressions; the dipole "length," "velocity," and "acceleration" formulas⁴:

$$\begin{split} f_{L} &= 2(E^{(NP)} - E^{(MS)}) \\ &\times |\langle \Psi^{(NP)}|_{z_{1} + z_{2}} |\Psi^{(MS)}\rangle|^{2}, \quad (9a) \\ f_{V} &= 2(E^{(NP)} - E^{(MS)})^{-1} \\ &\times |\langle \Psi^{(NP)}|_{\partial/\partial z_{1} + \partial/\partial z_{2}} |\Psi^{(MS)}\rangle|^{2}, \quad (9b) \\ f_{A} &= 2(E^{(NP)} - E^{(MS)})^{-3} \\ &\times |\langle \Psi^{(NP)}|_{z_{1}}/r_{1}^{3} + z_{2}/r_{2}^{3} |\Psi^{(MS)}\rangle|^{2}. \quad (9c) \end{split}$$

The integral whose magnitude squared appears above is called the matrix element of the operator. The three expressions above will give identical f values provided exact wave functions are used. Usually only approximate wave functions are available and three different f values are obtained. The velocity form of the operator generally gives the most accurate value when used with a variationally obtained wave function.

Equations (9) of course are also expressible as power series in Z^{-1} :

$$f = \sum_{n} Z^{-n} \langle f \rangle_{n}.$$
 (10)

Order by order the agreement among the $\langle f \rangle_n$ should be exact.

3. Procedure

The form of the trial wave functions is⁵

$$\Phi_n = F_n r_1 \cos\theta_1 + \tilde{F}_n r_2 \cos\theta_2 \tag{11}$$

for NP states, and

$$\Phi_n = F_n + \tilde{F}_n \tag{12}$$

for NS states, where

$$\bar{F}_n(r_1, r_2, \cos\theta_{12}) = \pm F_n(r_2, r_1, \cos\theta_{12}).$$

The upper sign corresponds to a singlet, the lower sign to a triplet.

The F_n were taken as 100-term expansions of the form

$$F_n = (A + Br_{12}) \exp[-K_n (r_2 + N^{-1}r_1)], \qquad (13)$$

with A and B both of the form

1.

$$\sum_{a,b,l}^{\sum} \chi_{a,b,l}^{\chi_{a,b,l}} r_{1}^{(n)} r_{1}^{a+l} r_{2}^{b+l} P_{l}^{(\cos\theta_{12})}.$$
 (14)

The P_l are the Legendre polynomials.

The ratio of orbital exponents in Eq. (13) is the same ratio as for the zero-order wave functions (hydrogenic ratio). This preselection of ratio leaves only one over-all scale factor as our remaining nonlinear parameter. The effectiveness of this choice was tested by comparing the results for the ψ_1 with those from fully optimized two nonlinear parameter, 200-term wave functions for the 2P states. The choice made here is a practical compromise between utility and accuracy, and becomes progressively better for larger N.

4. Results

The $2^{1}P$ and $2^{3}P$ wave functions were determined through ninth order (19th order in energy) and tenth order (21st order in energy), respectively. The energy coefficients are listed in Table I. Total energies computed from the coefficients for

=

the first-few members of the helium isoelectronic sequence are tabulated in Table II. Tables III and IV present the perturbation operator expansion coefficients, [the $\langle \Omega \rangle_p$ of Eq. (7)], for various operators over these states. In these and the following tables it is convenient to use the definitions

$$r^{n} = r_{1}^{n} + r_{2}^{n}; \quad \omega = \cos\theta_{12}.$$
 (15)

In Table V the ϵ_n calculated directly from the perturbation equations are compared with those calculated indirectly from Eqs. (8). Table VI provides a comparison of several total expectation values as given here with those calculated variationally by C. L. Pekeris *et al.*⁶ These 2*P* results are also compared in Table VII with the calculations of Machacek, Sanders, and Scherr⁷ and of Knight and Scherr.⁸ The results of the first-order calculations on the *NP* states (*N*=3 to 10) are collected in Tables VIII, IX, and X. Table XI presents a comparison, in first order, of the ϵ_1 similar to that of Table V.

The ϵ_n for the 1¹S and 2³S states are tabulated in Tables XII and XIII. Table XII also compares the ϵ_n for 1¹S case with those previously calculated by Scherr and Knight¹ and by Mitdal.⁹ Total energies for the 2³S state of two-electron atoms are presented in Table XIV.

The transitions of interest here are $(1^{1}S, N^{1}P)$ and $(2^{3}S, N^{3}P)$. The expansion coefficients for

TABLE I. The ϵ_n in atomic units.

n	$2^{1}P$	$2^{3}P$
0	-0.625 000 0	-0.625 000 00
1	0.2598689	0.22572779
2	-0.157 028 3	-0.072 998 91
3	0.026 105 0	-0.016 585 44
4	0.005 788 8	- 0.010 353 09
5	-0.005 041 3	-0.005 424 84
6	- 0.007 066 6	-0.002 020 80
7	-0.001 259 5	0.00023827
8	0.003 405 1	0.00161032
9	0.001 920 9	0.002 269 62
10	-0.001 608 7	0.00236171
11	- 0.001 878 5	0.00202455
12	0.0006021	0.00140132
13	0.0018118	0.00063660
14	0.0004090	-0.000 136 89
15	-0.001 141 2	-0.000 800 33
16	-0.000 536 4	-0.00125741
17	0.001 368 1	-0.001 465 40
18	0.0007027	-0.001 363 56
19	- 0.001 361 4	-0.000 996 01
20		-0.000 309 63
21		0.00048873

TABLE II. The total energies in atomic units.

Z	$2^{1}P$	$2^{3}P$
1	-0.4999395^{a}	-0.501 953 41 ^a
2	-2.1238423	-2.133 163 82
3	-4.993 3506	-5.02771553
4	-9.1107713	- 9.174 973 05
5	- 14.477 283 0	- 14.573 137 61
6	- 21.093 332 0	-21.22171063
7	- 28.959 116 1	-29.120 501 68
8	- 38.074 735 0	-38.26942265
9	- 48.440 244 0	-48.66842723
10	- 60.055 676 5	- 60.317 488 76

^aThe Z=1 sums have still not converged in 19th $(2^{1}P)$ and 21st $(2^{3}P)$ order.

the oscillator strengths of these transitions are listed in Table XV for N=2, and Table XVI for N=3 to 10. Table XVII tabulates the total oscillator strengths obtained from these $\langle f \rangle_n$ for transitions from the 2P states. For the helium atom case (Z = 2) it is possible to compare these f values with those found¹⁰ by Schiff and Perkeris (Table XVIII). All calculations were performed in "double precision" (28 decimal figure arithmetic) on the CDC 6600 located on this campus.

II. DISCUSSION

1. The 2P States

A discussion of the convergence of variationalperturbation calculations must recognize two types of convergence: the perturbational convergence of the entire perturbation series, and the variational convergence of each term in the series. The most striking feature of the present calculations is the perturbational convergence of the 2P states energy coefficients as displayed in Fig. 1. For comparison, Fig. 2 shows similar curves (on a different scale) for the $1^{1}S$ and $2^{3}S$ states. The ϵ_n for the 2P states fall off sufficiently fast to permit a satisfactory estimate of the energy sum for all members of the helium isoelectronic sequence except $H^{-}(Z=1)$. In this case we are interested in determining whether the ion is bound - i.e., whether the energy value sums to less than -0.5 a.u. The truncated energy sums computed through each order are shown in Fig. 3. Although the perturbation series seems to be convergent for both these states, the truncation of the series is clearly premature. However, both states appear to be approaching final values close to -0.5 a.u.

For all other values of Z, the accuracy with which these energy values can be obtained is limited by the variational convergence of the ϵ_2 's. The degree of convergence to be attributed to these ϵ_2 's may be estimated by comparing them

				<i>d,</i> ,					
Ω/p	1	5	က	4	5	9	7	œ	6
πδ(Γ)	0.02183	-0.04862	-0.01131	0.05083	0.03632	- 0.033 92	- 0.046 09	0.00838	0.04577
$\pi\delta(\mathbf{\tilde{r}}_{12})$	- 0.039 93	0.07559	-0.06491	0.01600	0.00802	0.00222	-0.00421	- 0.005 12	0.000 28
$r_1^{-1}r_2^{-2}$	-0.2681580	0.0171113	0.0320781	- 0.003 006 8	-0.033 3304	- 0.022 289 0	0.0140523	0.0236526	-0.0020155
r^{-1}/r_{12}	-0.489573	0.185 085	0.023 095	- 0.043 021	-0.053 263	- 0.002 688	0.041 690	0.020121	- 0.026 865
x-1	- 0.259 868 8	- 0.000 000 9	0.026 124 9	0.0115472	-0.015 027 1	-0.0284010	-0.006 245 4	0.0203043	0.0135447
r_{12}^{-1}	-0.314 056 7	0.0783138	0.023 157 1	-0.0252174	-0.0423925	-0.0088195	0.0272432	0.0173234	- 0.0162280
ω/r_{12}	-0.1816427	0.1485681	0.0155463	- 0.045 746 8	- 0.032 903 9	0.017 939 1	0.033 948 5	-0.0013525	-0.030 097 7
r/r_{12}	- 0.613 923 6	0.2527918	0.075 098 7	 0.084 499 4	-0.1175254	- 0.0025935	0.0861748	0.0326801	-0.0624976
Э	- 0.265 190 3	0.1448163	0.1444562	-0.023 291 0	-0.1026597	-0.0241176	0.068 307 1	0.0418654	- 0.047 256 9
$r\omega/r_{12}$	-0.75359	0.47660	0.14905	-0.09473	-0.188 13	- 0.000 27	0.14239	0.04951	-0.10687
r	5.388425	5.284844	$4.545\ 080$	4.098365	4.502119	5.213106	5.362283	4.961962	4.754984
r_{12}	5.6284	5.0068	4.3769	4.0502	4.6671	5.2743	5.2571	4.8810	4.8219
v^2/r_{12}	4.023895	5.723702	4.879816	4.026459	4.213140	5.119541	5.532491	5.091039	4.647 848
7.0	-1.3278724	0.2494423	0.8702112	0.2814484	-0.4257796	- 0.3391280	0.2180392	0.3564512	-0.0693630
$r_1r_2\omega/r_{12}$	-0.8023	0.3584	0.2515	-0.0119	-0.2270	- 0.0774	0.1377	0.105 0	- 0.087 0
$r^2\omega/r_{12}$	-1.755 0	0.9412	0.4256	0.2153	-0.4535	-0.2019	0.2808	0.2654	-0.1378
7 2	64.6888	97.3899	121.3102	140.9646	166.4682	200.1513	234.5490	263.6892	290.6381
r_{12}^2	67.9496	97.7290	119.1181	139.4334	167.0903	201.3365	234.4110	262.6443	290.3967
r^{3}/r_{12}	60.9116	97.8250	122.5851	141.4202	165.8468	199.5911	234.8202	264.2462	290.6004
$r_1r_2\omega$	-1.630382	- 0.169545	1.096090	0.765624	-0.311036	-0.592615	0.068 979	0.522466	0.120732
v ² w	- 4.244 03	-1.51188	1.964 44	1.98658	-0.46144	-1.59055	-0.21757	1.18352	0.54840
$r^3\omega/r_{12}$	-3.357	3.828	2.561	4.319	1.404	1.257	2.762	3.537	2.712
y ³	678.337	1379.995	2225.787	3178.294	4303.045	5682.219	7317.978	9153.411	11165.281
v ³ ω	-17.01	- 18.83	- 8.23	2.01	-6.14	- 14.38	- 13.24	-30.88	141.67

TABLE III. The $\langle \Omega \rangle_h$ in atomic units -the 2^1P state.

181

EXCITED STATES OF TWO-ELECTRON ATOMS

			the second se							
q/r	1	2	3	4	5	9	7	8	6	10
πδ(ϔ)	- 0.085 93	0.12104	0.02646	-0.00613	- 0.023 35	- 0.02966	-0.02776	-0.02035	-0.00960	0.002 05
$r_1^{-1}r_2^{-1}$	-0.198 087 778	-0.029449117	-0.036537066	 0.023 259 255	-0.009185641	0.003365661	0.013252606	0.019525668	0.021692072	0.019707120
r^{-1}/r_{12}	-0.2657601	-0.0298490	-0.0435530	-0.0243117	-0.0056640	0.0100913	0.0216270	0.027 909 3	0.0285731	0.0238665
y-1	-0.22572775	- 0.000 000 13	-0.01658207	- 0.02070544	-0.01626241	-0.008 078 95	0.00119051	0.00964137	0.01586637	0.01884499
r_{12}^{-1}	- 0.145 997 8	-0.0497565	-0.0414124	- 0.027 125 3	-0.0121267	0.0016660	0.0128822	0.0204262	0.0236229	0.0222717
ω/r_{12}	-0.0005871	0.0095852	-0.0027171	- 0.005 604 9	- 0.005 927 3	-0.0046187	- 0.002373 0	0.0002401	0.0026463	0.0044638
r/r_{12}	-0.11606977	-0.062 627 37	0.06356351	- 0.053 040 59	- 0.036 086 58	-0.016 032 18	0.00404801	0.02138099	0.03355426	0.03902721
3	0.04549243	0.06676439	0.02695328	-0.00219404	- 0.01959444	-0.02741507	- 0.027 582 65	-0.02187722	-0.01233591	-0.00092502
$r\omega/r_{12}$	-0.01425	0.06546	-0.00721	-0.02331	- 0.038 91	-0.03711	- 0.02778	-0.01278	0.00287	0.01886
r	3.910606	3.951611	4.543673	5.161472	5.652695	5.966 905	6.085 280	6.010315	5.766460	5.398616
r ₁₂	3.67032	3.775 25	4.48454	5.13088	5.66959	6.00781	6.13914	6.063 86	5.81145	5.42411
r^{2}/r_{12}	3.648018	3.941868	4.512012	5.089 059	5.564757	5.888775	$6.034\ 630$	5.996515	5.790897	5.455619
rω	0.0603113	0.3421809	0.2257063	0,0623788	- 0.057 956 2	- 0.124 793 2	- 0.144 421 9	- 0.126 255 1	-0.0810909	- 0.0207644
$r_1r_2\omega/r_{12}$	-0.01115	0.08331	0.01374	-0.02091	-0.05242	-0.05952	-0.05225	-0.03367	-0.01028	0.01575
$r^2\omega/r_{12}$	- 0.004 1	0.3528	0.0763	0.0497	- 0.063 0	-0.0972	-0.1042	-0.0804	-0.0465	0.0080
y ^2	47.09328	67.42869	94.48953	126.69051	162.64913	201.06558	240.54784	279.653 93	317.03978	351.61617
$r_{12}{}^2$	47.27173	66.583 31	93.69627	126.32647	162.69061	201.37186	240.96878	280.06051	317,33319	351.73417
r^{3}/r_{12}	46.23061	67.51627	94.65590	126.68478	162.49227	200.84291	240.33990	279.51954	317,01269	351.70452
$r_1r_2\omega$	- 0.089 227	0.422693	0.396 630	0.182015	-0.020740	-0.153 139	-0.210468	- 0.203 293	-0.146708	- 0.059 003
γ ² ω	- 0.615 628	0.521893	0.513832	0.073869	-0.340260	- 0.581 787	-0.635293	-0.527804	-0.302153	-0.011832
$r^3\omega/r_{12}$	0.906	2.950	2.205	2.677	2.437	2.469	2.512	2.609	2.668	2.777
Pr3	499.158	921.224	1534.543	2374.721	3470.428	4843.282	6505.407	8457.880	10 690.534	13 183.149
γ ³ ω	- 6.66	-4.42	-4.67	-8.16	- 10.71	- 14.12	- 14.86	- 19.35	- 8.08	- 15.04
					Contraction of the local division of the loc	The second s				

TABLE IV. The $\langle \Omega \rangle_p$ in atomic units-the $2^3 P$ state.

88

F. C. SANDERS AND C. W. SCHERR

89

		$2^{1}P$			$2^{3}P$	
n	Via Eq. (8a)	Via Eq. (8b)	Directly	Via Eq. (8a)	Via Eq. (8b)	Directly
1	0.2598688	······································	0.2598689	0.225 727 75		0.22572779
2		-0.1570283382	-0.157 028 338 2		-0.072 998 914 04	- 0.072 998 914 04
3	0.0261249	0.0261046	0.0261050	-0.016 582 07	-0.016 585 50	- 0.016 585 44
4	0.0057736	0.0057893	0.0057888	-0.01035272	-0.01035310	- 0.010 353 09
5	-0.005 009 0	-0.005 043 5	-0.0050413	-0.005 420 80	-0.00542505	-0.00542484
6	-0.0071002	-0.0070654	-0.007 066 6	-0.00201974	-0.00202112	-0.00202080
7	-0.0012491	-0.001 259 9	-0.001 259 5	0.00023810	0.000 238 00	0.000 238 27
8	0.0033841	0.0034054	0.0034051	0.00160689	0.00161028	0.00161032
9	0.001 935 0	0.001 924 8	0.001 920 9	0.00226662	0,002 269 58	0.002 269 62
10		-0.0016228	-0.0016087		0.00236229	0.00236171

TABLE V. The ϵ_n calculated three ways.

TABLE VI. A comparison with the results of Pekeris. For each operator, the first line contains the results obtained in the present paper, the second line contains the results obtained by B. Schiff, H. Lifson, C. L. Pekeris, and P. Rabinowitz (Ref. 6).

$\langle \Omega \rangle$	$2^1 P$ He	$2^{1} P \operatorname{Li}^{+}$	$2^{3}P$ He
Ε	- 2.123 842 3	4 .993 350 6	- 2.133 163 82
	- 2.123 843 085 800	4 .993 351 074 6	- 2.133 164 190 534
$\pi \langle \delta(\mathbf{\vec{r}}) \rangle$	8.007 12	27.058 58	7.90970
	8.007 247 060	27.058 985 77	7.90965361
$\pi\left< \delta({\bf \hat{r}}_{12})\right>$	0.00233 0.00231102	0.030 95 0.030 922 40	
$\langle r^{-1} \rangle$	2.2463680	3.493 161 1	2.266 462 33
	2.2463550194	3.493 159 082	2.266 484 844 8
$\langle r_{12}^{-1} \rangle$	0.245 008 4	0.492 775 9	0.266 626 5
	0.245 023 86 9	0.492 775 102	0.266 641 309
$\langle r \rangle$	$5.818\ 686$	3.043 831	5.345595
	$5.821\ 368\ 46$	3.043 864 02	5.345792322
$\langle r_{12} angle$	5.1356 5.1383281	$2.5922 \\ 2.5924687$	4.69741 4.69995493
$\langle r^2 \rangle$	31.434 9	8.0827	26.322 97
	31.531 302	8.0832542	26.423 478 6
$\langle r_{12}^2 \rangle$	31.502 1	8.0737	26.54234
	31.598 508	8.074208	26.642791

with the results of the 200-term calculations and by an examination of the $-\langle r^{-1} \rangle_1$ of Table V. It should be noted that the extent of agreement between $-\langle r^{-1} \rangle_1$ and ϵ_2 , rather than directly reflecting the accuracy of the first-order wave function, is influenced to some extent by the care with which the scale factors have been obtained. It can be concluded that the 200-term ϵ_2 's are correct to at least seven and eight decimal places for the 2^1P and 2^3P states, ¹¹ respectively. If this is correct, then the 100-term ϵ_2 's are converged to within three units in the seventh decimal place for the 2^1P state and six units in the eight decimal place for the 2^3P state. The ϵ_n of Table I and the total energies of Table II have accordingly been rounded off to seven and eight decimal places for the singlet and triplet states, respectively. The validity of this procedure is borne out by a comparison (in Table VI) with the total energies for the 2P states computed by

		$2^{1}P$			$2^{3}P$	
$\langle \Omega \rangle_{p}$	PP	MSS	KS	PP	MSS	KS
ϵ_2	-0.157 028	-0.157 023	-0.157 021	-0.072 999	-0.072 997	-0.072 992
ϵ_3	0.026105	0.026 06	0.026124	-0.016 585	-0.01661	-0.016 558
ϵ_4	0.005 789	0.0061	0.006 046 ^a	-0.010353	-0.010 13	
ϵ_5	-0.005 041	-0.006	-0.004429 ^a	-0.005425	-0.0065	
ϵ_6	- 0.007 067	-0.006	-0.004777 ^a			
$\pi \langle \delta(\mathbf{\vec{r}}) \rangle_1$	0.021832		0.021 140	- 0,085 931		-0.087 287
$\pi \langle \delta(\vec{r}_{12}) \rangle_1$	-0.039931		-0.039811			
$\langle r^{-1} \rangle_1$	-0,259869	-0.264 064	-0.259865	-0.225728	-0.2250	-0.225724
$\langle r^{-1} \rangle_2$	-0.000 001	-0.0010		-0.000 000	0.0014	
$\langle r^{-1} \rangle_3$	0.026125	0.03208		-0.016 582	-0.0290	
$\langle r_{12}^{-1} \rangle_1$	-0.314 057	-0.31434	-0.314042	-0.145 998	-0.1447	-0.145 985
$\langle r_{12}^{-1} \rangle_2$	0.078314	0.0787		-0.049757	-0.0490	
$\langle r_{12}^{-1} \rangle_3$	0.023157	0.0131		-0.041412	-0.0518	
$\langle \omega \rangle_1$	-0.265 190		-0.265 194	0.045492		0.045474
$\langle r \rangle_1$	5.388425	5.428	5.387 978	3.910606	3.938	3.910008
$\langle r \rangle_2$	5.284844	4.600		3.951611	3.362	
$\langle r_{12} \rangle_1$	5.628437	5.633	5.594593	3.670319	3.677	3.647599
$\langle r_{12} \rangle_2$	5,006811	4.41		3.775250	3.20	
$\langle r^2 \rangle_1$	64.688850	65.92	64.678840	47.093 281	47.98	47.080533
$\langle r^2 \rangle_2$	97.389 904	74.6		67.428692	49.6	
$\langle r_{12}^2 \rangle_1$	67.949614	69.2		47.271735	48.2	
$\langle r_{12}^2 \rangle_2$	97.728 995	75.2		66.583 306	48.7	
$\langle r_1 r_2 \omega \rangle_1$	-1.630382		-1.630300	-0.089 227		-0.089078

TABLE VII. A comparison of the results of the present paper (PP), arbitrarily truncated to six decimal figures, with the results of Machacek, Sanders, and Scherr (MSS, Ref. 7) and of Knight and Scherr (KS, Ref. 8).

^aR. E. Knight and C. W. Scherr, unpublished material.

FABLE VIII. Perturbation energy coefficients in atc	tomic	units.
--	-------	--------

	Ň	$\sqrt{V^{1}P}$	Ν	v ³ P
N	ϵ_2	ϵ_3	ϵ_2	ϵ_3
3	-0.0607509	-0.0002798	-0.041 856 07	-0.003 351 84
4	-0.0329756	-0.000 667 2	-0.025 643 48	-0.001 323 27
5	-0.0207645	0.0004671	-0.017 158 79	-0.00067190
6	-0.0142614	-0.0004265	-0.01224225	-0.00042441
7	-0.0103793	-0.0004912	-0.009 155 61	-0.00030236
8	-0.0078905	-0.000 417 5	-0.007 094 35	-0.000 239 89
9	-0.006 205 9	-0.000 371 7	-0.005 658 53	-0.000 209 86
10	-0.005 016 1	-0.000 232 9	-0.004 619 86	-0.00012034

Pekeris and co-workers.⁶ These highly accurate variational calculations are based on 560-term expansion approximations (364 terms for the Li⁺ case). A similar procedure has been applied to the $\langle \Omega \rangle_p$ of Tables III and IV. For operators such as r^2 , whose total expectation values receive significant contributions from higher-order terms not considered here, the comparisons of Table VI are not useful.

Machacek, Sanders, and Scherr⁷ have computed variational energies and expectation values for the 2P states of the helium isoelectronic sequence. They have recovered the first-few coefficients of the perturbation sequence from their data via a "differencing technique." Their results, together with the first-order results of Knight and Scherr,⁸ are compared with the present data in Table VII.

			TABLE IX. The	$\langle \Omega \rangle_1$ in atomic un	its-the $N^{1}P$ states.			
Ω/N	3	4	5	9	4	8	6	10
$\pi \delta(\vec{r}_1)$	0.00077	0.000 09	0.000 09	0.00021	0.001 01	-0.000 91	0.00015	-0.000 04
$\pi \delta(\vec{r}_{12})$	- 0.01138	- 0.004 68	-0.00231	- 0.001 25	- 0.000 73	-0.00046	-0.00031	-0.000 22
$r_1^{-1}r_2^{-1}$	-0.1138350	- 0.063 369 8	- 0.0403824	- 0.027 954 7	-0.0204963	- 0.0156648	-0.0123680	- 0.0100124
r^{-1}/r_{12}	- 0.172429	- 0.087 263	- 0.052379	-0.034738	- 0.024639	-0.018362	- 0.014 220	- 0.011347
r-1	-0.1133575	- 0.063 360 5	- 0.0404208	- 0.028 015 3	- 0.0205554	-0.0157226	-0.0124138	- 0.010 049 7
r_{12}^{-1}	-0.1215017	 0.065 951 3	-0.0415290	- 0.028 522 7	- 0.020 758 7	-0.0157810	-0.0124117	-0.010 032 2
ω/r_{12}	-0.0418736	-0.0163629	-0.008 076 6	- 0.004 533 6	- 0.0027150	-0.0016994	- 0.001 095 8	- 0.000 751 4
r/r_{12}	-0.1996115	- 0.103 949 4	-0.0644007	- 0.043 812 4	-0.0315571	- 0.023 725 9	- 0.018 453 5	- 0.014 845 1
Э	-0.0488265	- 0.018 070 2	- 0.008 813 7	- 0.005 103 8	-0.003 388 0	-0.0023021	- 0.0017449	0.0011270
$r\omega/r_{12}$	0.42018	-0.08095	0.16085	- 0.20045	0.06185	0.00022	0.08983	- 0.006 41
r	12.961524	23.589779	37.217221	53.840309	73.484554	96.117876	121.807467	150.416 078
r_{12}	11.7608	23.5652	36.804.8	54.1530	73.3188	96.0822	121.6093	150.4065
r^{2}/r_{12}	12.554083	23.379221	37.086 896	53.751373	73.419935	96.068713	121.769696	150.390 133
ĩu	-0.2780126	-0.1362968	-0.084 0798	 0.054 785 8	- 0.051 205 2	-0.0001294	-0.1787385	0.185 967 6
$r_1r_2\omega/r_{12}$	0.3967	- 0.093 0	0.1410	-0.2008	0.0506	- 0.006 8	0.0802	- 0.008 2
$r^2\omega/r_{12}$	4.0547	-0.1999	1.3747	- 1.3286	0.5212	0.090 9	0.5384	0.1697
7 2	373.9515	1231.9322	3 059,996 1	6 399.993 8	11 919.992 0	20 395.836 5	32755.3899	49 967.830 2
$r_{12}{}^2$	374.7110	1232.3703	$3\ 060.286\ 4$	6400.2038	11 920.146 2	20395.9421	32755.9882	49967.1286
r^3/r_{12}	372.7760	1231.2686	$3\ 059.564\ 3$	6 399,688 9	11 919.7667	20395.6709	32755.0026	49968.1101
$r_1r_2\omega$	-0.379776	-0.219054	- 0.145 185	- 0.104988	- 0.077 101	-0.052808	- 0.299 138	0.350824
y ² w	-1.93549	-1.94073	-2.034 85	-1.49646	-4.31749	7.92557	- 26.61649	27.57670
$r^3\omega/r_{12}$	28.895	9.580	24.581	18.492	35.538	56.484	38.196	102.718
y^3	8838.140	51748.647	200 771.419	604578.342	1532881.928	3425636.145	$6\ 964\ 887.054$	$13\ 114\ 397.676$
ν ³ ω	- 24.12	- 45.17	-81.69	- 28.18	-583.95	1484.47	-4066.36	4567.98

EXCITED STATES OF TWO-ELECTRON ATOMS

	0	34	605 558	2585	827 11	2397	0464	213 05	675 00	41	859	79	411	1806	19	0	$064\ 00$	42475	31481	625	006		
	1	- 0.000	- 0.009	-0.010	- 0.009	- 0.009	- 0.000	-0.013	0.001	- 0.004	143.643	143.633	143.619	0.161	- 0.007	0.148	47714.	47713.	47 714.	0.319	23.823	95.616	
	6	-0.00041	0.011835888	-0.0127385	-0.01210148	0.0113171	-0.0001069	-0.01614542	-0.00049857	0.06490	15.713 648	15.568 33	15.678 600	0.1444317	0.05514	0.3724	31 113 583 95	31 114.172 08	31 113.206 11	0.294 070	21.453824	39.226	
	8	- 0.001 20	-0.014 948 308	-0.0162523	-0.01527752	-0.0141887	-0.0002197	-0.02018095	-0.00056543	0.003 18	90.721 543	90.68735 1	90.677 887	-0.0118299	-0.00473	0.0699	19 249.558 18	19 249.627 13	19 249.417 03	- 0.034 478	4.592311 -	50.372	
	7	0.000 02	-0.019460882	-0.0214383	-0.01988709	-0.018311	-0.0003949	-0.02589052	- 0.000 756 95	0.035 27	68.760 756	68.657 17	68.704799	- 0.045 408 1	0.02381	0.2873	11 152.371 29	11152.55042	11 152.148 16	- 0.089563	-3.492 947	32.700	
	9	- 0.000 81	- 0.026 314 363	- 0.0294658	- 0.026 949 65	 0.024 484 5	-0.0006505	- 0.034 243 57	-0.001 001 08	- 0.166 53	49.801291	50.06923	49.726789	- 0.052 027 9	-0.17122	- 1.157 0	5 919.368 17	5 919.592 48	5 919,079 13	- 0.112 154	-1.810148	17.051	
ومعالية والمحاولة والم	5	-0.00211	- 0.037485562	- 0.0428929	-0.03856294	- 0.0343176	-0.001 088 0	-0.04713237	- 0.00148543	0.01476	33.836 888	33.73976	33.732713	- 0.0748736	-0.00352	0.1802	2781.02046	2781.33732	2780.61685	-0.158427	- 2.053 656	16.241	
	4	-0.00414	-0.057474689	-0.0677950	- 0.05967211	-0.0512870	- 0.0019492	- 0.068 232 92	-0.00232542	- 0.207 60	20.870362	21.16517	20.715393	- 0.1117652	- 0.224 89	-1.4018	1 088.922 72	1 089.395 61	1 088.326 07	- 0.236443	-2.048830	1.272	
	ę	-0.01047	-0.098484564	-0.1217805	-0.10429382	- 0.0837121	- 0.003 685 0	-0.10347832	- 0.002 176 68	-0.98988	10.899432	12.67683	10.653650	-0.1713520	-1.01159	-7.1569	313.95684	314.69986	313.01767	-0.371 508	-2.073454	- 35.772	
	Ω/N	$\pi\delta(\mathbf{\tilde{r}_1})$	$r_{i}^{-1}r_{2}^{-1}$	r^{-1}/r_{12}	×-1	r_{12}^{-1}	ω/r_{12}	r/r_{12}	З	$r\omega/r_{12}$	r	r_{12}	r^{2}/r_{12}	νω	$r_1r_2\omega/r_{12}$	$r^2\omega/r_{12}$	y^2	r_{12}^2	r^3/r_{12}	$r_1r_2\omega$	r ² w	$r^3\omega/r_{12}$	

TABLE X. The $\langle \Omega \rangle_1$ in atomic units-the $N^3 P$ states.

92

F. C. SANDERS AND C. W. SCHERR

93

	N^{\dagger}	P	Ň	^{3}P
N	Via Eq. (8a)	Directly	Via Eq. (8a)	Directly
3	0.113 357 5419	0.113 357 5439	0.104 293 8229	0.104 293 8232
4	0.063 360 4550	0.0633604710	0.0596721061	0.0596721050
5	0.0404208139	0.0404208752	0.0385629352	0.0385629851
6	0.028 015 2955	0.028 015 2948	0.026 949 6502	0.026 949 5099
7	0.0205553777	0.0205554712	0.0198870927	0.0198878230
8	0.0157226108	0.0157227077	0.0152775162	0.0152769524
9	0.0124138349	0.0124138342	0.0121014796	0.0121014926
10	0.0100497292	0.0100494420	0.0098271149	0.0098221224

TABLE XI. The ϵ_1 calculated two ways.

TABLE XII. The ϵ_n in atomic units – the 1¹S state. Comparison of the results of the present paper (PP) with those of Scherr and Knight (SK, Ref. 1) and the 203-term results of J. Mitdal (JM, Ref. 9).

n	РР	SK	JM
0	-1.000 000 00	-1.000000000	- 1.000 000 00
1	0.625 000 00	0.625 000 00	0.625 000 00
2	-0.15766638	-0.15766641	-0.15766624
3	0.008 698 97	0.008 698 99	0.008 698 50
4	-0.00088850	-0.00088859	-0.000 888 05
5	-0.001 036 35	-0.001 036 37	-0.001 036 86
6	-0.00061273	-0.000 612 92	-0.00061270
7	-0.00037204	-0.00037219	-0.00037225
8	-0.00024275	-0.000 242 87	-0.00024286
9	-0.000 165 58	-0.000 165 65	-0.000 165 66
10	-0.00011612	-0.00011616	-0.000 116 18
11	-0.000 083 26	-0.000 083 28	- 0.000 083 30
12	-0.000 060 85	-0.000 060 87	-0.000 060 88
13	-0.000 045 21	-0.000 045 21	-0.000 045 23
14	-0.000 034 06		-0.000 034 08
15	-0.000 025 98		-0.000 025 99
16	-0.000 020 02		-0.000 020 03
17	-0.00001558		-0.000 015 58
18	-0.00001222		-0.000 012 22
19	-0.000 009 66		-0.000 009 66
20	-0.000 007 68		-0.000 007 69
21	-0.00000615		-0.000 006 15
22	-0.000 004 95		
23	-0.000 004 00		
24	0.000 003 25		
25	-0.000 002 65		

2. Oscillator Strengths

The zero-order energies for the $2^{3}P$ and $2^{3}S$ states are the same. Thus the lead coefficient in the length expansion vanishes. If identical expansions are to be obtained from each of the three forms of the operator, the first *two* terms of the velocity expansion, and the first *four* terms of the acceleration expansions must also vanish. Since the leading (zero-order) coefficients in the corresponding matrix element expansions for the velocity and acceleration forms are both rigorously zero, it follows that the first *two f* coefficients for both these forms are also rigorously zero. However, the second matrix element expansion coefficient for the acceleration form and hence the third and fourth f expansion coefficients must be computed to be zero from the

n ϵ_n 0 -0.625 000 00 1 0.187 928 67 $\mathbf{2}$ -0.047 409 27 3 -0.004 872 43 4 -0.003 457 57 5 -0.002030066 -0.001287027 -0.00087145 8 -0.000617909 -0.00045412 10 -0.00034338 11 -0.000 265 65 12-0.000 209 38 13 -0.000 167 54 14 -0.000 133 73 15 -0.000 097 89 16 -0.000 044 08 0.000 048 21 17

TABLE XIII. The ϵ_n in atomic units – the 2^3S state.

approximate wave functions. In the present case, the third expansion coefficient for the acceleration form of the operator was 10^{-8} and the fourth coefficient was 10^{-4} .

TABLE XIV. The total energies in atomic units-the 2^3S state. Comparison of the results of the present paper (PP) with the extrapolated results of Pekeris (P) Phys. Rev. 126, 1470 (1962); and 126, 143 (1962).

Ζ	PP	SP
1	-0.49928459	-0.4993
2	-2.175 229 36	-2.175 229 38
3	-5.11072736	-5.11072737
4	- 9.297 166 58	
5	-14.73389733	
6	-21.42075588	
7	-29.35768172	
8	-38.54464730	
9	-48.98163830	
10	- 60.668 646 56	

The f expansion coefficients for the $(1^{1}S, 2^{1}P)$ and the $(2^{3}S, 2^{3}P)$ transitions, presented in Table XV, and the total oscillator strengths furnished by the truncated perturbation sums, shown in Table XVII, show a satisfactory degree of consistency. For a proper comparison, it should be borne in mind that the $(2^{3}S, 2^{3}P)$ total oscillator strength sums have been truncated at widely different points for the three forms of the operator

TABLE XV. The $\langle f \rangle_n$ in atomic units.

(1 ¹ S, 2 ¹ P)			$(2^{3}S, 2^{3}P)$			
n	Length	Velocity	Acceleration	Length	Velocity	Acceleration
0	0.8323934360	0.8323934360	0.8323934360	0.	0.	0.
1	-1.068552	-1.068491	-1.068734	0.680384	0.	0.
2	-0.334404	- 0.334 209	- 0.333 685	0.572321	0.680386	0.
3	0.392916	0.393193	0.392248	0.414668	0.572338	-0.000481
4	0.319247	0.318 963	0.320638	0.221902	0.414735	0.682669
5	-0.163 645	- 0.164 139	-0.166487	0.008 914	0.222 063	0.563 913
6	-0.276357	-0.277 273	-0.280672	-0.203524	0.009049	0.413123
7	0.083525	0.083 593	0.083 082	-0.394 358	-0.204 538	0.239757
8	0.327886	0.328 290	0.314556	-0.624 501	-0.376310	0.027832
9	0.113 510	0.113 864	0.145 743			

TABLE XVI. First-order f (velocity) expansion coefficients. ^a

	(1 ¹ S, N	¹ P)	$(2^3S, N^3P)$		
N	$\langle f \rangle_0$	$\langle f \rangle_1$	$\langle f \rangle_0$	$\langle f \rangle_1$	
3	0.158 203 1250	-0.066 620	0.4348654387	-0.667372	
4	0.057 982 0585	-0.010792	0.1027646217	-0.095 601	
5	0.0278766878	-0.002398	0.041 930 0729	-0.030 990	
6	0.0155989854	-0.000522	0.021 629 3335	-0.014325	
7	0.0096279016	-0.000 014	0.0127403828	-0.008 067	
8	0.0063668546	-0.000121	0.0081805578	-0.005 106	
9	0.0044322176	-0.000 146	0.0055830816	-0.003 571	
10	0.0032107346	-0.000 140	0.003 988 2514	-0.002620	

^aSimilar coefficients for the length and acceleration forms are available upon request.

· · · ·		$(1^{1}S, 2^{1}P)$	an an tao amin' an	and the second	$(2^{3}S, 2^{3}P)$	
Z	Length	Velocity	Acceleration	Length	Velocity	Acceleration
2	0.276113	0.276 182	0.276 012	0.540 553	0.543 145	0.549327
3	0.456585	0.456 631	0.456 578	0.307 965	0.308 075	0.308 108
4	0.551524	0.551 555	0.551 515	0.213137	0.213 151	0.212850
5	0.608893	0.608 914	0.608 881	0.162625	0.162 629	0.162307
6	0.647051	0.647 068	0.647 038	0.131381	0.131 383	0.131 063
7	0.674185	0.674 198	0.674172	0.110 177	0.110 178	0.109858
8	0.694439	0.694 450	0.694 426	0.094854	0.094 855	0.094 531
9	0.710121	0.710131	0.710 109	0.083 266	0.083 267	0.082 937
10	0.722617	0.722 625	0.722606	0.074198	0.074 199	0.073 863

TABLE XVII. Total f values in atomic units.

TABLE XVIII. Total f values for the case Z = 2.

	(1 ¹ S,	(1 ¹ S, 2 ¹ P)		$(2^{3}S, 2^{3}P)$		
Form of f	PP ^a	SP ^b	PP ^C	SP ^b		
length	0.276 113	0.276 102	0.540 553	0.539086		
velocity	0.276 182	0.276 163	0.543145	0.539087		
acceleration	0.276 012	0.276 036	0.549327	0.537 977		

^aPresent paper. Computed through ninth order in wave function, and hence through ninth order in the f-series summation.

^bB. Schiff and C. L. Pekeris (Ref. 10); their 220-term results.

^CPresent paper. Computed through eighth order in wave function and hence through eighth, seventh, and fifth order in the f-series summation for the length, velocity, and acceleration forms, respectively. Although six figures are reported, the sums were still being affected in the third significant figure at truncation.

FIG. 1. The ϵ_n in atomic units – the 2P states.

(at 8th, 7th, and 5th order for the length, velocity, and acceleration forms, respectively).

In Table XVII the total oscillator strengths computed for the helium atom case (Z = 2) are compared with the values obtained by Schiff and Pekeris¹⁰ for the same systems from total variational wave function calculations based on 220term expansion approximations. In the case of the (1¹S, 2¹P) transition, the present total oscillator strengths agree to five significant figures with their results. The internal consistency of the three sets of oscillator strengths obtained is also almost quantitatively the same as that of

FIG. 2. The ϵ_n in atomic units – the 1^1S and 2^3S states.

FIG. 3. The total energies for the 2P states of the H⁻ ion.

Pekeris's data. Thus, as an example, the absolute difference of the velocity and length values from Pekeris's data is 0.000 061, from the present data 0.000 069 units.

In the $(2^3S, 2^3P)$ transition, only the length form of the operator has been summed to a sufficiently high order to begin to reflect the true accuracy of the present calculations. Thus the degree of inconsistency between the three forms in the present results is predominately due to the effects of truncation, rather than to the inaccuracies in the expansion coefficients themselves.

APPENDIX

The Orthogonality Conditions In *n*th Order

Since the variational theorem is used to obtain the variational-perturbation equations (Ref. 1), it is sufficient to require that the $\Psi^{(M)}$ be orthogonal to all energetically lower states:

$$\langle \Psi^{(M)} | \Psi^{(K)} \rangle = 0. \tag{A.1}$$

Here and in all that follows, K takes on the values 1, 2, ..., M-1. Inserting Eq. (2) into the above expression, we obtain

$$\sum_{n=0}^{\infty} \sum_{i=0}^{n} \langle \psi_i^{(M)} | \psi_{n-i}^{(K)} \rangle Z^{-n} = 0.$$
 (A.2)

The above equation can be satisfied only if

...

$$\sum_{i=0}^{n} \langle \psi_{i}^{(M)} | \psi_{n-i}^{(K)} \rangle = 0; \quad n = 0, 1, 2, \dots$$
(A.3)

However, because of the nature of the Hamiltonian, the exact total wave functions satisfy Eq. (A. 1) and thus Eq. (A. 3). This is generally not the case for the approximate variational-perturbation wave functions, $\Phi_n(M)$. It is necessary to construct the $\Phi_n(M)$ so that they satisfy the analog of Eq. (A. 3),

$$\sum_{i=0}^{n-1} \langle \psi_{i}^{(M)} | \psi_{n-i}^{(K)} \rangle + \langle \Phi_{n}^{(M)} | \psi_{0}^{(K)} \rangle = 0;$$

$$n = 0, 1, 2, \dots; \qquad (A.4)$$

where the n-1 lower-order wave functions are assumed to be known exactly. But, by Eq. (A.3), the condition on $\Phi_n^{(M)}$ is then, simply,

$$\langle \Phi_n^{(M)} | \psi_0^{(K)} \rangle = \langle \psi_n^{(M)} | \psi_0^{(K)} \rangle. \tag{A.5}$$

From the general perturbation equation

$$(H_0 - \epsilon_0)\psi_n + (H_1 - \epsilon_1)\psi_{n-1} = \sum_{i=0}^{n-2} \epsilon_{n-i}\psi_i,$$

it follows that Eq. (A. 5) can be written as

$$\langle \Phi_{n}^{(M)} | \psi_{0}^{(K)} \rangle = [\langle \psi_{n-1}^{(M)} | H_{1} | \psi_{0}^{(K)} \rangle \\ - \sum_{i=1}^{D} \epsilon_{n-i}^{(M)} \langle \psi_{i}^{(M)} | \psi_{0}^{(K)} \rangle] \\ \times (\epsilon_{0}^{(M)} - \epsilon_{0}^{(K)})^{-1}; \qquad (A.6)$$

where the expression on the right is now an exactly known quantity. Thus a suitable choice for a properly orthogonalized wave function, $\Phi_n^{(M)}$, is given by

$$\Phi_n^{(M)} = \sum_{K=1}^{M-1} \chi_K^{(n)} \psi_0^{(K)} + \phi_n^{(M)}, \qquad (A.7)$$

where $\phi_n^{(M)}$ is a function which satisfies Eq. (11) or Eq. (12), and where ¹²

$$\chi_{K}^{(n)} = \left[\langle \psi_{n-1} | H_{1} | \psi_{0}^{(K)} \rangle - \sum_{i=1}^{n-1} \epsilon_{n-i} | H_{1} | \psi_{0}^{(K)} \rangle \right] \times (\epsilon_{0}^{(M)} - \epsilon_{0}^{(M)})^{-1} - \langle \phi_{n}^{(M)} | \psi_{0}^{(K)} \rangle.$$
(A.8)

Equation (A. 8) is the generalization to *n*th order of Sinanoğlu's condition on first-order wave functions.¹³

¹C. W. Scherr and R. E. Knight, Rev. Mod. Phys. <u>35</u>, 436 (1963).

²Units of length Za_0 and units of energy 2 $RhcZ^2$ are used throughout the text; in the tables, however, units of length a_0 and of energy 2 Rhc are used. The a_0 is the Bohr radius, the R is the infinite mass rydberg.

³F. C. Sanders and C. W. Scherr [compare J. Chem. Phys. <u>42</u>, 4314 (1965)] have given extensive numerical tables of ϵ_1 for the helium isoelectronic series. A copy of these tables has been deposited as Document No. 8267 with the ADI Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington, D. C. A copy may be secured by citing the Document number and by remitting \$2.50 for photoprints, or \$1.75 for 35-mm microfilm. Advance payment is required. Make checks or money orders payable to: Chief, Photoduplication Service, Library of Congress.

⁴See H. Bethe and E. E. Salpeter, in Handbuch der

Physik, edited by S. Flügge (Springer-Verlag, Berlin, 1957), Vol. 35, part 1, pp. 334 ff.

 ${}^{5}G$. Breit, Phys. Rev. <u>35</u>, 569 (1930). It is necessary to apply orthogonality conditions in all orders. The

general procedure developed here is shown in Appendix I. ⁶B. Schiff, H. Lipson, C. L. Pekeris, and P. Rabinowitz, Phys. Rev. 140, A1104 (1965).

⁷M. Machacek, F. C. Sanders, and C. W. Scherr, Phys. Rev. 136, A680 (1964); 137, A1066 (1965).

⁸R. E. Knight and C. W. Scherr, Rev. Mod. Phys. <u>35</u>, 431 (1963).

⁹J. Mitdal, Phys. Rev. <u>138</u>, A1012 (1965).

¹⁰B. Schiff and C. L. Pekeris, Phys. Rev. <u>134</u>, A638

(1964). Also see L. C. Green, N. C. Johnson, and E. K. Kolchin, Astrophys. J. <u>144</u>, 369 (1966).

¹¹The 200-term results are: $\epsilon_2(2^1P) = -0.157028645$, $\epsilon_2(2^3P) = -0.072998980$; $\epsilon_3(2^1P) = 0.026106210$, $\epsilon_3(2^3P) = -0.016585304$.

¹²It should be noted that if a trial wave function of the form A.7 is used directly in the variational-perturbation equations (i.e., with the $\chi_K^{(n)}$ regarded as variational parameters) that the so obtained $\chi_K^{(n)}$ will be the same as the values given by Eq. (A.8).

¹³O. Sinanoğlu, Phys. Rev. <u>122</u>, 49 (1961). Also see W. H. Miller, J. Chem. Phys. <u>45</u>, 2198 (1966).

PHYSICAL REVIEW

VOLUME 181, NUMBER 1

5 MAY 1969

Analytically Solvable Problems in Radiative Transfer. I

C. van Trigt

Philips Research Laboratories, N. V. Philips' Gloeilampenfabrieken, Eindhoven, Netherlands (Received 6 January 1969)

As is well known, the transfer of radiation in a medium is described by an integral equation, first given by Biberman and Holstein. They assumed that the emission coefficient is proportional to the absorption coefficient. After a discussion of the relation of this type of radiative transfer to Brownian motion, we solve the integral equation for a slab and for all line shapes of interest with and without hyperfine structure in the limit of high optical depth.

INTRODUCTION

The theory of imprisonment of resonance radiation is of fundamental importance for many problems in low-density plasmas. Compton¹ tried to use it to explain the behavior of low-voltage arcs.² He seems to have been the first who noticed a certain, perhaps only formal, analogy between the phenomenon of repeated absorption and reemission, from which the effect stems, and Brownian Motion, and it was his suggestion that the phenomenon could be described by a diffusion equation. A few years later the diffusion equation was derived rigorously by Milne³ from the basic equations of radiative transfer with the tacit assumption that the frequencies of the absorbed and re-emitted quanta are the same. It was shown that the predictions of the theory were not in agreement with the experiments.⁴ Attention, therefore, remained focused on the problem. The notion that the phenomenon should be described by a diffusion equation even misled an author who had written down the correct initial equations.⁵ Kenty⁶ seems to have been the first

who succeeded in solving the discrepancy between theory and experiment by taking into account the shape of the spectral line. He calculated an effective diffusion constant for the Doppler profile that was substantially in agreement with the experiment. The formulation of the problem in terms of an integral equation by Biberman⁷ and Holstein⁸ about 15 years later was physically much simpler and led to an expression for the Doppler profile that was in fair agreement with the one found by Kenty. Holstein⁸ calculated the lowest eigenvalue of the integral equation for a number of line shapes and volumes by a variational procedure. Later on the Russian literature⁹ showed progress towards an analytical approach. Hearn, Hummer and others,¹⁰ following a different, but equivalent formulation of the problem common among astrophysicists,¹¹ calculated some interesting quantities numerically for a slab and Doppler or Voigt profiles, for instance, the line shape of the radiation emitted by a slab. In the meantime many experiments¹² were performed, mostly with the purpose of verifying the dependence of the lowest eigenvalue on the num-