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magnetic measurement of ¢ via Eq. (15). (See note
added in proof.)

In view of the above conclusions, the Bi data are a
puzzle: The 7o value and the 7 dependence agree well
with the AL predictions, whereas the effects of strong
coupling and three-dimensionality are not observed.
This circumstance, along wlth the large 7o values ob-
served in Al*® indicates that quantitative discrepancies
with the AL theory occur in other materials.

In conclusion, we believe that the present data and
analysis cast serious doubt on the validity of previous
experimental verification of the AL theory. Until a
consistent and verifiable explanation can be given of the
various discrepancies discussed above, we must conclude
that the previously reported agreement between experi-
ment and theory is, at least in part, fortuitous.

Note added in proof. It has been pointed out to us by
Dr. R. S. Thompson that the structure of the films may
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be such that the mean free path, and therefore the co-
herence length £, is anisotropic. In that case, the §&
relevant for the function G in Eq. (2) might be different
from that measured by perpendicular fields [Eq. (15)].
This possibility may be investigated, however, by per-
forming parallel and perpendicular critical field mea-
surements near 7%, and checking the agreement with
the GLAG theory.
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The static and dynamic behavior of a simple cubic lattice of classical spins with Heisenberg interactions
has been examined by computer on arrays of up to 8192 spins with periodic boundary conditions. Equi-
librium values of the energy and magnetization at various temperatures are obtained by Monte Carlo
calculations. The results indicate that the magnetization is well approximated by the formula (1—7"/T)5,
with 0.325850.36 for the full range of temperature from zero to the Curie point I°. Spin arrays whose
energy and magnetization agree with the ensemble averages at a given temperature are taken as character-
istic of that temperature. These are then employed to obtain instantaneous and time-displaced spin-cor-
relation functions, the latter involving the numerical solution of the equations of motion of the spin system.
The time-displaced correlations show considerable structure. For the most part, spin-wave theory agrees
with the low-temperature results. Raising the temperature slows down and smears the structure of the
time-displaced correlations. The slowing is much less pronounced than the drop in magnetization. The
pulse emanating from a single misaligned spin in a lattice at zero temperature is also calculated.

I. INTRODUCTION

HE statistical mechanical properties of the three-
dimensional Heisenberg ferromagnet have been
studied by a variety of mathematical techniques, but
no exact solutions exist. Some of the properties, such
as magnetization and Curie temperature, are better
understood than others. In particular, the dynamical
behavior of the spin system, except in the spin-wave
region, is not known in any detail. Since this dynamical
behavior determines the scattering and resonance
properties of magnetic materials, it is desirable to
obtain a better picture.
Ideally, one would like to study the properties of a
system governed by the Hamiltonian

=—%> J(m—n)S™ S*—guH -3 S, 1)

where the quantities S™ are quantum-mechanical spin
operators satisfying the usual commutation relations
for angular momenta. Such systems, or close approxi-
mations thereto, are found in nature, examples being
the ferromagnets EuO and EuS, and the antiferro-
magnet RbMnF;. The Weiss molecular-field approxi-
mation' provides a qualitative guide to the occurrence
of spontaneous magnetization, and series expansion
studies and Padé approximant extrapolations? based on
these expansions yield more refined results for the
magnetization. Further, Green’s-function analysis® has

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

1 See, e.g., C. Kittel, Introduction to Solid State Physics (Wiley-
Interscience, Inc., New York, 1956), 2nd ed., p. 402.

2G. A. Baker, Advances in Theoretzcal Physics (Academic
Press Inc., New York 1965), Vol. 1, p

3D.N. Zubarev Usp Fiz. Nauk 71 71 (1960) [English transl.:
Soviet Phys. ——Usp 3, 320 (1960)].
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yielded information about the dynamical properties of
a Heisenberg ferromagnet as well as the static proper-
ties. The quantities of interest are the spontaneous
magnetization per ion (taken in the z direction)

=1 7\ =11 —BICS 7 —B3C
M =lim gu(S,") = lim gu Tr(¢7#%S.7)/ Tr (™), (2)

the energy
E=(3¢), Q)
and the time-dependent correlation functions
(Sa"(0)Ss™(0)),

where «, =2, ¥, 2 and
Sﬁm(t) — eiﬂct/hSBm(O)e——iJCt/h.

These are all more or less directly determined from
experiment, and a theory of these quantities as a
function of temperature would provide a description of
the ferromagnetic-paramagnetic phase transition.

In this paper we consider a different approach to the
calculation of these quantities, i.e., a computer simu-
lation of a system governed by the Hamiltonian (1).
This type of “theoretical experiment” has been per-
formed on many other systems of interacting particles,
including solids undergoing radiation damage* and
liquids.® The results obtained here may be considered
as further “experimental” data which can be compared
with the results of other analytical approximations, or
as “theoretical” numbers to be compared with appro-
priate experiments.

A preliminary estimate of the computer time and
storage required for the evaluation of the magnetization
and correlation functions of a system of IV spins quickly
shows that it is not feasible to attack the quantum-
mechanical problem numerically. A quantum state of
a system of N spins } is specified by 2¥ complex
numbers.® Thus an exact treatment of a system with
as few as 20 spins is already prohibitively difficult. We
avoid this problem by restricting our consideration to
the “classical” Heisenberg model in which the quantities
S™ are assumed to be ordinary unit vectors rather than
quantum-mechanical operators. We then require only
2N numbers to specify the state of the system at any
time. These may be chosen as the azimuthal and polar
angles of each of the individual spins. The classical
model has been considered by a number of authors and
there is a considerable literature on the subject.”~® One

4 J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard,
Phys. Rev. 120, 1229 (1960).

5B. J. Alder and T. E. Wainwright, J. Chem. Phys. 31, 459
(1960); A. Rahman, Phys. Rev. A134, 246 (1964); A. Paskin,
Advan. Phys. 16, 223 (1967).

¢ This is seen by expanding the state in a basis in which the
z component of each individual spin is diagonal. There are 2¥
such states.

7H. A. Brown and J. M. Luttinger, Phys. Rev. 100, 685 (1955);
M. E. Fisher, Am. J. Phys. 32, 343 (1964); G. S. Joyce, Phys.
Rev. 155, 478 (1967).
a ; P.) J. Wood and G. S. Rushbrooke, Phys. Rev. Letters 17, 307

66).
(1;6}%} E. Stanley and T. A. Kaplan, Phys. Rev. Letters 16, 981

WATSON, BLUME; AND VINEYARD

181

expects that properties of the quantum-mechanical
Heisenberg model will approach those of the classical
model as the magnitude .S of the quantum spins becomes
large.

We present here the results of a computer study in
which we have determined numerically the magnet-
ization, the energy, and the space- and time-dependent
spin-correlation functions. These calculations involve
the numerical solution of the equations of motion for a
finite three-dimensional simple cubic array of up to 8192
classical spins. As is described in detail in a later section,
Monte Carlo techniques have been used to provide an
ensemble of arrays of spins characteristic of a given
temperature. The equations of motion are then solved
using one of these arrays as an initial configuration. A
by-product of the Monte Carlo calculations is the
dependence of energy and magnetization upon
temperature.

In Sec. II we consider the model in detail and outline
the strategy of the computation. Section III presents
the analytic results available from the spin-wave
approximation. Section IV contains numerical results
for time-independent properties of the system, such as
energy and magnetization, obtained directly from the
Monte Carlo calculations. The techniques used in
evaluating these quantities are, as discussed in Sec. II,
poorly convergent in the region of the Curie tempera-
ture for the very reason that this region is of interest,
ie., because of the large critical fluctuations. We are
nevertheless able to fit the magnetization curve to a
law of the form M= (1—T/T.)#, with 8~0.32-0.36.
This law appears to hold down to I'=0! In Secs. IV
and V we discuss the instantaneous and time-displaced
correlations, respectively. The results are stable to
changes in array size and choice. There is considerable
structure (as a function of time) in the time-displaced
correlations. This structure is also predicted, for the
low-temperature results, by spin-wave theory and is
both slowed down and smeared as the temperature is
raised. One may explicitly observe the evolution of a
spin array in time as an alternative to obtaining
(S"(0)-S™(¢)). Moving pictures have been obtained in
this way and we display stills from these pictures in
Sec. V to demonstrate the disturbance emanating from
a single misaligned spin.

II. MODEL AND METHOD OF CALCULATION

We consider the classical Heisenberg model of a
ferromagnet in which each site # of a simple cubic
lattice is occupied by a spin S». The spins are ordinary
three-dimensional unit vectors, and they interact with
an energy —J(n—m)S™-S” The Hamiltonian of the
system is then given by Eq. (1), with the external
magnetic field set equal to zero. The equations of
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motion for these classical spins are taken to be!®

das»
- —[2 T (n—m)S™]XS~.

©)
We restrict our attention to nearest-neighbor inter-
actions, i.e.,

Jn—m)=J=1,

m and » nearest neighbors
otherwise.

It follows from the equations of motion (4) that the
Hamiltonian 3¢, the magnitude | S| of each spin, and
the total magnetization of the system

N
M;=g/~‘ Z Sn

n=1

are all conserved in the absence of an external field, i.e.,

a & ldt

Since the equations of motion are of first order, speci-
fication of the directions of the spins at any one time
determines the spins at all other times.

In brief, the computer simulation of this system
consists of the selection, by Monte Carlo techniques,
of an ensemble of spin arrays characteristic of a given
temperature. The equations of motion are next solved
numerically, using one of these arrays as an initial
configuration. The time-displaced correlation functions
are evaluated from the time evolution of this single
array, while the Monte Carlo calculations yield
the dependence of energy and magnetization on
temperature.

We may now consider in more detail the procedures
involved in the calculation. We describe separately the
boundary conditions, the Monte Carlo techniques, and
the numerical solution of the equations of motion.

A. Boundary Conditions

All of the calculations have been performed for simple
cubic lattices in the form of a rectangular parallelopiped
with periodic boundary conditions. For computational

10 Strictly speaking, these are classical equations of motion in
only a special sense. They have been derived from the quantum-
mechanical equations of motion dS./d¢= (3/h)[3C,S,], with 3
given by (1), by performing the commutation on the right and
then replacing operators by corresponding classical variables. [1t
is well known that this procedure is correct in the limit of large
quantum spins S; see M. E. Fisher, Am. J. Phys. 32, 343 (1964),
for a discussion of this point.] They are not the equations of
motion of any ordinary classical gyroscopic system, however,
because they lack inertial terms that arise from the kinetic-energy
part of a classical Hamiltonian (unless the assumption is made
that the moments of inertia about axes perpendicular to the
symmetry axis are zero, or that the angular velocity about the
symmetry axis is made to approach infinity). Since finite spins
are intrinsically nonclassical, the choice of a classical approxi-
mation to them is somewhat arbitrary. The present choice is
formally and computationally the simplest.
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convenience these conditions are of the ‘“staggered”
type, so that the spin at the end of one row is equivalent
to the spin at the beginning of the next row, rather than
to the one at the beginning of the same row. This enables
us to label the spins sequentially, with a single index #,
1<#<N. In this scheme, for a simple cubic lattice with
v lattice sites on a side (so that N=1%), the nearest
neighbors of the #th spin are then n=1, nw, ntr?
(modulo N).

B. Determination of the Static Properties
by Monte Carlo Techniques

The Monte Carlo calculation follows the basic idea
first proposed by Metropolis et al.''*? for the deter-
mination of the equilibrium properties of an imperfect
gas. In effect, we construct an ensemble of spin arrays
which approaches the canonical ensemble at a given
temperature T for our system. This is accomplished by
starting with an arbitrary initial spin array as the first
member of the ensemble. A single spin of that initial
array is selected at random and its direction is changed
at random. The change in energy AE produced by the
change in direction of that single spin is then calculated.
If AE<O, the array with changed spin is chosen as the
second member of the ensemble. If AE>0, we calculate
e AEIRT and compare this with a random number 7
(0<r<1) found by the computer. If ¢ 2#/*7>y, the
array with changed spin is still chosen as the second
member of the ensemble. Otherwise, the initial array
is taken as the second member. This procedure is then
repeated on the second member in order to choose the
third, etc. The result of this procedure is in the limit,
as shown by Metropolis et al.,'! an ensemble distributed
canonically. On the CDC 6600 computer which was used
in our calculations, 10% of the steps described above
take 9 min. The energy and magnetization are obtained
by calculating these quantities for each member of the
ensemble and averaging. In practice, we calculate the
rms magnetization rather than the magnetization itself,
since the latter quantity will average to zero in the
absence of an external magnetic field.

C. Numerical Solution of Equations of Motion

The Monte Carlo calculation enables us to find an
array whose energy and magnetization lie very close to
the most probable energy and magnetization at a given
temperature. We then choose arbitrarily a single such
array to use as the initial configuration. From this
starting configuration, the causal evolution in time of
the system is governed by the classical equations of
motion (4). The numerical integration of these equations
is accomplished by a stepwise method. Equation (4)
requires that the spin S”(f) be instantaneously pre-

1 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

127, D. Fosdick, Methods in Computational Physics (Academic
Press Inc., New York, 1963), Vol. 1, p. 245.
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cessing about the direction of the effective field

H*(@)=—2 T (n—m)S™(?) )

with the instantaneous angular velocity H,*(f). Given
the two sets of spins S*({—A¢) and S»(f), H,*(@) is
calculated from (5) and S»({4At) is then formed by
rotating the vector S"({— A¢) about H,*(f) through the
angle H,*(#)2As. Each spin is updated in this fashion
and the process is iterated. Exact conservation of mag-
nitude of each spin is thus assured. To start the process
at =0 from an initial array of spins, a slight departure
from this procedure was used. S”(0) was rotated about
H,*(0), instead of H,*(A?), to find S»(A¢) instead of
S»(2At). To minimize error, a smaller time step was
used at the start. Following this, the standard pro-
cedure was used, except that Af was doubled each time
until the desired standard A¢ was reached, after which
the integration proceeded in the normal fashion as long
as desired. The standard Af was chosen so that quanti-
ties such as M and E were, in fact, conserved in the
course of calculation. The result of this choice was that
a typical spin would precess once in a time of about
100A¢.

The correlation functions are found by calculating
the quantities (S."(0)Ss"27(f)). The averages are per-
formed in this case over the sites # and over equivalent
An. The correlation functions are thus evaluated from
calculations with a single array, while the magnetization
and energy are evaluated using ensemble averages. For
large enough arrays, the difference should be negligible.

The Monte Carlo procedure for finding an initial
array is necessitated by the fact that in this model there
are two constants of the motion: the energy and the
magnetization. It is unlikely that an arbitrarily chosen
array of spins will have both energy and magnetization
corresponding to equilibrium values at the same tem-
perature. Moreover, while it is straightforward to calcu-
late the energy and the magnetization of any given
array of spins, the temperature that corresponds to
either is not readily apparent. Note that there is no
equipartition theorem for the system, except in the
limits of very low or very high temperature, and no
general closed expression for the energy or the mag-
netization is known. Other stratagems for finding
equilibrium states by solving for the motion under the
influence of extra interactions or artificial heat baths
can be imagined, but appear to be more time consuming.

III. SPIN-WAVE PREDICTIONS

In this section we give a short summary of analytical
results that may be readily obtained for classical
systems through the spin-wave approximation.’® The
magnetization of the system at low temperatures may

13 See also D. L. Huber, Phys. Rev. 146, 387 (1966).
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be obtained from the relations

M(T)
iy~
“S—l Z <kabkl>6 (k) 1
N kK
_5— / nidk. ©)
(27T)3 BZ

The integral is over the Brillouin zone; Vy is the volume
of a unit cell, the a/’s are step-up and step-down spin
operators associated with site r, and the by’s are spin-
wave creation and annihilation operators. The a&’s and
b’s are related by

1
A —_ b i(k-r—wkt)' 7
ax(?) v Zk: K€ (M)

Also, bi'bx=mny, the spin-wave occupation number. The
spin-wave energy wix for the near-neighbor-coupled
simple cubic lattice is

wx =gwr{3—cosk,—cosk,—cosk.} , (8)

where
wr=1257=12

is the magnon energy at the zone boundary. For the
system defined by Eq. (1) with S=J=V,=1, and the
classical low-temperature approximation to the spin-
wave occupation number (n#,~kT /wy), one obtains

M (T) dkodk,dk,

1 6kT //
M (0) Wy, / 3—cosk,

This result is valid only in a classical system.
% The correlation functions may be obtained in much
the same way. The S, .S, transverse function is

(S(0)S."(9)
=35([a0(0)+a," (0) ILa, () +a," () 1)

—cosk,—cosk,

=1-0.2527T. (9)

1 VO
=15

(27)? dk { (nx+1)e im0kt
T

+nkei(k -r—wkt)}

™ k — Wk
(2 )3/ // cos(h x )d/exdkydkz, (10)

which has again been obtained for the simple cubic
lattice, where we have again taken ny=~n+1~kT/wy.
Thus the instantaneous self-correlation function is
(5:2(0)S:2(0)) =1—-M(T)/M (0)
=0.2527T. (11)

A more convenient form can be found for the time
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dependence of the correlations by taking the time
derivative

d
—(Sz°(0)Sz’(t)>

(2 . / / f sin (kr —wyt)dk Ak, dk,
™
1 kT s/ [ .
7 ™ 1= s
3 ™
_I;Il</ ei(kili+%‘rcosk1')dki>e——i7:‘ , (12)

T

where r=3wzt. The factoring into products of integrals
is allowed by the form of the magnon energy [Eq. (8)].
Performing the integrations in Eq. (12), we obtain

(5:2(0)S2" (1)) =(S"(0)S2"(0))

2kT ¢
+—/ dr IWGn)TvGDT1G) erpra(r), (13)

wr,

where %, k, and [ are the indices of the lattice vector r,
the J’s are cylindrical Bessel functions, and
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Ph+k+1=COST,
=sinr,
= —cos7,
= —sin7,

when A+k+1—1=0 (mod 4)
when 2+k+I—1=1 (mod 4)
when s+k+I—1=2 (mod 4)

when 4+k+I1—1=3 (mod 4).

Equation (13) will be evaluated when we explore the
time dependence of the correlations. The instantaneous
correlations will be obtained with Eq. (10) using Monte
Carlo integration techniques.

The longitudinal correlation function is similarly

(§:2(0)S (1)) —M?
=([S—ad (0)ao(0) LS —a' (Na: () ) —M*
=N—2[Z nke—i(k~r—wkt)]['z (nq+1)ei(q-r—qu)]

+o(WVY)
. Zk 2
z<sx°<o>sx<z>>2+(—:7>

t 2
><( / dr 1G0T G) £0h+k+z—1>

JFov1). (14)

It has a quadratic dependence on temperature, and,
being the sum of squares of real quantities (to order
N1, it is everywhere positive. The results of our
Monte Carlo and dynamical numerical calculations for
longitudinal correlations are all consistent with this
requirement.

815

IV. RESULTS FOR MAGNETIZATION
AND ENERGY

We consider first the results of the Monte Carlo
calculations for energy and rms magnetization as a
function of temperature. The rms magnetization for
arrays of 64, 512, 2048, and 8192 spins appears in Fig.
1. On the right of the figure we indicate the expected
rms magnetization for the limit 77— co. This limiting
value is equal to N7V/2, and goes to zero as the number
of spins becomes infinite. We also indicate the value
of the Curie temperature as predicted by molecular-
field theory and as determined by Wood and Rush-
brooke?® from extrapolated series expansions. The latter
number is expected to be very accurate, and is referred
to as T,. It can be seen that the magnetization curves
appear to converge on this value as the number of spins
is increased.

We have indicated on the magnetization curve for
8192 spins a measure of the uncertainty in the calcu-
lations. The cross-hatches represent fluctuations in the
ensemble average of rms magnetization obtained from
one or several runs at the same temperature. This
scatter is largest, as expected, near T',, where it is
associated with the critical fluctuations. The effect of
these fluctuations on the averages can be reduced by
taking larger samples in the Monte Carlo procedure.
In fact, samplings larger by an order of magnitude were
taken at temperatures near 7'; than in other tempera-
ture ranges. The Monte Carlo results were more
accurate in our calculations with smaller IV, since we
were able to take larger samplings (relative to array
size).

The curve in Fig. 1, labeled modified molecular field,
is simply the ordinary molecular-field result scaled in
temperature to the Wood-Rushbrooke 7. At tem-
peratures just below T all of our results lie above this
curve, in agreement with previous observations to the
effect that molecular-field theory underestimates the
magnetization in this temperature region.

In view of the considerable current interest in the

!.O\ T T I T
SSua MAGNET]ZATION VERSUS TEMPERATURE
S,

0.8\ SN .
= 0.6 MODIFIED N .
< MOLECULAR FIELD ™
E
= 0.4~ . .

(I-T/T)'?
0.2}~ SPINS—]
"""" Tk
1 1 1 s ==Zsi92
0 0.5 1.0 .5 zio
T (W&R) Te (MF)
kT/J

F1c. 1. Root-mean-square magnetlzatlon versus temperature
from Monte Carlo calculations for various-sized simple cubic
arrays. The number of spins in each array and the magnetization
at infinite temperature are indicated at lower right.
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F16. 2. Log-log plot of rms magnetization versus temperature
from Monte Carlo calculations for various-sized arrays. Tem-
perature range is 0-0.9937. Two sample slopes are also plotted.

power law followed by the magnetization as a function
of temperature near 7', we present a log-log plot of the
magnetization curves in Fig. 2. The curves approach a
power law of the form

M(T)=(1-T/T.)*, (15)

with the Wood-Rushbrooke 7', which appears to hold
very closely for the full range of temperature from
TS T. down to T'=0. Such a result is not possible at
T=0 for a quantum spin system, for which (dM/
dT)o=0, while Eq. (15) predicts (dM/dT)o=—B/T..
In our classical system, however, (dM/dT), is finite
and is equal, according to spin-wave theory, to —0.235
for the simple cubic lattice. The straight line through
the data in Fig. 2 is drawn with 8=0.32. If we assume
that (7) holds down to 7T'=0, the spin-wave result,
combined with the Wood-Rushbrooke 7T, predicts
8=0.365. We have also shown a plot of (1—7/T,)"3
in Fig. 1. We conclude that Eq. (15), although not
necessarily the exact form, gives an extremely good
representation of the magnetization as a function of
temperature with 0.325850.36. A further test of the
form (15) can be made for bce and fec lattices for which
Wood and Rushbrooke® have also given estimates of
T.. We may take the Wood-Rushbrooke T, together
with (dM/dT)o=—B/T., and set the latter quantity
equal to the low-temperature slope obtained from the
spin-wave expansions M (T)~1—aT for these lattices.
The coefficients « are proportional to the Watson
integrals. We then obtain a value of 8=aTl’, for each
of the lattices. We find that

Bs.=0.365,

ﬂbce =0.359 ,

Biee=0.356.
These values are very close to the value 5/14=0.357
which has been conjectured by Baker* from Padé
approximation near 7. (a line of this slope is plotted
in Fig. 2). The close agreement between these values
leads us to conjecture that T is inversely proportional

to the Watson integrals for the classical Heisenberg
model. The same assumption, in another guise, is that

14 G. A. Baker (private communication).
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the same initial slope occurs in the magnetization curves
for the three lattices when plotted on a reduced tem-
perature scale. If so, the scatter in the above values of
B indicates error in the Wood-Rushbrooke values of T,.

We turn briefly to the results for energy as a function
of temperature, which are shown in Fig. 3. The energy
per spin follows the same curve irrespective of the
number of spins N, except in the vicinity of T.. We
expect that the slope should increase at T, as N in-
creases, yielding a sharper peak in the specific heat.
The scatter in the energy averages is too great to
discern any such change of slope, and the envelope of
results for all array sizes is indicated in the figure.
Much larger Monte Carlo samplings are necessary to
obtain useful information near T'. because of large
critical fluctuations and because of the inherent diffi-
culty in extracting derivatives from such data.'?

V. INSTANTANEOUS CORRELATIONS

Instantaneous correlation functions for several tem-
peratures are shown in Fig. 4. These were obtained
from the machine calculations; spin-wave predictions
will be considered shortly. (S1;"(0)S1,+47(0)) is denoted
the “longitudinal” correlation function and refers to
components of spin parallel to the magnetization;
(S,7(0)-S,m+27(0)) is the “transverse’” correlation func-
tion. In calculating the latter quantity we have per-
formed an average over the two components of spin
normal to the magnetization. In the figure the scale
changes from one plot to the next, and the zero for the
longitudinal functions has been taken as (S)?=(M/
M)

The transverse correlation, considered as a function
of Ar, is found to have the same shape for all tempera-

1.0 T u T T
ENERGY VERSUS TEMPERATURE
0.8— -
0.6 —
o
w
~
w
0.4} -
Q.2 ]
Te
1 ! N ]
1.5

0.5 1.0 2.0 2.5

KT/

Fic. 3. Energy versus temperature from Monte Carlo calcu-
lations. Results for all sizes of arrays, from 46 to 8192 spins, fall
within the dark line. The Wood-Rushbrooke value of T, is
indicated.
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F1c. 4. Instantaneous spin correlations between various
neighbors at various temperatures. Longitudinal correlations
indicated by crosses (left scale), transverse correlations indicated
by open circles (right scale). Note that the scales of the plots
vary with temperature.

tures up to 7', whereas the longitudinal correlation
(SuSu) contracts as the temperature is lowered below
T.. Both functions become shorter ranged as 7" in-
creases above T..

Various theories yield the asymptotic result

(8:°(0)-8:7(0))r= A (T)e < /r*n (16)

in the limit of large » (for example, =0 for Ornstein-
Zernike theory).!® The temperature dependence of the
range of the spatial distribution is contained in the

15 For example, see L. D. Landau and E. M. LlfSChltZ Stamtzcal
Physics (Pergamon Press, Inc., London, 1958), p
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screening constant (7). The correlation functions
shown in Fig. 4 do not behave like 1/7117,

This is not surprising, since our results are for small
7 and thus do not give a test of asymptotic behavior.
Nevertheless, the temperature dependence of the
range of the correlation is qualitatively explained by
Eq. (16) and the associated behavior for x(7"), namely,

K.L(T) =0 (17a)
and
K]](T)N(TG—T)V, (17b)

for T'<T,. This temperature dependence can be related
to that of the magnetic susceptibility implied by Eq.
17):

x(T)~A(D)x(T)y 2. (18)
If A(T) is well behaved in the vicinity of T, then
v=v/(2—n), (19)

where — is the exponent appropriate to x. Estimates'®
of v range between 1 and 2 with a value of % favored,
while # is normally small (i.e., £0.1). Thus » is expected
to be about %. In attempting to generalize Eq. (16)
for the region of small r, which is of interest to us here,
we might assume the form

(82(0)- Sy (0))r=A(T) f(r)e—r, (20)

where f(r) is some general, temperature-independent,
function of r. An estimate of k(7") may then be obtained
from the results of Fig. 4, by taking Py

A(T:){82(0)-S:(0))r

ki(T)r=In .
A(T)(S8:2(0)-8:7(0))r,

(1)

Determining A(7) from{the amplitudes of the seli-
correlation functions, one obtains the «;(7)r plotted in
Fig. 5 for the nearest-neighbor correlation. The scatter
is inevitable and comes from estimating an exponent
from ratios of “experimental” points. Results for more
distant pairs display greater scatter but otherwise are
consistent with the results plotted here. The . (T) for
T <T, suggest a » which is less than 1 and close to %
The more rapid temperature dependence of «(T) for
T>T,is also anticipated by most theories. In general,
the temperature dependence of the correlation func-
tions, for the range of » values plotted in Fig. 4, is
consistent with Eqgs. (17) and (20).

The amplitudes A (7) as measured by the self-
correlation functions are plotted in Fig. 6. We see'” that

(S8u7(0) - Sur*ar(0))~T'.
Since the fixed length of the spins requires that
(M /M 0)*+2(8,7(0) - 8:7(0))+(Su(0) - Sur(0)) =1, (22)

16 For example, see Ref. 2.

17 Since our finite samples display a net magnetization above
T., we can define the longitudinal and transverse functions there
as well. There is a distinct tendency for the transverse amplitude
to lie higher than the longitudinal.
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F16. 5. Screening constant « for instantaneous correlations of
near neighbors versus temperature. Longitudinal correlations,
crosses; transverse correlations, open circles. R is the near-
neighbor separation. See Eq. (21).

the amplitude of the longitudinal functions {S..S:)
cannot also obey a simple power law in T or 7'—T..
Spin-wave theory also predicts [see Eq. (12)] that
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(S1-Sy)~T, for small T, but gives a larger propor-
tionality constant. This, and the quadratic dependence
predicted [see Eq. (15)] for (SuSu), also appear in
Fig. 6. The spin-wave predictions cannot prevail over
the full range of temperature (the amplitude at T'=T,
would then be greater than %), and it would seem that
the amplitude of (S;-S,) is only approximately linear
in T for the full range 0<T<T..

The results reported above were based on arrays of
2048 (16XX16X8) spins. It is of interest to compare
results for various arrays and to compare these, in turn,
with spin-wave predictions. This is done in Fig. 7 for
one array of 512, two of 2048, and one of 4096 spins at
T'=0.0357".. The largest source of scatter among these
results is due to small differences in the magnetization,
M /Mo, of the chosen samples; the array of 512 spins
has the largest M /M, and hence tends to lie lowest in
the plots [e.g., see Eq. (22)]. There appears to be little
significant dependence on the size of the array and, if
it were not for the spin-wave predictions, it might seem
that results had converged on those appropriate to an
infinite-sized sample.!® The spin-wave results were
obtained with Monte Carlo estimates of Eq. (11), and
they suggest that the negative wvalues of (S,°(0)-
S,*»(0)) (implying antiparallel ordering of the trans-
verse spin components for [#nn] pairs) are incorrect.
The spin-wave results suggest that one must deal with
sample sizes far beyond current computational capa-
bilities in order to predict correctly any but the few
nearest-neighbor instantaneous correlation functions.
This contrasts with the time dependence of the corre-
lation functions, which is quite well predicted using
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[see Eq. (20)] versus temperature. Low-temperature predictions
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hkl!

Fic. 7. Instantaneous spin correlations as obtained for several
arrays, between various neighbors at temperature 0.0357,.
Longitudinal correlations on left axis, transverse correlations on
right axis. Spin-wave predictions given by X and -+. Note the
order of magnitude amplification of the right-hand side of the
figure.

18 N. D. Mermin (private communication) reports a proof, con-
sistent with our results, indicating that {(S;-S;) is positive definite
for all [100] pairs in a simple cubic classical Heisenberg
ferromagnet.
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our sample arrays and the dynamical equations. This
will be discussed in Sec. VL.

The spin-wave results yield a slight anisotropy of the
sort already suggested by Fig. 4. Fitting the transverse
results of Fig. 5 with Eq. (16) (for which k=0), one
obtains

0<n<0.17.

This range is partially due to the inevitable scatter in
fitted values but there is a distinct suggestion that g
increases with increasing neighbor distance. The
asymptotic behavior has been obtained from spin-wave
theory with Eq. (10) for the [#00] direction, yielding
n=0. This would seem to contradict the fitting of Fig.
5, but of course the pairs represented in the figure are
far from the asymptotic region.

VI. TIME-DISPLACED CORRELATIONS

One may characterize the time evolution of the spin
system by computing the correlation functions, or one
may simply inspect the whole array as it moves in time.
We will concentrate on correlation functions in this
section but we will in one case examine the time evolu-
tion of a spin array directly.

Transverse pair correlation functions (S:(0)-S.(?))
for T'=0.0357; and N =4096 are plotted in Fig. 8. As
we will shortly see, these can be obtained with greater
accuracy than (S1(0)S,(¢)), and they agree well with
the spin-wave predictions. (Note the changes in scale
on going to more distant neighbors.) The time unit for
7 is the Larmor precession time appropriate to the
sample’s magnetization [i.e., 71=3JM/xM,; see Eq.
(5)]. The self-correlation function shows a strong
correlation at =0 which decays to zero in a time of the
order of one Larmor precession, and at larger 7 there is
an additional peak clearly discernible. The [100] cor-
relation rises to a maximum at 7~%, i.e., the spins move
so that their transverse components are more strongly
aligned after one-half a precession time. The [100] peak
then decays with the same characteristic time seen for
the self-correlation function. For [200] pairs this
“main” peak occurs at twice the [100] time. This might
be expected since a [2007] pair is coupled vie its [100]
intermediary. This would seem characteristic of a
“hopping” or “spin-diffusion” velocity and we see the
“main” peak move with the same velocity for more
distant [#007] pairs. We also see the emergence of other
peaks which move with the same velocity and the
apparent decline of the “main” peak.

Inspection of the [##0] and [nnn] correlation func-
tions shows similar behavior. The [110] main peak
occurs at twice the [1007] time; the [1117] peak occurs
at thrice the [100] time. This is necessary, since the
coupling occurs via [1007], [010], and [001] near-
neighbor pairs. The apparent peak velocity is thus
one-half the [#00] for the [##0] direction and one-
third it for the [#nn], but this, in fact, implies a common
“diffusion” velocity. Whereas no discernible structure
appears inside the main peak (i.e., at smaller 7) in the
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Fic. 8. Transverse time-displaced correlations for various
neighbors versus time for a 4096 spin array. 7 is time in units of
the Larmor precession period defined by the magnetization (see
text). 7'=0.035T.

[#00] direction, considerable structure appears inside
it for the [#nn]. In other words, the [nnn] direction
shows structures for times less than that appropriate
for a signal communicated via a common spin-diffusion
velocity. This is surprising and of some interest, and we
will return to this matter at the end of this section.

Some feeling of the reproducibility of the correlation
functions is given in Fig. 9, where the self- and [200]
transverse correlation functions are plotted for different
initial arrays (again for 7'=0.0357). Results for
samples of 512, 2048, and 4096 spins are seen. The two
2048-spin samples were gathered independently in the
course of taking the Monte Carlo averages. The
different intercepts at 7=0 for the self-correlation
function reflect the fact that the samples do not have
identical magnetization. These plots suggest that the
basic peak structure seen in Fig. 8 is real and not an
artifact of sample size or choice. The spin-wave pre-
dictions plotted in Fig. 10 indicate that this structure is
indeed real. Granting the reality of the peak structure,
there is considerable uncertainty attached to quanti-
tative details.

Another way to sample the “noise” of the problem is
to take a given spin array, let it evolve in time, and let
different times be taken as =0 for the purpose of
evaluating the correlation function. This is done for
both the longitudinal and the transverse [1007] func-
tion, at T'=0.035T, in Fig. 10. The plots indicate why
we concentrate on the transverse functions in this
section. Employing different spin array times as 7=0,
and evaluating the correlation function, yields results
which agree within the width of the plotted line for the
transverse function. On the other hand, considerable
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Fic. 10. Longitudinal and transverse time-displaced [100]-
neighbor correlations versus reduced time where different times
in the array’s time evolution were taken as 7=0. 7'=0.0357".
Low-temperature spin-wave predictions are indicated by the
dashed lines; the r=0 values were chosen arbitrarily and the
time evolution obtained by evaluation of the integrals appearing
in Egs. (13) and (14). (The 7=0 choice affects only the vertical
position of the transverse spin-wave predictions but does affect
the shape of the predicted longitudinal correlation.)

noise is obtained for the longitudinal function. Its
relative importance is due to the fact that the amplitude
[measured with respect to (M/M)?] of the longitudinal
function is two orders of magnitude smaller than its
transverse counterpart. Similar results are plotted for a
higher temperature in Fig. 11. The “thermal” scatter
is now discernible in the transverse function. Otherwise,
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F16. 11. Longitudinal and transverse spin correlations identical
to those depicted in Fig. 10 but for 7=0.353T%, with the reduced
time unit 7 scaled accordingly (see text).
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it displays structure similar to that seen at the lower
temperature.® The noise has increased for the longi-
tudinal function but the increase in the function’s
amplitude causes the relative noise to remain almost
unchanged. The relative noise increases with further
increases in temperature for both correlation functions.

Figure 10 also displays the predictions of spin-wave

19 Here, as elsewhere in this paper, (S;-S;) is an average of the
(82S2) and (S,S,) correlation functions. While (S;-S;) is quite
reproducible, the z-x or y-y term alone is not.
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Fi16. 12. Transverse, [#00]-neighbor, time-displaced correlations
for T=0.138, 0.346, and 0.0997, obtained for 2048 spin arrays.
The reduced time scales = vary with values appropriate to
M(T)/M, at the three temperatures. Vertical scales also vary.

theory. Equations (14) and (15) were evaluated for the
time dependence, and the instantaneous correlations
(S2(0)-S:7(0)) were separately scaled so as to match
the dynamical plots at the origin. This scaling affects
not only the vertical position of (S,-S.) but also the
shape of (S1.S11), as can be seen from Eq. (14). Granting
this, the agreement is excellent and, apart from the
choice of the simultaneous correlation (S,°(0)-S.7(0)),
all the results of Fig. 8 are in good agreement with
spin-wave theory. It thus seems best to think of the
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structure in terms of spin-wave propagation rather than
in terms of a diffusion process dominated by a char-
acteristic velocity.

The temperature dependence of the transverse cor-
relation functions is better seen in Fig. 12, where [#007]
pair results are shown for 7"=0.138, 0.346, and 0.9007"..
The correlation functions have slowed down con-
siderably at the higher temperatures, but when plotted
as a function of the Larmor precession time 7, they
appear to have speeded up slightly. In other words, the
time dependence scales well with a precession time
defined by the average magnetization with a slight
speed up at higher temperatures. This seems due to a
local precession time defined by a local magnetization
which exceeds the average value for the lattice as a
whole. The structure of the correlation functions be-
comes increasingly smeared with increasing tempera-
ture. This is, in part, associated® with “thermal noise”
of the sort seen in Figs. 10 and 11. The results at
T=0.9T, are quite inaccurate because of this “noise”
and could not be resolved for times later than shown.

The transverse self-correlation function, for a tem-
perature above T, is plotted in Fig. 13. The time scale

ey vy e N
. Sl oy T et e Y
PO R e P e
- .L,.f. P S SR
PR PRI PN
- Ce v TN et
A
<. .
£=0 £ ~0.57 t ~ 14T
. N N . ., N
o~ - - 1t I TN e S N N ~ v ®
e R —
~ 1 IR 1 «{>\/\/'\/'>v(« PRGN ~ e 7y,

1(\\1 7»3\1 7‘_‘>r -t ~ }\ NN N VA NN NS 2o

R k/i - . ¢ v /'\ A [ < -~ -
.r«7\‘~T,-7\l ,\);r\l|r", VRN .~ Lo~ ~ o

SRV N - 5 - \A{\( AN N

,'n,!u\l7\,7f '&/ E s /\, "\ .~ ,N N~ 2
I}

-y o= - « - AN ( '<'\ A e - .y~
~\L\y -7 - «{\ s » NP ~)"\‘«ls"\ V.
T -y lsf \‘/\/’\/\/‘v\ .(\7.. PN N f\“

T L e . L SN e N NN N RS
<. ~ .- PN
£t o~ 1,77 t ~2.157 t ~ 2.4T

T16. 14. A (100) planar section of a 16)X16X16 spin array showing the disturbance (in x and y components of the spins)
emanating from a single misaligned spin lying in the x direction (all others ferromagnetically in the z) at £=0.

2 This noise might be overcome (or at least reduced) by averaging over many correlation-function samples. This was not done

here, since the effort did not seem warranted.



181

employed is the precession time appropriate to total
(i.e., T=0) magnetization. The main peak decays
slowly with no hint of structure, within the scatter, in
its tail. This is in agreement with Windsor’s results,
which displayed? no structure for infinite temperature.
The [100] correlation function (not plotted) displays
the main peak, with its maximum at 7=1, and a
similar smooth decay. Results obtained for more
distant pairs display little above the noise. One obtains,
from these results, a spin propagation velocity which is
roughly half the value at T'=0.

The suggestion of a characteristic spin-diffusion or
group velocity was first raised by the results of Fig. 8.
There was also some suggestion that this description
oversimplifies the situation since structure was seen in
the [#10] and [#nn] functions at times less than the
characteristic transit time of the “main”peak. A study
of the spin diffusion associated with one displaced spin
in an otherwise ferromagnetic array sheds some light
on this. The evolution of such a system is displayed in
Fig. 14. A spin at the center of a 16)X16X16 sample
was initially pointed in the x direction; all others were
ferromagnetically aligned in the z direction. The x and
y components of a (100) plane of spins, including the
displaced spin, are plotted in the figure as a function of
time (note the factor of 73 change in scale between the
second and third frames). Assuming a characteristic
spin-diffusion or group velocity, one would expect a

2t C, G. Windsor, Proc. Phys. Soc. (London) 91, 353 (1967);

see also C. G. Windsor, G. A. Briggs, and M. Kestigian, J. Phys.
C1, 940 (1968).
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spherical wave front for the disturbances; in this plane
it is square. Further samplings in the (110) plane
(which we do not plot) show the disturbance to have a
cubic wave front. The velocity of motion of the centers
of this front is that already seen in Fig. 8. Such a result
is not characteristic of a simple spin-diffusion process
but it is consistent with the predictions of spin-wave
theory for the case of one infinitesimally perturbed spin.
Derivations, similar to those yielding Eq. (13) (see also
Huber'), give

(8.2(0) - Su141 (7))~ ML (1) T 1 (57) T 0(57) 5 (23)

where the internal perturbation takes place at site 0
and at time 7=0. The tendency to square wave fronts,
the nodal lines, and the relative phases of 90° of
adjacent spins which appear in Fig. 14 are consistent
with this equation. The structure seen in the time-
displaced correlations is thus predicted by spin-wave
theory and it depends strongly on the topology of the
simple cubic lattice [as manifested, for example, in the
spin-wave dispersion curve, Eq. (8)]. The characteristic
velocity seen in Fig. 8 is not simply that of a spin-
diffusion process, and the structure which appears prior
to the arrival of the main peak is to be expected.
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The magnetic susceptibility of YFeO; has been measured in the temperature range 4.2-1000°K. The
temperature dependence of the susceptibility is also derived theoretically using a Heisenberg Hamiltonian
and applying the molecular-field approximation. In addition to nearest-neighbor isotropic exchange, anti-
symmetric exchange, and uniaxial anisotropy terms, a cubic anisotropy term is also included in the Hamil-
tonian in an attempt to account for the observed temperature variation of the susceptibility parallel to
the antiferromagnetic axis. This model explains qualitatively the main features of the experimental results.
Using the same model, the third-order term in the field dependence of the magnetization is calculated for
T=0°K. It follows that, owing to the cubic anisotropy term, quantitative agreement is obtained with the
observed departure from linearity in the field dependence of the magnetization, which was measured at

4.2°K and magnetic fields in the range 0-50 kOe.

I. INTRODUCTION

HE orthoferrites RFeO; (R is a rare earth or
yttrium) belong to a class of weak ferromagnets

with a slightly distorted perovskite crystallographic
t Research sponsored in part by the Air Force Materials
Laboratory Research and Technology Division AFSC through

the European Office of Aerospace Research, U. S. Air Force,
under Contract No. F61052-67C-0040.

structure (space group Dgp'*~Pbnm).? The distortion
from the ideal perovskite is mainly in the positions of
the R* ions, while the environment of the Fe®t ion
remains essentially octahedral. Each unit cell contains

1D. Treves, J. Appl. Phys. 36, 1033 (1965); Phys. Rev. 125,
1843 (1963), and references cited therein.

2 M. Eibschiitz, S. Shtrikman, and D. Treves, Phys. Rev. 156,
562 (1967). )



