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employed is the precession time appropriate to total
(i.e., T=0) magnetization. The main peak decays
slowly with no hint of structure, within the scatter, in
its tail. This is in agreement with Windsor s results,
which displayed" no structure for infinite temperature.
The L100$ correlation function (not plotted) displays
the main peak, with its maximum at v=1, and a
similar smooth decay. Results obtained for more
distant pairs display little above the noise. One obtains,
from these results, a spin propagation velocity which is
roughly half the value at T=0.

The suggestion of a characteristic spin-diffusion or
group velocity was first raised by the results of Fig. 8.
There was also some suggestion that this description
oversimplifies the situation since structure was seen in
the frtn0] and [nrtn$ functions at times less than the
characteristic transit time of the "Inain"peak. A study
of the spin diffusion associated with one displaced spin
in an otherwise ferromagnetic array sheds some light
on this. The evolution of such a system is displayed in
Fig. 14. A spin at the center of a 16&16)&16sample
was initially pointed in the x direction; all others were
ferromagnetically aligned in the s direction. The x and

y components of a (100) plane of spins, including the
displaced spin, are plotted in the figure as a function of
time (note the factor of 7-,' change in scale between the
second and third frames). Assuming a characteristic
spin-diffusion or group velocity, one would expect a

"C. G. Windsor, Proc. Phys. Soc. (London) 91, 353 (1967);
see also C. G. Windsor, G. A. Briggs, and M. Kestigian, J. Phys.
C1, 940 (1968).

spherical wave front for the disturbances; in this plane
it is square. Further samplings in the (110) plane
(which we do not plot) show the disturbance to have a
cubic wave front. The velocity of motion of the centers
of this front is that already seen in Fig. 8. Such a result
is not characteristic of a simple spin-diffusion process
but it is consistent with the predictions of spin-wave
theory for the case of one infinitesimally perturbed spin.
Derivations, similar to those yielding Eq. (13) (see also
Huber" ) give

(Sso(0) Ssi""'~ (r))~i"+"+'Jq(sr)Jq(er) Jt(er), (23)

where the internal perturbation takes place at site 0
and at time r =0. The tendency to square wave fronts,
the nodal lines, and the relative phases of 90' of
adjacent spins which appear in Fig. 14 are consistent
with this equation. The structure seen in the time-
displaced correlations is thus predicted by spin-wave
theory and it depends strongly on the topology of the
simple cubic lattice )as manifested, for example, in the
spin-wave dispersion curve, Eq. (8)j.The characteristic
velocity seen in Fig. 8 is not simply that of a spin-
diffusion process, and the structure which appears prior
to the arrival of the main peak is to be expected.
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The magnetic susceptibility of YFe03 has been measured in the temperature range 4.2—1000'K. The
temperature dependence of the susceptibility is also derived theoretically using a Heisenberg Hamiltonian
and applying the molecular-Geld approximation. In addition to nearest-neighbor isotropic exchange, anti-
symmetric exchange, and uniaxial anisotropy terms, a cubic anisotropy term is also included in the Hamil-
tonian in an attempt to account for the observed temperature variation of the susceptibility parallel to
the antiferromagnetic axis. This model explains qualitatively the main features of the experimental results.
Using the same model, the third-order term in the field dependence of the magnetization is calculated for
T=O'K. It follows that, owing to the cubic anisotropy term, quantitative agreement is obtained with the
observed departure from linearity in the field dependence of the magnetization, which was measured at
4.2'K and magnetic fields in the range 0—50 kOe.

I. INTRODUCTION

'HE orthoferrites RFeOe (R is a rare earth or
yttrium) belong to a class of weak ferromagnets

with a slightly distorted perovskite crystallographic

)Research sponsored in part by the Air Force Materials
Laboratory Research and Technology Division AFSC through
the European OS.ce of Aerospace Research, U. S. Air Force,
under Contract No. F61052-67C-0040.

structure (space group Dsqte —Pbrtsrt). '' The distortion
from the ideal perovskite is mainly in the positions of
the R'+ ions, while the environment of the Fe'+ ion
remains essentially octahedral. Each unit cell contains

D. Treves, J. Appl. Phys. 36, 1033 (1965); Phys. Rev. 125,
1843 (1963), and references cited therein.

2 M. Eibschiitz, S. Shtrikman, and D. Treves, Phys. Rev. 156,
562 (1967).
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four equivalent iron ions, but the axes of the four
surrounding octahedra are slightly tilted with respect
to each other. Previous studies'' of the orthoferrites
have shown that the iron ions are essentially anti-
ferromagnetic in the ordered state, and that their
arrangement can be described by two cubic inter-
penetrating sublattices in which each iron ion is sur-
rounded by six nearest-neighbor antiferromagnetic ions.
The weak ferromagnetic moment results from a small
canting between the sublattices. Magnetic studies' have
shown that in several orthoferrites this canting is
governed by a Dzyaloshinsky-Moriya antisymmetric
exchange mechanism. YFeO3 is an example of this case.
It has been shown that the canting angle is practically
constant as a function of temperature. '

In most of the orthoferrites the rare-earth ions are
paramagnetic (at suiTiciently high temperatures) and
give an appreciable contribution to the magnetic
susceptibility of the material. In YFe03, however, the
Y ions are diamagnetic, and if we neglect the dia-
magnetic contribution, the magnetic susceptibility is
due only to the iron ions (Fe3+, 8=25). Thus, a study of
the magnetic susceptibility in the relatively simpler
case of YFeO& may eventually lead to a better under-
standing of the interactions existing in the other
orthoferrites in which the rare-earth ions are para-
magnetic. Experimental studies of magnetic properties
of YFeO3 have already been carried out. ' ' However,
the theoretical treatment in those studies is confined to
absolute zero temperature only.

In this paper we report theoretical and experimental
studies of the temperature dependence of the magnetic

susceptibility parallel and perpendicular to the anti-
ferromagnetic axis (the crystallographic x axis) in

YFeO~. The behavior near the transition temperature
is also discussed. We consider also the nonlinear eGect
of an external magnetic 6eld on the magnetization.

II. EXPERIMENTAL
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The magnetization and susceptibility of a single

crystal of YFe03 were measured along its orthorhombic
axes at 4.2'K and between 90 and 1000'K. The
measurements at 4.2'K were carried out using a motor-
driven vibrating sample magnetometer in which the
magnetic field of a superconducting coil was applied
parallel to the axis of vibration and the axis of the
pickup coils. During the measurements the vibrating
sample was immersed in the liquid-helium bath. The
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FIG. 1. Magnetization as a function of magnetic field applied
along the principal crystallographic axes. The measurements were
carried out at 4.2'K. The circles and dashed line denote experi-
mental and theoretical results, respectively.
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FIG. 2. Measured (circles) and calculated (dashed line) suscepti-
bility parallel to x axis versus temperature.

magnetization curves versus magnetic field up to 50
k.Oe are shown in Fig. 1.

The susceptibility above 85'K was measured by a
similar method wherein a constant magnetic field was

applied perpendicular to the direction of the vibration'
while the sample was surrounded by a cryostat or a
heater. The results are shown in Figs. 2 and 3. Figure 2

shows the susceptibility in the direction of the anti-
ferromagnetic axis (x axis).

Figure 3 shows the susceptibility in directions
perpendicular to the antiferromagnetic axis. It should

be noted that the susceptibility along the y axis does
not indicate any anomaly at the Curie point T„
whereas for the susceptibility along the weak ferro-
magnetic moment a typical peak was observed. Its
width above T., hT 1'K, is in agreement with that

4 The single crystals of YFe03 were kindly provided by Dr. J. P.
'V. M. Judin, A. B. Sherman, and I. E. Myl'nikova, Phys. Remeika, Bell Telephone Laboratories, Murray Hill, N. J.

Letters 22, 554 (1966). ' S. Foner, Rev. Sci. Instr. 30, 548 (1956).
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temperature like (S,')—-22S(S+1), where ( ) means a
thermal average. The temperature dependence of the
cubic term is given by Wolf. ~ In the molecular-field

approximation the Hamiltonian can be written

0.2 0.4 0.6 0.8 l.o

where H+ and H are the effective Gelds acting on a
spin S; in the plus sublattice and a spin S; in the minus

sublattice, respectively. H+ is given by

H+= —AM+wD'XM++H, ++H, (3)
t= T/Tc

I'zo. 3. Measured and calculated susceptibility in the y and s
direction. The experimental value of x, at T, is about 2.6&(10 s

emu/mole for H=170 oe. (See Ref. 5.)

observed by Gorodetsky et ul. ' and it is an order of
magnitude smaller than that reported previously. '

III. THEORY

The main purpose of the present theoretical treatment
is to account in a semiquantitative manner for the
salient features of the experimental results. We thus
adopt a relatively simple Hamiltonian and employ the
molecular-Geld approximation.

In the two-sublattice description of the iron spins,
let the plus sublattice be the sublattice of the spins
which lie essentially in the +x direction and the
minus sublattice that of spins in the —x direction.

The Hamiltonian of the Fe~+ spins in a unit volume
can be written

BC=27 P S,"S,—D P S,&&S;—E2'g S„'
(ij') (ij)

+Z.2 g(S„4+S,„4+S„4)—g»H P S„(1)
l l

where S; is a spin in the plus sublattice, S; belongs to
the minus sublattice, S2 belongs to either one of the
sublattices, the l summation extends over all spins, and
the (ij) summation extends over pairs of nearest-
neighbor spins. The first and second terms are the
isotropic nearest-neighbor and Dzyaloshinsky-Moriya
exchange interactions, respectively. The third term is a
uniaxial anisotropy which Gxes the crystallographic x
axis as the easy direction for each sublattice, namely,
the antiferromagnetic axis. The fourth term is a cubic
anisotropy which is included in anticipation of its e6ect
on the parallel susceptibility. The last term is the direct
interaction of the spin with the external magnetic Geld.
The Dzyaloshinsky vector D is in the —y direction' and
in the absence of an external magnetic Geld the spins of
both sublattices are conGned to lie in the crystallo-

G. Gorodetsky, S. Shtrikman, and D. Treves, Solid State
Commun. 4, 147 (1966).

A. Susceptibility below T,

1. Parallel Susceptibility I,
In this case H, =H and H„=H, =O. The spins of

both sublattices remain in the xs plane even in presence
of the external magnetic Geld. Thus H+ is also in the
xs plane, and since D','=D, '=0 and D„'=—D', the
components of H" are given by

H += AM, +MD'—M,+AH +H,
Hy+=0,

H,+= —AM, +MD'M, +.
(4)

We now expand M + and M,+ up to Grst order in powers
of H. The zero-order terms, namely, the components of
the sublattice magnetization in the absence of the
magnetic field which we designate by the subscript 0,
are

Mp,+= —Mp, ——Mp„
Mp,+=Mp, =Mp, .

Symmetry considerations indicate that the expansions
are

M,~= +Mp, +aH,
M,+=Mp, &bH.

(6)

The coeKcient a determines the susceptibility. From
(6) follows

M+ —$(M +)2+ (M +)251f2

=Me~)(Mo.a Mo.b)/Mo5—H, (7)

where Mp= (Mo,'+Mp, ')'I' is the sublattice magnetiza-
tion in the absence of the external field. Substitution of

(6) into (4) yields

H+= $(H,+)2+(H,+)'@to=Ho+(d/Hp)H, (8)

' W. P. Wolf, Phys. Rev. 108, 1152 (1957).

where M+=22EgtI~(S;) and M =2iVgt2J2(S;) are the

plus and minus sublattice magnetization per unit
volume (X being the number of spins per unit volume),
A =4Js/Egot2~2 D'=2sD/Xg'p J22 s (=6) is the number

of nearest neighbors, and H,+ is the anisotropy field:
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~here Ho, the effective field. in the absence of the In order to fjnd another equationforaandb, weproceed
external magnetic field, is given by as follows: The sublattice magnetization is given in

[(A,+D»)M, +»+(2AM +2D,M )H ~,&, ( )
the molecular-field approximation by the Brillouin
function, namely,

M+= M(0)Bs(y~), (14)
d=AMp, +D'Mp, +H, [(A—'+D")Mo,+AH, ja

+[(A'+D")Mo,+D'H. jb. (10)
where M(0) = ',Egp-sS is the saturation sublattice
magnetization, and

The equilibrium conditions require that each spin
lies in the direction of the effective 6eld acting on it.
This requirement can be expressed as

where

yp gtj, sS——Hp/kT. (16)

y+=gpsSH+/kT=ypa(gpsSd/HokT)H, (15)

From the coefficient of H we obtain

Mon —H b=O (13)

M,+/H, +=M,~/H, +. (11)

Substituting Eqs. (4) and (6) into (11) and then
comparing powers of H, we obtain the following
equations. From the zero-order term we obtain

2AMp, Mp, +D'(Mp, ' Mp )+Mp—,H, =O. (12)

k is Boltzmann's constant, and T is the absolute temper-
ature. Let us expand Bs(y+) in powers of H around yp.

Then Eq. (14) becomes

M+= M,~[M(O)gt»Bs'(y, )d/H, kT)H. (»)
88 is the derivative of 88 with respect to its argument.
Comparing Eqs. (17) and (7) and using Eqs. (10) and

(13), we obtain an equation for a. The result for the
susceptibility per unit volume is

Eg'ps'S'M pBs'(y p) [(AMo, +2D'M p, +H, )H,+(A'+D")M p.'j+2Mp, 'H ok T
xg=2$=

p&g'tjs'S'MoBs'(yo)[(A'+D' )Mo,+AH jH +Mo*H HokT

Z. Susceptibility in the s Direction x, and the expressions analogous to Eq. (6) are

M,+=&Mp +O(H'),
3E„+=cH,

M,~= Mp, +O(H') .

In this case, H, =H„=O and H, =H. The spins of
both sublattices remain in the xs plane. The expressions
for H,+ and H, + are the same as in Eq. (4) except that
now H appears in H,+ instead of H +. The expansions
analogous to Eq. (6) are

(22)

M,+= ~35o,~o.H,
M,+=Mp, +PH.

The coeKcient P determines the susceptibility. Follow-

ing the same procedure as in the parallel case, we obtain
for the susceptibility

The coeKcient c determines the susceptibility. The
calculation now yields

19 &„=2c=2Mp, /(2AMp, +D'Mp, +H, )
= 2Mp, /D'M p, . (23)

X,=2P= {Eg'ps'S'MpBs'(yp)[2A'Mo, '+ (D" A')Mp,'—
4AD'Mp, Mp, —AMp. H, /+2M—p,'HpkT)/

{~Kg'ps'S'MoBs'(y, )[(A'+D")
&& (2A (Mp, ' Mo ') 4D'Mp—,Mp, 3—Mp, H.)—
—A H, ']+[2A (Mo,'—Mp, ')

+4D'Mo, Mp,+Mp, H, ]EEpk T) . (20)

H.+= —AM.+aD'M, +aH„,
H„+= AM„~+H, —
H,+= —A3I,+MD'3l, +,

(21)

3. Susceptibility im the y Direction

In this case H, =H, =O and H„=H. The spins rotate
out of the xs plane. Now

III,+=~yH,
3II,+= bH.

(24)

The coeKcient 8 determines the susceptibility. 1A'e now

expand (14) around y=O and get

3k T 'Ng ptjs'S (S+1)A—-
X, =Kg'ps'S (S+1),(25)

9k'(TP —T ')

S. Susceptibility above T,

In this section we calculate the paramagnetic suscepti-

bility X, parallel to the weak ferromagnetic direction.
Ignoring anisotropy, X„ is the usual paramagnetic
susceptibility of a pure antiferromagnetic and X,=X,.

The effective field components H,+ and H,+ are the
same as in the magnetic region (with H, taken as zero)
but now
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where
Z.,=~gs»sS(5+ 1)(a+D's)'Is/6k (26)

In the case of H~(s the Hamiltonian is

K= —2Jzs' cosZn D—sS' sinZn Zg—@ASH sinn. (33)
is the transition temperature.

sinu=As+AsHs,

sing =BtH+BsHs,

we obtain for the magnetization M„(H)

(31)

Eg'p, g' Xg'pg' D2
3f„= H+ Hs)&O —. (32)

4JS 128JD2S'S2 J2

C. Nonlinear Field Dependence of the
Magnetization at T=0'K

In this section we calculate the nonlinear dependence
of the magnetization on an external magnetic Geld

applied along one of the crystal axes for T=O'K. This
dependence is derived up to third-order terms in the
field, in view of the experimentally observed departure
from linearity in the case of H~~x which is asymmetric
with respect to the field. Second-order terms are
eliminated by symmetry in the case of H((x or H~)y.

The Hamiltonian (1) for a pair of spins can be written
f» r=o'K. and Hll»s

3t.= —2Jsss cos(n+p) DzS' sin(n—+p)
—ks (cos'o+cos'p) —k4(sin'Zn+ sin'2p)

—giz~HS(costs cosP), (2—7)

where n and p are the canting angles of the two sub-
lattices, H is the external magnetic 6eld in the x
direction, and k4 is a cubic anisotropy term.

Minimizing this Hamiltonian with respect to o. and

p and expanding

sin —,
' (n+p) =be+ bsH',

28
sin-', (n —p) = atH+asH',

we obtain for the magnetization 3f,
+g2p 2S2D2

M.= — H+&g'us'5'I
32J'(ks —4k4)' (128J'S's (ks —4k 4)

'

k4D4
H'. (29)

256J4(ks —4k4) 4

In obtaining Eq. (29) we assumed that D, k&, and k4
are small compared to J, and smaller terms than those
given were neglected.

In the case of Hj~y the Hamiltonian after neglecting
the anisotropy term is

g{'.= —2jsS2 cos20, —QsS2 sin2n cosy

ZgpsSH sinn sing, (3—0)

where o, is the canting angle of each spin from the x
axis and y is the angle between the s axis and the
projection of each spin in the ys plane. Minimizing with
respect to e and y and expanding

Minimizing with respect to 0. and expanding

sinn =A s+2 rH+A sH'+A sH,
we obtain for M, (H)

Eagp~5 Ãg'pg' 3EDg'p~3
M'. = + H —— H'

4J 4Js 128J's25

(34)

3+Dsg4ii 4 (Ds)+ —H'XOi —i. (3S)
8192J's'5' k J')

tanZn =D'/A .

Since n is small, it follows that

sinn =D'/ZA =D/4J;

(36)

sinct is determined by fitting Eq. (35) for H=O to
the experimental value (Fig. 1), sinn =0.012, and

then determined from Eq. (37), which gives
D'=2.94' 102.

The anisotropy field is given by

(s. )/s' ——;(s+1)/s lr IH, =E2 —E'4, (38)
(5 )/5 (5,)/5

where E2 and E4 are constants and r is a polynomia
which gives the dependence of the cubic anisotropy on
(5,)/S. ' The first term is the uniaxial anisotropy —the
p polynomial in Wolf'sr paper. The temperature depen-
dence of (5 )/5 is taken from Mossbauer effect rneasure-
ments. ' The values of E2 and E4 are determined by
fitting the measured temperature dependence of the
susceptibility X, to Eq. (18). The result for two sets of
E2 and E4 is compared with experiment in Fig. 2.
For E2=3900 Oe and E4= 580 Oe qualitative agreement
between theory and experiment is obtained. The
importance of the cubic anisotropy is demonstrated by
the case %4=0, which exhibits a clear discrepancy
between theory and experiment at low temperatures.
The E4 term vanishes much stronger than the E2 term
when T approaches T.. At low temperatures the E4
term is quite appreciable, and since the easy direction

8 This value is obtained using the lattice constants for YFeO~
given by M. Eibschiitz, Acta Cryst. 19, 337 (1965),

IV. RESULTS AND DISCUSSION

A. Determination of Parameters

The exchange parameter J (or A) has been deter-
mined by fitting Eqs. (32) and (35) for 3f„(H) and
3E,(H) to the experimental data. The value obtained is
J=23.3'K and A =1.26X10'. From Eq. (12) one
obtains, after neglecting the anisotropy (which is small
compared to the exchange),



HODFTSKY, SHTRI KMAN, TENENBAUM, AND TREVES

for the cubic anisotropy is 45 from that of the uniaxial
(the x axis), the effective anisotropy field in the x
direction is reduced and the susceptibility increases.
The importance of the cubic anisotropy in other
orthoferrites was already recognized by Gyorgy et al.'
in SmFe03 and by Shane' in TmFe03. Both our experi-
mental results and theoretical interpretation diBer from
the results of Iudin e1 al. ,

s wherein X, is constant
throughout the whole temperature range.

The quantities E2 and E4 were also determined by
fitting the measured 3E,(H) at 4.2'K to Eq. (29). The
values obtained for ks and k6 appearing in (29) are
k2 ——2.55&10 ' erg and k4=2&10 ' erg. The relation
between k~, k4 and E2, E4, respectively, which can
be obtained, for example, by comparing Eq. (18) at
T=O'K with Eq (29.), is

Es = 154/4glisS, E4= 16k4/5g)((sS. (39)

With these relations and the value of k2 and k4 one
obtains Et= 2070 Oe and E4 140 Oe.——

The measured and calculated 3E(H) are given in
Fig. 1.The measured M(H) were obtained at T=4.2'K
and magnetic 6elds up to 50 kOe.

M„(H) and M, (H) are straight lines and no nonlinear-
ity is observed. For example, the contributions of the
H' and Hs terms to 3I,(H) for H 50 toe are less than
1% and about 10 ", respectively, of that of the suscepti-
bility. The contribution of the H' term to M„(H) is
10 '—$0 4 of that of the susceptibility for B 50 kOe.

The measured IV, (H) and M„(H) are small but finite
even for V=0. This is due to that H was not exactly in
the x or y direction, and thus a small component of
the ferromagnetic moment was present.

In Fig. 3 are given the measured and calculated
perpendicular susceptibilities X„and X, as a function of
temperature. The behavior of X, near T, is discussed in
the next paragraph. The calculated X„and X, are
practically equal and constant. The slight discrepancy
between theory and experiment in the region below T,
may be attributed to the molecular-field approximation.
A more accurate statistical theory might reduce this
discrepancy as shown by Anderson and Callen. "Also,
the discrepancy between calculated and measured
susceptibility above T, is due to the disadvantage of
the molecular-field approximation which agrees qualita-
tively with experiment only in the high-temperature
limit. We also ignored a single-ion uniaxial anisotropy,
A, in Herman's notation, "which is allowed in principle

' E. M. Gyorgy, J. P. Remeika, and I'". B. Hagedorn, J. Appl.
Phys. 39, 1369 (1968).

'0 J. R. Shane, Phys. Rev. Letters 20, /28 (1968)."F.B. Anderson and H. B. Callen, Phys. Rev. 136, A1068
(1964).

» G. F. Herman, Phys. Rev. 133, A1334 (1964).

by symmetry. The eGect of this term on the canting
angle is to yield sina= (D+A„)/2A. A„varies with
temperature like our E2 term. Since experiment
indicates that the canting angle in our case does not
vary with temperature, ~ A, is small compared to D.
Furthermore, since A, varies like E~, it will not
account, if the cubic anisotropy term is not included, for
the peculiar temperature dependence of X,. Since the
salient experimental features are well described by our
model, the A, term, which might have a relatively
minor effect on our results, is not included.

A (cos'n —3 sin'u) (T,—T)+A sin'nT,
Xg-

(A '+D")cos2(r (T,—T)
T(T.; (40)

cosn and sino. can be expressed in terms of A and D'
using Eq. (36), and T, is given by Eq. (26).

The paramagnetic susceptibility near T, is

Nr'gz'S(S+1) 6 r. N6)lz'S(S+1)A/—66)11+
6kT, T—'l.

T& T, . (41)
Assuming D'«A, we obtain

Ng'p, n'S(S+1) D T.
1+

6kT, 4A (T,—T))

Eg'IJis'S(S+1) ( D"T,
x, = l1y ', T)T, .

6k T, E 2A'(T —T,)

(42)

Wesee that thepeak. at 2', is asymmetric and X (T,+ET)
=2X(T,—AT). This result is the same obtained by the
Landau theory of phase transitions"'4 with similar
conditions on the ratio between the parameters. It is
worth noting that the same relation is obtained also in
the case of A =0, while in the general case there is no
such simple relation.

'3 T. Moriya, in 8'eak Ferrornagnetisrn, 3fugnetism, edited byG. T. Rado and H. Suhl (Academic Press Inc., New York, 1963),
Vol. 1, p. 85.

14 A. S. Borovik-Romanov and V. I. Ozhogin, Zh. Kksperim. i
Teor. Fis. 39, 27 (1960) LEnglish transl. : Soviet Phys. —JETP 12,
18 (1961)j.

B. Behavior near the Transition Point

The theory of weak ferromagnets shows that the
susceptibility parallel to the weak ferromagnetic
moment diverges as T approaches T, from both sides. "'4
This follows from our results too. Since X, is not very
sensitive to the anisotropy H, (as long as H, is not too
large), we neglect it in Eq. (20). 3'() then cancels out
and by expanding 8,'(y()) in powers of y() we obtain


