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Phenomena similar to spin echo have recently been observed in a variety of physical systems whose only
common feature is that they comprise large collections of oscillators distributed over some narrow frequency
range. When these oscillators represent collective modes, any nonlinear interaction associated with echo
generation also introduces coupling among the modes, thereby drastically altering the echo process. One
consequence is the creation, under suitable conditions, of an unstable regime in which echo amplifl. cation
of the type recently observed in a ferrimagnet can occur. The coupling must, however, be restricted to modes
which are very close to each other in frequency. Speci6cally, we study in detail a multimode system in which
oscillations are assumed to couple only if their frequency separation is within a range 0-. If v is the pulse
interval, then echo behavior is characterized by the product 0-v. For o-r«1, echo processes are no different
than in systems of isolated particles. For Os~1, in a conservative system, they are enhanced by energy
transfer among modes and produce amplified echoes. Conditions for such behavior exist in nonuniform media
when oscillation modes are quasilocalized in space. For err))1, the echo process is suppressed because of
phase mixing among interacting modes. This is typically the case for plane-wave modes in uniform media.
If the nonlinearity originates in the dynamics of individual localized particles, all modes interact mutually
on an equal basis and no echo is expected.

I. INTRODUCTION

A. Background
' 'N recent years echo phenomena have been reported
~ - in a growing number of physical systems. In addition
to spin echo observed 6rst in nuclei' and later in elec-
trons, ' echoes have been reported in relation to optical
transitions, ' in a ferrite, 4 in a plasma, ' in relation to a
rotational molecular transition, 6 and in a supercon-
ductor. 7 In view of this proliferation it is interesting to
note that, following its discovery, spin echo remained
for many years a unique phenomenon of its kind. The
initial model for spin echo was tailored speci6cally to
the dynamics of precessing spins and gave no hint of
the universality of the underlying process. Strictly
speaking, the model applied only to spin systems but it
permitted one important generalization. Since the dy-
namics of any two-level quantum-mechanical system
closely parallel those of a spin-~ particle, ' echoes as-
sociated with spectroscopic transitions between non-
degenerate atomic levels could also be predicted. How-

ever, the restrictiveness of the model became apparent
with the unexpected observation of echoes in a classical
system, that is, with the discovery of cyclotron echoes.
It has since been recognized that the speci6c mechanism
responsible for spin echo is just one of many possible
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echo-generating mechanisms and that echo processes
constitute a la,rge class of phenomena, similar in certain
aspects but of diverse physical origin.

A typical pulse and echo pattern is shown in Fig. 1.
A series of short incident pulses is followed at prescribed
intervals by reradiated pulses, or echoes, from the
medium. The principal characteristic of all these echoes
is that the time intervals between echoes and incident
pulse, and between the echoes themselves, always cor-
respond to original intervals among incident pulses, or
combinations of these. Echo amplitudes in their func-
tional relationship to pulse amplitudes and time inter-
vals, on the other hand, show the widest variation and
depend on the particular echo mechanism in question.
We shall limit detailed discussion almost exclusively to
the simplest of these echoes, namely, the two-pulse
echo, in which two incident pulses, at 3=0 and at t= 7.,
'are followed by an echo at t=27.

The common feature of systems exhibiting the phe-
nomenon is that in some sense they can be viewed as
very large collections of resonators (or oscillators, as
we prefer to say') whose frequencies are distributed over
a range comparable to the frequency range included in
the Fourier transform of the pulses. Two properties of
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FIG. 1. Characteristic pulse and echo sequences. Pulses are
incident at t=O, t=r, and t=T. Echoes are reradiated at t=27,
3r, etc., and at t= T+v., 7+2r, etc.

The terms resonance, oscillator, oscillation mode, or simply
mode will be used interchangeably depending on the context. All
correspond to a dynamic system which in the linear approximation
limit obeys the mathematical equations for a harmonic oscillator.
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importance characterize the response of such a system.
The first is the so-called "phase mixing" which occurs
as a consequence of the spread in frequencies. When
the system is excited coherently by a sharp pulse, the
phase angles of the oscillators initially excited in unison
soon become distributed among all possible values in a
quasirandom manner. The macroscopic excitation,
which equals the vector sum of all oscillator excitations,
therefore tends to decay rapidly to zero, and the reradi-
ation from the medium is accordingly very small.
Energy thus remains stored in the oscillations until de-
graded by intrinsic relaxation processes. The second
property relates to phase coincidence. Consider a set of
oscillators of different frequencies whose phase angles
coincide at t=0, and then after spreading apart return
again to coincidence at t=~. After t=r this process
simply repeats so that all oscillators are again in. phase
at t=2~, and then at t=37-, t=4~, etc. It is this prop-
erty which underlies the repetitive time-interval pattern
characteristic of resonance echoes.

The actual generation of an echo requires, in addition,
some nonlinearity. Each pulse impresses a certain dis-
turbance on the medium. Echoes cannot arise merely
as a result of linear superposition of these disturbances
but require some nonlinear interaction among them.
At high enough pulse levels almost any physical system
abounds in nonlinearities, and there is usually no diK-
culty in satisfying this requirement. It might seem,
therefore, that any collection of oscillators with suKci-
ently long oscillation lifetimes should be capable of
exhibiting echoes.

So far we have been vague concerning the precise
meaning of the expression "system of oscillators. " In
principle, the term "oscillator" can be applied to any
resonance of the system. In some systems exhibiting
echoes, the oscillators correspond to isolated atomic
particles; in others, they must be viewed as collective
oscillation modes. '» ' In the linear approximation
there is no distinction between the two cases, and the
question may be raised whether the concepts developed
in the interpretations of echoes for isolated particles
can be automatically extended to collective modes.
Such a generalization would be sv eeping, indeed, since
it implies that almost any su%.ciently complex system
which can sustain oscillations will exhibit echoes under
suitable conditions. Even the simplest of all oscillating
systems, a vibrating string, is then a suitable candidate.
Upon further consideration it becomes clear that such
a generalization is quite dangerous unless one takes
into account the specific manner in which nonlinear
interactions affect the system. In this respect there is a
fundamental difference between the situation obtaining
in the case of isolated oscillators and the case of collec-
tive modes. In the former, nonlinearity involves each
oscillator individually and the complete dynamic be-

havior can be derived on the basis of single-particle
models. In the latter, the nonlinear interactions, as a
rule, involve many modes simultaneously and can only
be handled within the framework of a many-body
problem.

The effect of nonlinear interrnode coupling is most
strikingly exhibited in the phenomenon of amplified
echoes recently observed in a ferrite. " Two aspects
sharply distinguish these echoes from any of the single-
particle systems previously studied. The first is arnpli-
fication itself. With a small first pulse and a large second
pulse, echoes have been observed with energies exceed-
ing those of the first pulse by more than 10'. The second
is the initial exponential-like increase of the echo with
pulse separation. Since a growing exponential character
is not normally associated with the motion of an iso-
lated oscillator, the behavior suggests that energy trans-
fer takes place among the modes and that the excitation
of some modes grows at the expense of others. Non-
linear intermode coupling in this case apparently gives
rise to an unstable regime in which the disturbances
associated with the echo grow exponentially. Another
observation of interest is the fact that in totally homo-
geneous internal dc magnetic fields not only is there no
amplification but in general no echo at all, in spite of
the availability of a rich spin-wave spectrum. Depending
on conditions, mode interaction can therefore enhance
or impair the echo process.

It is the purpose of this paper to analyze certain of
these effects in detail, and attempt to draw some general
conclusions concerning echoes in a system of collective
modes. Since echo amplification is the most interesting
consequence of intermode coupling, this phenomenon
naturally deserves a major part of our attention, and
will be analyzed in considerable detail. We do not pre-
sume to describe the general behavior of an arbitrary
system of oscillators with arbitrary nonlinear inter-
actions, and must therefore concentrate on systems
with clear and simple echo properties. Even then the
problem is quite complex. Difhculties inherent in any
nonlinear many-body theory are compounded by the
fact that the interesting effects occur in an inhomo-
geneous medium. Our starting point always remains the
safe ground of linear approximation from which we take
only cautious steps into the nonlinear morass with the
aid of traditional techniques of expansion and lineari-
zation. Needless to say, we ignore all nonlinear effects
which do not bear directly on the echo phenomenon.
And, in order to make any headway at all, we must
exploit every possible simplifying assumption. Initially
we confine detailed mathematical analysis to the most
elementary and most restricted system exhibiting the
desired properties. Once this is accomplished, the aim
of further, less precise, analysis is to indicate that the
same qualitative behavior may be expected in more
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genera1 systems. In following a route from the particular
to the general we shall be in a position to point out the
important physical mechanisms in terms of a specific,
reasonably well-understood model. Recognizing the
futility of aiming at true generalizations or exhaustive
solutions for systems of such complexity, we can still
arrive at conclusions whose validity extends consider-
ably beyond the specialized model considered.

B. Formulation of the Problem

The specific point of view from which the analysis is
approached is motivated by considering some of the
difhculties arising in attempting to apply single-particle
echo concepts to a system in which all oscillation modes
interact with each other on a more or less equal basis.
Consider two oscillators at frequencies co~ and A&2.

During the interval 7- the relative phase of the oscil-
lators changes by (cu& &u2)r, —which for most oscillator
pairs in the usual echo regime is a very large number.
The nonlinear interaction is thus itself subject to phase
mixing —any given oscillator interacts with a set of
oscillators whose phases are distributed among all

angles, and, moreover, are constantly changing. Since
the effects of the interaction, and particularly the direc-
tion of energy transfer, depend on phase relations
among the oscillators, it is hard to see how any syste-
matic process can take place under these circumstances.
It thus appears necessary to restrict the frequency range
over which oscillators interact with each other, and
consider systems in which nonlinear coupling is not
independent of frequency, but decreases with increased
frequency difference.

More specifically, we study systems in which a given
oscillator of frequency co couples nonlinearly primarily
to oscillators whose frequency co' is restricted to
~co' —~~ (o., where o is some narrow frequency range.
The product 0-r is then a measure of the relative phase
drift in a "pack.et" of interacting oscillators during the
interval v-. Depending on whether 0.~ is large, small, or
intermediate, one can consider three regimes.

(i) o.r«1. In this case any group of interacting oscil-
lators can be regarded as a "pack.et" within which all

phases remain equal throughout the experiment. With
minor modifications the single-particle echo model for
noninteracting modes can be applied to this case.

(ii) o.r«1. In this case any systematic nonlinear
eRect is precluded by phase mixing and the appearance
of an echo is unlikely.

(iii) The intermediate region in which or is of order 1.
In this region it is shown that unstable growth and
amplification may occur.

Many hypothetical systems possessing the required
property can be envisioned by constructing suitable
modes in some space, e.g., position space, momentum
space, velocity space, and, more generally, phase space.
For the moment, interest is confined to nonuniform

media where frequency is in some sense a function of
position, and where coupling arises from the spatial
overlap of modes at slightly differing frequencies. In
order to provide some degree of practical motivation
for the largely abstract arguments of subsequent sec-
tions, we permit ourselves a short digression on this
subject.

C. Syatial Distribution of Oscillation Modes

It is not our intention to present here an analysis of
stationary oscillation modes in nonuniform media, but
merely to indicate, perhaps somewhat imprecisely, cir-
cumstances under which mode coupling of the type
postulated may arise in practice.

Consider a medium which consists of coupled atomic
particles localized in space, and can support various
oscillation modes. If one assumes that the important
nonlinear effects originate solely in the motion of the
individual particles, then nonlinear coupling among a
set of modes depends directly on their spatial overlap.
In this respect there are two extreme possibilities—
there is no overlap at all, or there is total overlap of all
modes over the entire sample. The first situation will
occur, for example, if the particles are isolated oscil-
lators as in the original spin-echo experiments. The
second occurs in completely homogeneous media. In
large samples the modes in the latter case are in the form
of plane waves which overlap over the entire samples
and are therefore all mutually coupled through the
nonlinearity in the individual particle motion. This
condition, which is discussed in detail in Appendix A,
is not conducive to echo formation.

The interesting cases lie between these two extremes.
As a starting point, we consider an infinite medium,
with interactions of purely dipolar nature, and confine
our attention to so-called longitudinal oscillations. For
such oscillations the group velocity is zero and the field
lines are confined to the region in which the disturbance
occurs. Oscillations can therefore be confined to any
arbitrary region of space. The best-known example is
provided by longitudinal plasma oscillations in a cold
isotropic plasma at the plasma frequency ~„,which is a
function of the electron density. In an inhomogeneous
plasma each region tends to oscillate independently at
its appropriate local plasma frequency.

The presence of an external magnetic field greatly
complicates this picture. The group velocity, however,
remains zero and there exist sets of stationary oscillation
modes each occupying a suitable two-dimensional sur-
face. In an inhomogeneous Geld the mode frequency
depends on the local field value as well as the orienta-
tion of the surface.

In an actual plasma, or ferrimagnet, these modes are
modified by a number of factors. Foremost is the Gnite
sample size which results in surface charges and fringing
fields through which various modes interact. Additional
coupling is provided by electromagnetic waves and by
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{0)t=o '{bj t =0.« ~ {c)t=v

FIG. 2. Evolution of system of oscillators uniformly excited
by pulse 1. Each oscillator is represented by vector in complex
plane. The circular curve represents locus of vector tips. At t=~,
oscillators at 45' intervals are numbered for future identification.
In subsequent 6gures vectors are omitted and only locus of end
points is drawn.

exchange (in ferrimagnets) or thermal ef'fects (in plas-
mas). The former is important in disturbances which
are coarse-grained spatially, and the latter in distur-
bances which are very fine-grained. The resulting modes,
in general, have a very complex spatial distribution.
In a highly inhomogeneous field under conditions
dominated by volume dipolar interactions, much of the
oscillation energy of a given mode remains concentrated
about the region corresponding to local resonance con-
ditions and the modes may be regarded as quasilocal-
ized. Overlap among a set of modes is then largest when
the frequencies are very close.

Summing up, the desired mode structure may be ex-
pected in an inhomogeneous medium, for disturbances
in which dipolar interactions predominate. The modes
are quasilocalized and interact primarily with neighbor-
ing modes at adjacent frequencies.

IL FORMAL PRELIMINARIES

In order to lay the groundwork for the present study
we must recapitulate some of the general theory for echo
processes. Much of this material can be found elsewhere
in expanded form. " '4

A. Echo Regime

We impose on the systems under consideration a
number of severe restrictions. Although echoes are
often observed even when one or more of these restric-
tions is relaxed, the presentation of the theory is greatly
simplified if one adheres to the idealized echo regime
defined below.

We confine the discussion to the simplest two-pulse
echo sequence which consists of two incident pulses at
t= 0 and t= r, respectively, and an echo at t= 2r. Other
echoes are briefly surveyed in Appendix B.

In the linear approximation the system is assumed to
comprise a very large number of independent oscillators
whose frequencies are spread over a range Ace. The
parameter t~= 1/her is a measure of the time required
for "phase mixing" to occur, that is, for oscillator phase
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"G. F. Herrmann and R. F. Whitmer, Phys. Rev. 143, 122
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angles to become distributed among all values following
coherent excitation by a sharp pulse.

With t„denoting pulse widths, we now assume:

(a) t„«to, i.e., relative phase shifts among oscillators
- can be ignored for the duration of a pulse.

(b) r))t„, i.e., complete phase mixing takes place
during the interval between pulses.

(c) The distribution n(~) of oscillators and coupling
to the radiation field is a smooth function of co. One can
therefore divide the system into subensembles, each of
frequency range Sr' such that n(~) and the coupling to
the radiation are essentially constant in each suben-
semble, and at the same time r))1/6~.

The nonlinear perturbation can enter in one of two
ways —either through interactions with the external
field or through interactions involving only the oscil-
lators themselves. Paramagnetic spin echo represents
an example of the first case. In the present study we
shall be primarily interested in the second. For this case
we shall require that the nonlinear perturbation be
"small" and assume:

(d) The rate at which momentum or energy is
changed by nonlinear effects is very small compared to
Aco. Put differently, the characteristic times for non-
linear processes are very long compared to t~.

A fifth, implicit, assumption can only be vaguely
formulated to state that all oscillators are "similar"
and exhibit a priori identical behavior except in those
aspects which depend explicitly on the frequencies.

B. Single-Particle Model

We recapitulate here a simplified echo theory for un-
coupled oscillators. We assume a complex convention
and refer all motion to the familiar moving frame of
reference, which rotates in the complex plane at some
mean frequency of the system. The frequency co will
therefore denote the difference between the true oscil-
lator frequency and the frequency of the rotating frame.

Consider first the linear approximation. In the ab-
sence of radiation the motion of an oscillator of fre-
quency co is of the form ae'"'. In the moving system, a
short pulse imparts to all oscillators an equal ampli-
tude" increment A. Let pulse 1 at 1=0 impart the in-
crement A~, and pulse 2 at 3=r the increment A2. With-
out loss of genera1ity, we can assume that in the rotating
frame A~ and A2 are real. We can follow the evolution
of the system analytically, and also graphically' " by
studying the curves corresponding to the loci of the
amplitude vector tips for the ensemble (Fig. 2). At

"Amplitude as used here includes both magnitude and phase
in the usual complex convention. In the present discussion it
measures a momentum coordinate whose rate of change is pro-
portional to the radiation 6eld. It represents, for example, the
electron current —proportional to the linear momentum —in a
plasma, and the transverse magnetic moment —proportional to
the transverse component of the spin angular momentum —in a
ferrimagnet.
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t=0+, just after pulse 1, all oscillators have the ampli-
tude Ai t Fig. 2(a)). Because of the spread in frequencies
the vectors rapidly fan out in a circle (Fig. 2(b)). At
t=7. , just prior to pulse 2, the amplitude of a given
oscillator is given by A&e'"', and since Aco7.&)1, the
vector tips lie on a circle which is wound about itself
many times /Fig. 2(c)). On this circle we pick a series
of representative points at intervals of 45, which we
shall henceforth follow in tracing the further evolution
of the system.

At t=7+, immediately following pulse 2, the ampli-
tude is a(r+) =Ate'"'+As and the ensemble is repre-
sented by a circle LFig. 3(a)), which is displaced from
the origin by A2. Subsequent motion is described by
a(t) =Are'"'+Ase'"&' '&. With oi considered as the curve
parameter this expression describes the sequence of
epicycloids shown in Figs. 3(b)—3(e). The absolute
amplitude

~
a ~, which is given by

(a) t=r

(c) t =1.22r

b) t =t.tt v

(d) t at.44'

~a('=Ais+Ass+2AiAs cos(dr, (2.1)

is a periodic function of oi, with period P(oi)=2m/r.
This is rejected also as a periodicity of the epicycloids
with respect to the angle y, the period equaling P(q)
= 2~(t r)/r-

Interaction with the radiation field depends on the
total moment obtained by adding all the individual
oscillator amplitudes. This moment can be approxi-
mated by an integral of the form

p= m(oi)(Ate'"'+Ase'"&' '&)do&, (2.2)

which, because of assumptions (c) and (d), is negligible
for t—r))1/d, oi. The vanishing of the moment is also
evident in the quasisymmetric manner in which the
curves of Fig. 3 surround the origin. An exception occurs
at t= 2r (and also other multiples of r) when P(p) = 2s.

and the epicycloid coalesces to a simple asymmetric
closed curve, in which all points which coincided at
t= r coincide again. It is this asymmetry which causes
echoes to occur preferentially at multiples of r—except
that in the linear case, echoes will not occur even then.
From the analytic expression

a(2r) =Aiesi~r+A e'~'

it is clear that the curve in Fig. 3(e) is merely the super-
position of two circular distributions with a vanishing
resultant.

In order to produce a Gnite resultant, some non-
linearity is required. In processes which are responsible
for echo generation the nonlinearity usually appears as
a function of the oscillator amplitude

~

a
~

and does not
depend explicitly on the oscillator frequency. Hence, it,
too, is a periodic function of oi with the period P(oi)
= 2rr/r, and the resulting curves, although modified in
shape, retain the periodicity in angle P(vi) = 27r(t r)/r-
and the property of quasisymmetry about the origin.

Ip

As in the linear case, only at multiples of z wi]] the
curve coalesce to an asymmetric simple closed curve.
However, in the nonlinear case, a finite resultant mo-
ment at these specihed times is to be expected.

As an example, consider the simplest anharmonic
effect, namely, an amplitude-dependent frequency
shift. " If the "perturbed" frequency co' is given by
o&' =oi+na', where n is a small coeKcient, then, following
the incidence of the two pulses, we have from (2.1)

oi'= oi+nAt'+nAs'+2nAiAs cosoir. (2.3)

The second and third terms on the right side are com-
rnon to all oscillators and can be lumped into the motion
of the rotating coordinate frame and henceforth ignored.
For the same reason, when considering the period pre-
ceding pulse 2, one may ignore the constant term o.A&'.
The oscillator motion can thus be described by

a= (Ate'"'+As) expLi(oi+2nAiAs cosoir)(l —r)].
To obtain the resultant at the echo time t=2r, it
suKces to integrate a over a single period P(o&). Making
use of assumption (d) and putting O=oirmod2s; with

"W. H. Kegel and R. W. Gould, Phys. Letters 19, 531 (1965).

(c) t*2v

FIG. 3. Evolution of system responding linearly to two pulses.
(a) At t=0 locus of vector tips is a circle displaced from origin.
(b)—(d) Locus is a set of epicycloids symmetrically wound about
the origin. (e) Locus is asymmetric figure equaling the super-
position of two circles corresponding, respectively, to the dis-
turbances generated by pulses 2 and 1.
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III. ROLE OF NONLINEAR INTERMODE
INTERACTION

(a) t= v

As indicated in Sec. I 8, our aim is to analyze systems
of nonlinearly coupled oscillators where the coupling is
conhned to an effective frequency range a. We shall
proceed to construct the simplest possible mathema-
tical model for such a system and show that it exhibits
both echo amplification and suppression, depending
on the value of 0-r. Next, we shall try to generalize
these results to somewhat less restrictive models.
Finally, we shall attempt to provide a physical inter-
pretation of the amplification process. The discussion
is confined throughout to conservative (i.e., nondissipa-
tive) systems, since nonlinear relaxation processes are
considerably more difficult to treat. A particularly
important dissipative echo mechanism is discussed in
Appendix A for the case of a uniform medium.

(c) t =1.2P. v {d) t=2T

I go. 4, Echo generation through amplitude-dependent fre-
quency. (b) and (c) Kpicycloids are now distorted because of
re]atiye forward phase drift of larger amplitude oscillators. (d) At
]=2&, oscillator phases are bunched in upward direction, resulting
in finite moment.

0~& 0(2x, one has

pg=
2z p

(Aie'e+As) expLi(g+2rnA iAs cosg) jdg,

where 2V is the number of oscillators. Integration gives

tt, =E$ A res(2rnAtA—s)+iAs Jt(2rnAtAs)1,

where Jj and J2 are Hessel functions. For small values
of vo.AiA2, =Ã AA'Pzs —Z 7A I 2 )

that is, the resultant moment, and hence the radiated
echo amplitude, increases linearly with the time ~ be-
tween pulses.

The mechanism is displayed graphically in Fig. 4.
The curves, recapitulating part of the evolutionary
sequence of Fig. 3, illustrate the distortion of the epi-
cycloids due to the amplitude-dependent phase drift.
Figure 4(d) shows that at t=2r this drift results in
phase bunching towards the upper half of the plane,
and a nonvanishing resultant in the upward direction.

The amplitude dependence of the frequency is the
only cummulative nonlinear eRect in a conservative
system of isolated particles. The linear variation of p
with r (for small r) simply reflects the uniform rate of
the resulting phase drift. In a nonconservative system
nonlinear relaxation is also possible. Neither case cor-
responds to an unstable regime in which the echo varies
exponentially with v. Such behavior requires energy
transfer among the oscillators and is therefore incom-
patible with the single-particle model.

Q
Bu*

8K
and g„*=—q

BG„

In the linear approximation the Hamiltonian is a quad-
ratic form. YVe assume that it is already in the diagonal
form

~2 =g Cezzazzazz ~ (3.2)

Hence, to first order, d„=ice„a„and a„(t)=a„(0)e™"as
stipulated.

"P. A. Sturrock, in Proceedzzzgs of tlze Irzterzzatzozzal School of
Physics "Enrico Fermi": Cozsrse Z5, edited by M. N. Rosenbluth
(Academic Press Inc. , New York, I965)."E. Schlomann, Raytheon Company Technical Report No.
R-48, j.959 (unpublished). For earlier noncanonical treatment of
nonlinearity and instability in a ferrimagnet, see H. Suhl, J.
Phys. Chem. Solids 1, 209 (1957).

A. Simple Mathematical Model

Consider a large set of equally spaced oscillation
modes at frequencies &o =zoe+nQ, where 0 is a very
small frequency increment. I et the modes be all of
identical form y(x), but displaced relative to each other
so that the Nth mode is described by to„= zP(x —n). One
may, if one wishes, view x as representing position in a
one-dimensional configuration, in which case there will
be one oscillation mode per unit of distance. Each mode
has a finite effective spread Dx, and therefore overlaps
other modes which lie within a frequency range 0.= M,x.
Ke assume that the modes are very densely spaced,
and that Q((0 as well as Q~(&1. This will permit the
substitution of integration for summation when sums
over all modes are calculated.

In writing the dynamic equations, we shall follow a
standard canonical formalism as described for a plasma
by Sturrock'" and for a ferrimagnet by Schlomann. "
The Hamiltonian 3C is given as a function of the vari-
ables a„and their complex conjugates a„*.The equa-
tions of motion are
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The nonlinear interaction is given in terms of higher-
order polynomials in a„. Now, to erst order, a„oscil-
lates at co„or approximately at oro. A product of the
form u„&u„& varies approximately as e""0', i.e., at a
frequency far removed from that of the oscillators.
These terms therefore have little effect. On the other
hand, the product a„~a„2a„3 has a time variation of
approximately the frequency or& and therefore sects
the motion strongly. We therefore assume a Hamil-
tonian of the form

K=+ (u„a„a„*+-', P C(n)n, n,n)
n].non3n

Xanlan2ans*an', (3 3)

and, accordingly, dynamic equations of the form

These equations serve as initial conditions for Eqs.
(3.4). Equations (3.7) are periodic in n, with a period
P (n) = 2m/Qr. For arbitrary r, P (n) is not generally an
integer. However, since we have assumed a high density
of modes, P(n) is a very large number, and can always
be converted into an integer by a minor change in the
value of r. For convenience, we will treat P(n) as an
integer in the following calculations. Since the basic
equations (3.4) and (3.6) are completely symmetric with
respect to a translation in n, the solutions corresponding
to the initial conditions (3.7) retain the same periodicity.

The echo can thus be obtained by summing a„at
t = 2~ over a single period. We define the echo amplitude
per oscillator as

I'(n)

a =i% a + Q C(ngngn8n)a ga ga 3 ~ (3 4)
nIn2n3

a-"=D'(n)j 'I 2 a-(2r)l.
n=1

(3.S)

In order to determine the form of C(n)n2nan) we now
assume that the anharmonicity is entirely local in char-
acter, that is, at any point x it depends only on the
amplitude a(x) and not on the amplitude at any other
point. The fourth-order Hamiltonian therefore has the
form

Before linearization we must obtain the zeroth-order
solutions to (3.4), i.e., those corresponding to a=0. It is
easily checked that these are given by

a~(f=0) =. A& exp(i/(&oo+nQ)(t —r)+ Oj), (3.9)

where

X4——-,'g
i a(x) i'dx,

where g is a small constant. Since

(3.5)
O=A22

tl ],s2s3
C(ngn2n, n)

Xexp)i(n&+n2 —n3 —n) Qt'1 dt'

a(x) =Q a„It (x—n),

we 6nd by comparison with the fourth-order terms in

(3.3) that C is given by the fourfold overlap integral

C(ngn2n3n) =q y(x ni) y(x—n2) p'( —xn3)

X~'( -x)dn* (3.6).

is independent of n, because of the symmetry properties
of C.

We now introduce a new set of coordinate systems,
one for each oscillator, which rotate according to the
zeroth-order solution (3.9). The new coordinates a„, in
what we may call the "interaction representation, " are
defined by

a„=a„exp(iL(&oo+nQ) (t—r)+ 0$), (3.10)

Note that C is invariant to a simultaneous translation
of all n's.

We will now study the response of this system to a
pulse sequence of a standard type used in amplified
echo experiments, ".namely, one in which the first of
the two incident pulses is extremely weak. Again we
assume that a pulse imparts to each mode an equal
amplitude increment A. For the 6rst pulse we shall put
A~ ——e, with e(&A~. The disturbance associated with
pulse 1 can therefore be regarded as causing a small
perturbation of the large-scale motion associated with
pulse 2, and we may undertake to linearize the problem
with respect to e.

Between pulses 1 and 2 the system may be assumed
to be linear because of the smallness of e. At t=v+,
immediately after pulse 2, the amplitude, just'as'i
single-particle model, is given by

which upon substitution into (3.4) yield

dC
- =i g C(nyn2nan) (a„)a„2a„3*—A2 a„)

nIn2n3

XexpLi(n +n —n —n)Q(t —r)j. (3.11)

These equations can now be linearized by putting

a„=Ag+ eb„, (3.12)

and retaining only linear terms in e. One finds

b„=i g A2'C(n&n2n3n)(b g+b 2+b 3*—b )
RI'$2%3

XexpLi(nq+ng —n3 —n) Q(t —r)). (3.13)

a (r) —qg4~nr+ A —~~i(roII+no) r+A

n the
This represents a system of coupled linear equations

between the perturbations associated with pulse 1.The
(3.7) initial conditions at t = r are now given by b„=e'""', and
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the echo amplitude by
P(n)

e~a rnm (3.15)

where summation is over a period of length P(n)
=2zr/Qr, e.g., from ——,'p(n) to +-',p(n) —1. The in-
verse transformation is

P (n)
u —Lp(n)j-1 p g e—zornm (3.16)

The initial conditions become u)(r) = 1, u (r) =0 for
ms& 1, and the desired echo amplitude is a„h,
= eIu, (2r) I.

One proceeds by substituting (3.15) into the right
side of (3.13), multiplying each equation by e '"'"m,
and forming linear combinations, as in (3.16), to yield
u on the left side. Summation over nj, n2, and n~ is
thereupon replaced by integration and the particular
form of C(n)nznzn) is substituted from (3.6). Upon re-
arranging the order of integration and using the orthog-
onality relation

P (n)
eNrn(m m') p(n)g—

n=1

one obtains a set of equations in which each m is
coupled only to the corresponding I . For m=1 one
obtains

u) ——iqAz'(
I
F(t—r) I

'I 2
I
F(t) I

'—
I
F(t—r) I

'guz

+F(t—r)'F*(t)F"(t—2r)u )*}, (3.17a)

u-z=zqAz'(IF(t —r) I'L2IF« —2r) I' —IF(t—r) I'3u-~
yF(t —r)'F*(t)F*(t—2r)u, *}, (3.17b)

where

a„)„——LP(n)j 'eI P b„(2r)e'""'I .
n=l

The problem is greatly simplified at this point by
making use of the periodicity and introducing the
Fourier sum

Later we shall take a closer look at these equations.
For the moment, in the spirit of mathematical simpli-
f)cation, we shall assign to the modes the simplest
shape a Gaussian —by putting

q (x) = LQ/o(2zr) "'$ expI —(Qx)'/2a' J,
where the width 0- is in frequency units and represents
the interaction range in terms of the frequency separa-
tion among modes.

On substituting this expression in Eq. (3.18) we ob-
tain F(t) = exp( ——',o'tz) and

u)=iqA 'e ~'(' "[(2e ""— e~'(' ~)')—u

+e—"(" ')'+")u )*$ (3 19a)

zqA 2e—~ (t—r P(2e ~ (t 2r) e
—a(t r) —)u-

+e ~'(o ~)'+~'lu *J (3 19b)

Exact solutions can be obtained only numerically.
But the character of the solutions can be ascertained
from the behavior during the period immediately follow-
ing pulse 2, that is, for o(t r)«1 The—re are t.hree re-
gimes of interest:

(i) or«1. In that case, u) 1+iqAz'(t —r) and
u )=iqAz (t—r). The solutions are identical with those
obtained in a single-particle model and represent the
phase drift associated with an amplitude-dependent
frequency. Indeed, a very small 0. implies that any
oscillator interacts only with oscillators whose motion
is identical with its own, and which can therefore be
coupled together as a single "oscillator packet. "

(ii) or«1. In this case u) and. u ) become, in effect,
uncoupled. m ~ remains negligible, and so does the echo.

(iii) oris intermediate. L. et us choose, for example,
a value such that e '"=—,'. Then the solutions are
u) cosh2qA2'(t —r) and u ~~i sinh-', qA, '(t —r). These
are unstable, exponentially growing solutions. For suK-
ciently large values of gA2', m & may become very large,
resulting in greatly amplified echoes.

F(t) = (o(x)e-'"*'Cx (3.18) In the context of an experiment, 0- may be assumed
fixed while the pulse interval v. is varied. The results
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indicate that for small v there is increased amplidcation
with increasing r, but that for large ~ the echo decreases
again to zero.

It is instructive at this point to compare the calcu-
lation with some experimental results.

We have computed a series of solutions for a„~, on
the basis of Eqs. (3.19), and a sampling of these is
shown in Fig. 5 plotted against o-7.. Adjacent to them
are displayed some experimental curves obtained in an
yttrium-iron-garnet crystal at 10 GHz in echo experi-
ments previously described. The comparison is not in-
tended to be quantitative in any sense, since little is
known concerning the experimental mode structure.
Moreover, relaxation effects ignored in the theory are
probably very important in the experiments.

The qualitative similarity is particularly striking in
two respects, both completely unique to this phenom-
enon. The first is the exponential character of the
growth part of the curves, which is symptomatic of
instability. The second is the drastic variation of echo
power with the power of pulse 2. This behavior is in
contrast with single-particle models which predict no
more than a quadratic dependence of echo power on
either 7- or A2. Experimental and theoretical curves in
Fig. 5 are juxtaposed in such a way that an increase in
pulse-2 power by 1.26 (1 dB) will produce similar
changes in peak echo power. It will be noted that experi-
mental echo amplification is two orders of magnitude
lower than the theoretical value. Much of this difference
is accounted for by power lost because of poor coupling
of the radiation field to the appropriate modes in the
sample.

B. Generalizations

The qualitative behavior which we have determined
does not depend strongly on the particular shape chosen
for y„.If p„has any well-behaved smooth shape and an
effective width 0-, then one may assume that the Fourier
transform F(t) defined in (3.18) goes to zero for ~&~

))o '. As t varies from zero to ~, ~F(t)
~

assumes all
values between F(0) and zero.

The short-period stability properties of Eq. (3.17) can
be investigated by treating the coefFicients of m& and
I & formally as constants, and calculating the character-
istic oscillation frequencies of the system. The character
of the solutions is found to depend on the parameter

D= [~F(t) ~' —~F(t r) ~'+ ~F(t——2r) [
j'

—
I
F(~) I'I F(~—2r)

I

' (3 2o)

If D)0, then the frequencies are real and distinct and
the solutions are periodic, or stable. If D=0, then the
frequencies are real but degenerate and the solutions
are singular, i.e., grow linearly with time. If D&0, then
the frequencies are complex, and the solutions vary
exponentially.

The behavior of the solutions is quite analogous to
that found in the case of Gaussian modes.

(i) For r«1/a (hence also t«1/0. as r&t&2r),
F(t) F(t—r) F(t—2r) F(0); hence D 0 and the
solutions grow linearly with time.

(ii) For r))1/0. , F(t) F(—t) 0. Therefore, for
r, D&0 and solutions are stable. In fact, in Eq.

(3.17), ei and e i become uncoupled.
(iii) For t r, the term in square brackets in (3.20)

becomes
~
F(r)

~

'—
~
F(0)

~

'+
~
F( r)

~

—'. Since [ F(7)
~

and
~
F( 7.) ~

—go to zero for large r, one can always find
an intermediate 7. for which this term becomes very
small; hence D&0 and the solution is unstable.

One may ask to what extent the results depend on the
special form (3.6) of C. Here again, if C(nin~n3n) is
well behaved, that is, a smooth function which tapers
to zero whenever the difference between two of its argu-
ments increases much beyond 0-, one can show by
lengthy and subtle arguments that, in general, the
same three regimes will exist. One should note in this
connection that C is a symmetric tensor in any con-
servative system.

C. Physical Interpretation

The physical process of amplification is compounded
of several elements. We shall try to reconstruct it step
by step in reference to the mathematical formulation
of Sec. III A.

Our starting point is the isolated-particle limit at
which the oscillators are noninteracting. In that case
all the coeKcients C in (3.4) equal zero except for
C„=C(nnnn), and the equation becomes

a =iso„a„+iC a„a„a„*=i(~„+C„~a„~')a„.

The nonlinear coeKcient C„~a„~ ' simply constitutes an
amplitude-dependent addition to the frequency. With-
out loss of generality, we will assume here and further
on that g&0. The oscillator frequency then increases
with amplitude.

Next we consider energy transfer among modes and
its dependence on phase relations. In Eq. (3.4) let us
for the sake of brevity denote the sum on the right by
F„, so that (3.4) has the form

an= i~nam+~Fn

P„can be separated into two components in the com-
plex plane: one parallel and the other perpendicular to
a„.The first component changes only the phase of a„;
the second changes its magnitude. If a leads J „slightly,
i.e., if the phase of a„ is somewhat larger than that of
Ii„, then a„will increase in magnitude with time.

Consider now the zeroth-order solution, correspond-
ing to &= 0, as given by Eq. (3.9). In this solution, the
amplitudes of all modes remain constant and equal and
the phases equally spaced at all times. I et us include the
phase angle O~, which is common to all a„, in the rotation
of the coordinate system. For the remaining phase angle
tt„we have e„/(t r)=coo+nD, and—the system can be
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e„x(t-v)

FIG. 6. Amplitudes and phases in system of equally spaced
oscillators following a single pulse at t=v.

displayed in diagram form as a set of equally spaced
vertical bars (Fig. 6) whose height represents the mode
amplitude, while the phase angle is represented in terms
of the abscissa 8„/(t r). S—ince the amplitudes in this
solution remain constant, F„must always remain
parallel to a„(assuming again a positive g; for negative

g it would be antiparallel). Suppose that one oscillator-
say, the nth —is perturbed by shifting the phase forward
relative to its position of symmetry in the ensemble.
Then a„will lead F„and proceed to grow in amplitude.
The energy for this process must come, of course, from
the neighboring oscillators with which it interacts.

Suppose, on the other hand, that the perturbation
consists of a slight increase in the amPlitstde ~a ~. If
we assume that the self-interaction term C„a„a„a„*
predominates in the nonlinear interaction, then this
change in amplitude will produce an increase in the
frequency and a forward drift of the oscillator phase
relative to the ensemble.

We have in this case two reinforcing processes:

(a) An oscillator whose amplitude is larger than the
average of the neighboring modes with which it inter-
acts drifts forward in phase relative to the neighborhood.

(b) An oscillator whose phase is in advance of the
average for this neighborhood will acquire energy from
neighboring modes and its amplitude will grow.

The resulting unstable process, which is a combina-
tion of amplitude growth and forward phase drift, is
illustrated in Fig. 7. The opposite processes, namely,
amplitude decrease and backward phase drift, are
similarly linked by positive feedback.

The extension of these considerations to the periodic
perturbation of the ensemble associated with pulse 1 is
straightforward, but again the behavior is critically de-
pendent on the regime of or. In ord.er for process (a) to
occur, the predominant interaction of a given oscillator
must be with other oscillators whose amplitudes and
phases are relatively close to its own. On the other
hand, in order for process (b) to occur it must also
interact with oscillators whose behavior differs from its
own, since otherwise the required phase shift between
the oscillator and its interaction neighborhood will not
take place. In other words, if 0-7- is very large, process
(a) will not take place, and if or is very small, process
(b) will not take place. This is described graphically in
Fig. 8.

The operation of the instability and the manner
in which it leads to ampli6ed echoes are illustrated in
Fig. 9.

In the above discussion we have assumed g &0, i.e., a
predominantly positive nonlinear interaction. For g &0,
the phase drifts occur in the opposite direction, but the
outcome is otherwise unaffected.

D. Unstable Behavior Following a
Single Pulse

(a)

~ ~ ~

The equally spaced, equally excited system displayed
in Fig. 6 is unstable with respect to a variety of per-
turbations. These need not arise exclusively from the
prior excitation by pulse 1. When a single strong pulse
is incident on the medium, some deviation from uni-
formity is present because of thermal noise and because

(b) (c)

(c)

FIG. 7. Unstable growth of perturbation. (a) Single oscillator
is perturbed by increasing its amplitude relative to ensemble.
(b) Oscillator phase drifts forward relative to ensemble. (c) There-
upon the amplitude increases further.

FIG. 8. Regimes of intermode interaction. Epicycloids represent
evolution of system shortly after t= r. Arrow represents a particu-
lar oscillator and heavy line its interaction range. (a) Oscillator
interacts only with identical oscillators and there is no energy
transfer. (b) Oscillator interacts primarily with oscillators whose
average phases are smaller than its own and is amplified at their
expense. (c) Oscillator interacts with many periods of the dis-
turbance. The interaction becomes phase-mixed, and no echoes
arise.
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{a) t=v

1'1G. 9. Evolution of system of
coupled oscillators in the amplifica-
tion regime. (a) Locus given by dis-
placed circle corresponding to very
small pulse 1. (b) and (c) Distorted
epicycloids show combined e8ect of
phase drift and amplitude change.
(d) Final figure, like Fig. 3(e), equals
superposition of two circles, but the
second circle is here displaced upward
from the origin and is much larger
than the initial circle in (a).

{b)t=1.1) T {c)t=).22~

1,5

5I

iQ

41)

2,6

io+
0,4

{d) t=2v

of the uneven coupling of the radiation to different
modes. The perturbation can be Fourier-expanded in
terms of the oscillator frequency co. Fourier components
of periods(ar), for which'(co) o., are strongly amplified
and produce echo spikes at v= 1/P(&u). Under condi-
tions of high ampli6cation one may therefore observe
a noise pattern consisting of sharp spikes of width

1jh& with an envelope corresponding approximately
to the gain curve for the amplified two-pulse echo.

pulses. To some extent the packet must retain the
characteristic properties of a single oscillator.

The echo process thus remains confined to a regime

near the limit corresponding to isolated particles. While

small excursions from this limit result in great enhance-

ment of the effect, large excursions result in its
disappearance.

APPENDIX A: ECHOES IN A UNIFORM MEDIUM

IV. CONCLUSION

The collective-mode model developed in the preceding
sections accounts well for all the main features of the
amplified-echo phenomenon. It also throws light on the
more fundamental question posed at the outset, namely,
whether echoes may be expected to occur as generally
in systems of coupled collective oscillation modes as
they do in systems of isolated oscillators. The answer
to this question is by and large in the negative. If we
consider the set of modes which couple strongly through
the nonlinear interaction to a particular mode as a sort
of oscillator packet, " then the condition for echo for-
mation appears to be that the phases, and therefore
also the amplitudes, in such a packet do not deviate
excessively from each other during the interval between

Echo phenomena have been observed by and large
in nonuniform media. Since uniform media support a
large number of stationary solutions, in the form of

plane waves, these could presumably play the role of
oscillators in an echo model. It appears, however, that,
in general, echoes will not be generated in such a con-

figuration through a mechanism ordinarily associated
with a single stationary particle. This statement may
be phrased more precisely as follows.

Consider a uniform medium comprising individual,
localized (but coupled) particles whose a priori dynamic
behavior depends on their position alone (i.e., not on

their drift velocity or other possible parameters). Let
the nonlinearity arise entirely in the motion of the
individgal particle, i.e., be completely local in character.
Then, in general, there will be no echo.
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The statement can be put in the form of a comple-
mentarity principle. The nonlinear interaction is totally
localized in ordinary or r space. The modes are localized
in k or "momentum" space. The nonlinearity therefore
does not produce effects specihc to each particular mode
as required for echo formation.

Generalizations with respect to nonlinear systems
are often dangerous, since artificial exceptions can al-
most always be constructed. We therefore claim no
more than that under a variety of reasonable conditions
the above statement holds. We shall attempt no general
proof but will study a number of examples.

The current density j(x) can be expanded in terms
of plane waves:

Conversely,
j(x) p a e ikz—

ai, ——(1/Ã) P j(x)e'"*dx,

(A4)

(AS)

a= v.(x)+vg, (A6)

where 1V is an appropriate normaliza, tion factor. j(x)
is given by env, (x), where e is the electron charge, n
the electron number density, and m, (x) the average (or
drift) electron velocity at x. The velocity v of an in-
dividual electron is given by

One-Dimensional Conservative System

Let a(x) be given by

a(x) =P ai,e
k

(A1)

The nonlinear interaction part of the Hamiltonian
is in the form

where v~ is a random component resulting from
collisions.

The collision frequency i is given as a function of
~

n
~

and can be expanded as a power series in v2. We shall
consider only the lowest terms and put v=vo+nv',
since higher terms lead to similar results. By summing
over all random velocities, one finds that the rate of
change of j(x) due to collisions is given by

X . i; .„= X(x)dx,

where BC(x) is a power series in a(x) and a*(x).
Following the procedure of Sec. III A, Eq. (A1) is

substituted in 3'.(x) and the equations of motion are
obtained from (3.1). Again one need retain only terms
Of the fOrm +kl~k2~k3 y ~ml~m2~m3~m4 ~m5

first-order time dependence falls near the frequency
range of the manifold. One then has

ai, = i~kai, +in g ai iai2aga*

+iP g a„ia„2a sa„4*a„5*+, (A2)

where o. and P are constants and where the summations
are subject to the respective constraints ki+k2 —k3 ——k

and mr+ rn2+ms —m4 —A&4= k. Note that the nonlinear
terms couple all modes on an equal basis irrespective
of the differences in their frequencies. Adding all of
Eqs. (A2), one obtains for the total moment p= P ai

(A3)

In an ideal echo regime, p decays to zero shortly
after the incidence of the second pulse. We know that
the first term on the right side of (A3), i.e., the linear
term, cannot by itself lead to the appearance of an echo.
The other terms, however, vanish to a high order with

p. Thus, once p, has become negligible, it can never
increase again. Hence, there can be no echo.

Collision Mechanism in a Plasma

It is assumed that the reader is familiar with the
cyclotron echo process associated with a velocity-
dependent collision frequency. "We consider the opera-
tion of this process in a uniform plasma.

where (ig'), is the mean square of v~. It can now be
shown that except for small fiuctuation over times of
the order 1/h~, (v~'), is independent of x (that is,
unless the excitation by the pulses is such as to intro-
duce immediately a strong nonuniformity in (vr„)„, in
which case the medium can no longer be regarded as
homogeneous). Putting v,= (1/en) j in (A7) and using

(AS), one obtains

a~= (4a+&0+ (S/3)&(&z') )ai+ (o/ne') 2 ai iaa2a~s

(AS)

where the summation is subject to the condition ki+k2
—kg= k. Like (A2) above, these equations are added to
give p, and identical arguments show that no echo is
generated.

The above examples apply to cases where the non-
linearity is strictly localized and arises from the dy-
namics of individual particles, e.g., individual spins, or
individual rotating electrons. Equations very similar
to Eq. (A2) apply also to nonlinear dipolar interactions
in spin systems. Somewhat more complex nonlinear
terms appear in the exchange interaction in a ferri-
magnet, but since mode coupling is essentially un-
related to the frequency difference, no echoes in a uni-
form medium are to be expected from this interaction
either. One is led to conclude that Geld inhomogeneity
is required for echoes in a ferrimagnet.

On the other hand, echoes can occur in a uniform
medium whenever a priori properties are not defined

by particle position alone. For example, photon echoes
can be observed in a uniform gas because of the distribu-
tion of Doppler frequencies. In this case, oscillators are
dehned according to their position in velocity space
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rather than ordinary space, and all of the above con-
siderations must be modified accordingly.

APPENDIX B: ELEMENTARY DESCRIPTION
OF ECHOES

A naive, totally nonphysical and nonrigorous, and
yet convenient description of echoes is based on the
manner in which the echoes arise out of various hetero-
dyne or mixing products of the disturbances associated
with individual incident pulses. The approach is re-
stricted to systems of isolated particles. Let us start,
for the purpose of illustration, with the usual two-pulse
sequence and study the response of a single oscillator
at frequency co. Let the pulses produce, respectively, the
excitations

S»——a»t, '"t 52——a2e'"(t—'&.

In the linear approximation the combined disturbance
is St+Ss. In the nonlinear case a driving term must be
included which is some nonlinear function of 5» and S2.
This function is expanded in a power series in 5», 52 and
their complex conjugates S»*, 52*. One need consider
only products whose time dependence is at the funda-
mental, e.g. , 5»'52~. The first product of interest is

'= a *a 'ed&)(t —2T)

pulses one has St——at expti(art —kt r)) and Ss——as
Xexp{iL&a(t—r) —ks r)}.The echo term St*Ss' is

at*ass exp{iLes(t —2r) —(2ks —kt) r)}.
If the pulses are incident along different directions, then
ks&k&, and the echo wave vector is given by k, =2k&
—k&. A condition for strong echoes is that k, must equal
the wave vector of a naturally propagating wave at co.

One can also describe in this manner more general
types of echoes in which the disturbances is impressed
not on oscillators but on carriers moving at various
velocities, e.g. , streaming electrons in a plasma. "For
example, "spatial echoes" result when two cw signals
at co» and A&2 are impressed at two positions along the
stream, at s=o and z=d, respectively. The distur-
bances transmitted by the set of carriers of velocity v

are, respectively,

St——at exp[i~r(t —s/t))

Ss as exp{i~s$t —(s—d)/s) }.

The combination 5»*52 gives

St Ss at as exp{i[(~s—co&)t+ (re&s—+ss+resd)/s)} .

When integrated over all v, this expression vanishes for
all s except for s„given by

When integrated over the ensemble, this term vanishes
because of phase mixing, except near t= 2r, correspond-
ing to the principal two-pulse echo. The product S»'S2*,
on the other hand, equals a»'g&~e'"(t+' and represents
a disturbance corresponding to a "virtual echo" at
t= —7-, which, of course, is not observable. An echo at
t=2r can also be caused by higher-order terms S»S»*'52'
S»*S~'S~*, etc. The term S»*'52'= a»*'a2'e'"&' ") yields
an echo at t=3v, and similarly S»*" 'S2" corresponds
to an echo at t= n~.

A third pulse, at t= T, adds a disturbance 53
= a e'"&t—~&. The combination S»*Sg53——a»*a2u e'"(t—'—~)

represents the principal three-pulse echo at t=T+r.
More generally, S»*"+ 'S2 S3" corresponds to an echo
at t=nT+nsr.

In some cases, e.g., the photon echo, incident pulses
are in the form of plane waves. For two incident

At s„an echo signal at or, = co2—co» is obtained.
From the fact that echoes arise in connection with

certain products of S» and 52, it is tempting to draw
conclusions concerning the dependence of echo ampli-
tudes on incident pulse amplitudes. For example, since
the simple two-pulse echo at t=2r arises from 5»*5~',
one might conclude that at very low pulse levels the
echo varies linearly with pulse 1 and quadratically with
pulse 2. However, the products in question represent
not the echoes themselves but only driving terms result-
ing in echoes. The relations among amplitudes can be
represented in this manner only in the limit of very
small 7..
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