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The results of a study of second-harmonic generation by damped Alfvén waves and helicons propagating
parallel to the static magnetic field along the three principal axes of pure and tellurium-doped bismuth are
reported. The observed anisotropy and polarization dependences are shown to be consistent with the
occurrence of a magnetic dipole nonlinearity caused by the influence of the magnetic field of the wave on
the conductivity of the medium. A theory of harmonic generation by plane waves propagating in a semi-
infinite anisotropic conducting medium and in a slab is developed and applied to this case. It is shown
that the concept of magnetic point groups can be applied to the determination of the form of the third-
rank tensors governing the effect, which leads to the conclusion that the forms of these tensors are, in fact,
known for all crystal classes. A method of calculating these tensors after their reduction by symmetry from
standard transport theory for bismuth is developed and results for some of the coefficients relevant to the

experiments are given.

I. INTRODUCTION

HE generation of second-harmonic signals by
damped Alfvén waves and helicons propagating
in bismuth parallel to the static magnetic field has
been reported briefly in an earlier paper.! We present
here a fuller account of these experiments along with a
more precise mathematical treatment of the problem.
The primary source of the harmonic is believed to be
a nonlinearity of the magnetic-dipole type? produced
by the dependence of the resistivity tensor (or the
inverse dielectric tensor)?® on the rf magnetic field com-
ponent of the wave. This conclusion is supported by the
observed dependence of the polarization of the harmonic
signal on the polarization of the fundamental in the
case of damped Alfvén wave propagation which was
reported earlier.! Nonlinearity due to the dependence
of the resistivity on the electric field should be negligible
in this case, since the electric field in the sample does
not exceed 1 V/cm. Hot-electron effects, which can
cause harmonic generation in semiconductors,* should
be negligible in semimetals and, if present, would be
expected to produce primarily third-harmonic signals.
Because of the large, field-dependent diamagnetic sus-
ceptibility of Bi, nonlinearities due to the dependence
of the magnetic permeability on the rf magnetic field
may have some influence. However, our estimates
indicate that this contribution is negligible compared to
the one under consideration.

The simplest nonlinearity of the general type we are
considering would be found in a semimetal containing
equal concentrations of electrons and holes in identical
spherical bands. In this case, a “fast” Alfvén mode?

1 W. R. Wisseman and R. T. Bate, Phys. Rev. Letters 20, 1492
(1968); 21, 330 (1968).

2P, S. Pershan, Phys. Rev. 130, 919 (1963).

3L. D. Landau and E. M. Lifshitz, Elecirodynamics of Con-
tinuous Media (Pergamon Press, Inc., Oxford, 1960), p. 331.

4J. Maurer, A. Libchaber, and ]. Bok, in Proceedings of the
Symposium on Plasma Effects in Solids, Paris, 1964 (Dunod Cie.,
Paris, 1965), pp. 49-52.

5S. J. Buchsbaum, in Proceedings of the Symposium on Plasma
Effects in Solids, Paris, 1964 (Dunod Cie., Paris, 1965), pp. 3-18.
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will propagate with its wave vector k perpendicular to
the static magnetic field Bo. The rf magnetic field b of
this mode is parallel to By, so that the total magnetic
field in the direction of By is By+b. Since, for w1,
the velocity V, of this mode is just B/(2usnm*)'/2, the
wave ‘“modulates” its own velocity with 8V ,/V o=b/ B,
generating a second harmonic. The notation is that of
Ref. 5.

If, in the preceding example, the static field By is
rotated through 90° so that it is parallel to k, no second
harmonic will be observed. This result is predicted by a
detailed solution of the problem, but is also a result of
general symmetry restrictions which require that no
second harmonic be generated when both By and k are
perpendicular to a reflection plane of the crystal (or
of the Fermi surface). A proof of this will be found in
Appendix B. In a cubic crystal, for example, this re-
striction rules out the observation of second harmonics
for By and k along the [100] or [110] axes, but not
along [1117. In bismuth (point group 3m), the effect is
allowed for By and k along bisectrix and trigonal axes,
but not along the binary axis.

The paper is organized as follows: In Sec. II we
develop a theory of harmonic generation in aniso-
tropically conducting media treating the case of normal
incidence on a semi-infinite medium. The formulation of
the wave equation in terms of the resistivity tensor,
which is real and independent of frequency for wr<1, is
employed. The development parallels that of Bloem-
bergen and Pershan® for isotropic nonconducting media.
The case of normal incidence on a slab is treated in
Appendix A. Symmetry restrictions on nonlinear coef-
ficients are found by application of magnetic point
groups in Appendix B, and a method for calculating
these coefficients from the Fermi-surface model is
outlined in Appendix C.

Section ITI covers the experimental procedure, and
Sec. TV includes a detailed discussion of the results for
damped Alfvén waves propagating along each of the

6 N. Bloembergen and P. S. Pershan, Phys. Rev. 128, 606 (1962).

763



764 R. T. BATE AND
principal axes of pure Bi, and some results for helicons
in Te-doped Bi. Some final conclusions are drawn in
Sec. V.

II. THEORY

Penz’ has determined the wave equation from Max-
well’s equations for a general magnetoresistivity tensor
o(B) relating the electric field to the current density for
the case where the displacement current is neglected.
The equation can be written as (in mks units with
B= o)

VX (oVXb) = —u(db/d%). 1)

Equation (1) has plane wave solutions of the form
be, k) =hoeitwt—k2)

for a wave propagating in the z direction and b° in the
xy plane when the dependence of g onb is neglected. The
effect of b can be included if we write

o(B)=o(Bo+b)=0(Bo)+350(Bo,b) )

where B is the constant applied magnetic field. We are
interested in the solution of Eq. (1) of the formb=b(w)
+b1(2w). If the harmonic signal is small relative to the
fundamental, then 8g(Bo,b)=dp(Bo,bs). This expression
can then be expanded to give

59(B0,bf) = 59 (B(),bfo)ei(“’t—kz)

to first order in b;. If we use this expression for d¢ and
substitute Eq. (2) in Eq. (1), we obtain an equation for
b; and by, which can be separated as follows:

VX (00VXbys)4uo(db;/0t)=0 3)

and
VX (00V Xbr)+uo(dbs/dt) = — VX (8gVXb;), (4)

where Eq. (3) holds at w and Eq. (4) at 2w and go=o(B,).
We are not considering contributions to these equations
from solutions at higher harmonic frequencies, and we
are also neglecting the term VX (8pVXbs) which con-
tributes to Eq. (3) since we take the nonlinear effect to
be small. We also assume gy to be independent of fre-
quency. This is true only when wr<1. In bismuth, the
asymptotic dependences of the relevant components of
o on By and on the relaxation time 7 for large By are

PasPyy T,
PaysPyz < Bo,
when n7p (helicon propagation) and
Pazspyy < BT,
Pay,Pys < Bo,

when n=p (damped Alfvén wave propagation).
Penz has solved Eq. (3) and obtained the dispersion
relation for the fundamental wave and the ratio of the

7P, A. Penz, J. Appl. Phys. 38, 4047 (1967); 39, 1922 (1968).
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field components for helicon propagation:

2 #Ow(i[“4pxypyx“ (Pm_Pyy)Z:Il/z_i(sz-f—Pw))
+7 = )
2 PzzPyy — PxyPyx
©)
f br? Zpya: ( )
= = 6
+ . )
bry®  (pyy—poz) i —4puypys— (Poz—pyy)* 1M/
where pz,7#0, pye=py(Bo), etc. Two elliptically

polarized modes (labeled 4 and —) are possible in this
case. When p., =0, we have the simpler relation

ko= (1—1)(uow/2py,)'?, (M

where the subscript « on % indicates linear polarization
in the x direction. Equation (7) applies to Alfvén
wave propagation.

We treat the term on the right side of Eq. (4) as the
source of the harmonic following Bloembergen and
Pershan.® The solution of Eq. (4) is

bre=Dbystbpp=Db,,0eiat=ks2) L b 0pi(ui—2k2)

)

for the x component. The term b, is a solution of the
homogeneous equation which results from setting the
source term in Eq. (4) equal to zero, and &,, is a
particular solution with the source term included. The
wave vector &, is related to 2w by Eq. (5) or (7). Sub-
scripts on k. and % indicating polarization have been
omitted. The appropriate subscript for &, depends on
whether Eq. (5) or (7) applies (helicons or Alfvén waves)
and on whether we want by, or by, The subscript on %
depends on the polarization of the fundamental.

The coefficient b, and similarly 4,,9 can be evaluated
from Eq. (4) in terms of b7, and b,,° and the com-
ponents of the resistivity tensor. We get

b= {[— 2pii+iwpo/k?) 30+ 2p;i8p:* 10 ;0
+ [(Zpii+ iw#o/ k2) 0pji"— 2P;‘i5pn'°]b 7%}
X{2paitiono/k?) (2pj4-iwue/k?) — 4pip;y 1, (9)

wherei=x or y and j=y or x. This equation can be sim-
plified considerably when the orientations of By and b,
relative to the principal axes of the crystal are specified
and the expressions for the components of 8¢° are deter-
mined. In Appendix B it is shown that these expressions
have the general form

00:°=[Si(Bo)+A4:(Bo) 161, (10)

where the nonlinear coefficients .S;;x(Bo) and A;;(Bo)
are components of third-rank tensors which depend on
the static field Bo. When Bo=0, the S;;x(Bo) vanish and
the A4;jx become the usual weak-field Hall tensor
coefficients.

1f B, and k are perpendicular to a plane in which the
crystal or the Fermi surface possesses reflection sym-
metry, it is also shown in Appendix B that the non-
linear coefficients which can contribute to 5,9 via
Egs. (9) and (10) vanish. Since, as we shall see, the
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TasLE I. Expression for b,,° [Eq. (9)] and k. [Eq. (7)] for damped Alfvén-wave propagation.
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Magnetic-field
orientations and %; bpi® and ks
Bo”l‘l bp20=bp30:0
B,f|2®
—2p13S511071%?
b1 bp=— ks1="V2ky
p33(2p11—p33)
Mow 1/2 —-5‘311bf1°z 2933 12
kh=01—-2) — bpg? =~ kas=—) kA
2ps3 2p11—p33 P11
(p11d 513+p13S118) bys™ 2p11\?
bf“3 bP10= s1= | — k3
p11(2p33—p11) P33
pow\ 112 [—S115(2pss—p11) +2p134 513 1s5°
ky=1—2) — bps®= kss=V2k;?
2p11 p11(2pss—p11)
Bo“3°
—285920b71%072°
bpd=———
ow \ 12 P11
k=1—5)| — ks=V2k
2p11 —Sa22(by1%—by2%%)
= L
P11

a All components of §Q° are zero.
b The results are very complicated for polarizations along arbitrary axes.
¢ p11=p22and piz2=pa =0.

second-harmonic signal is proportional to &, this
means that no second harmonic will be generated when
the fundamental wave propagates parallel to By and
perpendicular to a reflection plane.

From the foregoing considerations, the feature of the
Fermi surface which is responsible for the observed
harmonic immediately becomes apparent. If the
ellipsoidal electron portions of the Fermi surface were
not tilted out of the trigonal plane, then all three
principal crystallographic planes would be reflection
planes, and no second harmonics would appear for Bo
and k along a principal axis. This conclusion is con-
firmed by the calculation of certain nonlinear coef-
ficlents in terms of Fermi-surface parameters in
Appendix C, where they are found to be proportional
to 4, the off-diagonal electron mass tensor component,
which is nonzero only by virtue of the tilt of the
ellipsoids [see Eqgs. (C6) and (C7)]. It is therefore the
tilting of the electron ellipsoids out of the trigonal plane
which is responsible for the effect when By and k are
along a principal axis.

The coefficients b,,° can be evaluated in terms of
bp:* by applying the appropriate boundary conditions.
If by is a plane wave normally incident upon a semi-
infinite medium (u=pu,) and we require b, and E; to be
continuous across the boundary, Eq. (8) becomes

14-w/kc
o= — (————)bpzoei(‘zwt—ksz) _}_bwogi(zwt—zkz) . 1)
14-2w/kyc

In Appendix A we consider the case of harmonic
generation by a plane wave at normal incidence upon a
slab. We have assumed finite damping in this case be-
cause it leads to considerable simplification of the
results. The source term which was used in Eq. (4) was
determined by applying the above boundary conditions
to the fundamental wave. The transmitted fundamental
(| ke/w|>>1) is given by

— 2
" piw(t—l/e) (12)

7 ke sinkl

Application of the same boundary conditions to the
harmonic wave and the approximation |ksc/2w|>>1
gives

8iwbs” sin[2(2k+k,)1] sin[(2k — k) Jeize -1/

ksc sinksl sinkl

htz =

(13)

for the transmitted harmonic signal. The subscripts
denoting polarization are omitted from % and k,, and
b,.0 is defined by Eq. (9). In Eq. (13), and also in Eq.
(11), £ and b,,° depend on the polarization of the
fundamental and %, depends on the desired component
of the harmonic signal. For convenience of notation,
we have written Eq. (13) in component form and
omitted the subscripts from % and k; denoting
polarization. -
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F1c. 1. Experimental arrangement for observing
harmonic generation.

We have tabulated the appropriate expressions for
b, [Eq. (9)] and the corresponding % and &, [Egs. (5)
and (7)] for damped Alfvén wave propagation along
principal axes in Table I and helicon propagation along
principal axes in Table IT. The results are expressed in
terms of the appropriate nonlinear coefficients deter-
mined in Appendix B. The harmonic signal can then be
determined using Eq. (13). (We have used the usual
notation for the principal axes of Bi, i.e., 1-binary,
2-bisectrix, 3-trigonal.)

We see from Tables I and II that for both damped
Alfvén wave and helicon propagation, the source of the
harmonic b, vanishes for Bo||1 due to the fact that the
binary plane is a reflection plane. Of the other two
principal orientations of By, the results for by||3 are far
simpler owing to the trigonal symmetry. The harmonic
signal generated by a damped Alfvén signal of arbitrary
linear polarization is given for this case in Table I. For
helicon propagation along the trigonal direction, it
should be noted that the harmonic generated by the

TasLe II. Expressions for b,:° [Eq. (9)] and ks
[Eq. (5)] for helicon propagation.

Magnetic-field®
orientations and k.. b, and ks,
Bo||3
b0 (1—i2)
oo\ 12 ip11 25222b/°2(i+i§)
k+ =| — 1— —_—
P12 2p12 3p12

bo(+i2)

Mo\ 172 P11
ko~ — —_—
p12 2p12
B 7|2N° effect predicted when Bo||1. Results are very complicated when
0 -

b Only ks=Fks. =V2k, is important since the harmonic is severely at-
tenuated when ks =ks_ =V2k_.

282020, (1 —42)

3Plz
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nonpropagating circular polarization has the same
magnitude as that generated by the propagating helicon.
For the complicated bisectrix case, the results for
damped Alfvén wave propagation could only be ex-
expressed conveniently for the fundamental wave
polarized in a principal direction. This is true because
there are four pertinent nonlinear coefficients which
appear in Table VII. (One of these coefficients, Ssss,
does not contribute for the cases considered in Table 1.)
We have not calculated the harmonic signal for helicon
propagation in the bisectrix direction. Further com-
ments about the results presented in these tables are
made in Sec. IV.

III. EXPERIMENTAL PROCEDURE

The important features of the experimental arrange-
ment are shown for harmonic generation in Fig. 1. A
similar arrangement was used to observe mixing. The
filters were required to eliminate spurious 30-MHz
signals which were present in the input signal or
generated by the large fundamental signal in the
detector. Since a sensitive amplifier with a fairly narrow
bandwidth was required to detect the harmonic signal
generated in the sample, it was inconvenient to make
measurements as a function of frequency. For all of the
harmonic-generation measurements reported here, the
input frequency was 15.0 MHz. Mixing of input fre-
quencies of 12.5 and 17.5 MHz was also observed so
that the detected signal in both cases was 30 MHz. A
transmission curve was measured as a function of
magnetic field for the fundamental signal with the
detector coil connected directly to a Hewlett-Packard
Model 8405 vector voltmeter which also measured the
relative phase of the signal. The harmonic signal was
then measured with the system shown in Fig. 1 which
was calibrated using the vector voltmeter.

The samples were cut from single crystals grown by
the Czochralski method using 99.99999%, pure bismuth.
The melt was doped with tellurium to obtain the sam-
ples used for helicon propagation. Slices from each ingot
were cleaved to determine the approximate direction of
the trigonal axis, and the ingots were then oriented by
back-reflection Laue photographs to an accuracy of
+1°. The samples were in the form of disks typically
12 mm in diam by 1 or 2 mm thick. Back-reflection
Laue photographs were also made for the disks as a
check on the orientation of the principal axes. The
samples were soldered with a low-melting-point solder
into a copper holder so that the leakage signal around
the sample could be eliminated.

Ten-turn rectangular coils with ~1-mm? cross sec-
tion were used in both the drive and the detector
circuits. The drive and detector coils were aligned with
their axes either parallel or perpendicular to each other
and in principal directions. It is estimated that the
coils were aligned parallel to principal axes in the plane
perpendicular to k to within +3°.
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IV. RESULTS AND DISCUSSION

In this section the experimental results which we
have obtained for harmonic generation by damped
Alfvén waves and helicons are presented along with a
comparison of these results with the theory described in
Sec. II for some of the simplest cases. Essentially, the
same results were obtained when two signals were
mixed in the sample and the sum frequency was ob-
served. Some of these data were presented in an earlier
paper! along with a simplified theoretical model. This
model successfully described the polarization of the
harmonic generated by a damped Alfvén wave when
By, k||3 and the lack of a harmonic signal when B,,
k||1. We were not, however, able to account satis-
factorily for the polarization of the harmonic generated
by damped Alfvén waves when By, k||2. Another limita-
tion of the approach used in our earlier paper was the
neglect of the phase relationships between harmonic
signals generated at different points in the nonlinear
material. Such phase relationships are taken into
account by the theory developed in Sec. II. No attempt
has been made to treat theoretically the large quantum
oscillations which are observed for some orientations.
This would require a detailed theory of the Shubnikov—
de Haas effect in bismuth. However, the periods of
these oscillations are in good agreement with recent
de Haas-Van Alphen data.®

A. Damped Alfvén

All of the damped Alfvén measurements were made
with By||k|| (principal axis) and the axes of the drive and

100 T

@

o
I
|

3

I

)
N
|

o
S
|
e,
|

V, (ARBITRARY UNITS)
I
\
{

20— /7 -

okl 1 1 1
0 500 1000 1500
VZ (ARBITRARY UNITS)

F16. 2. Amplitude of 30-MHz harmonic signal voltage (1 com-
ponent) as a function of the square of the 15-MHz fundamental
damped Alfvén signal voltage (polarized ||1) for bismuth sample
77-4. The data were taken at 4.2°K with a magnetic field of 1.5kG
with Bo,k||2.

8 R. N. Bhargava, Phys. Rev. 156, 785 (1967).
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Fic. 3. Amplitude (times 3X10¢) of 30-MHz harmonics gener-
ated by 15-MHz damped Alfvén wave (also shown) as a function
of magnetic field at 4.2°K for bismuth sample 77-4, with Bo, k(|2 and
the fundamental damped Alfvén wave polarized ||1. The magni-
tude of buu is given by the solid curve and the magnitude of
bz is given by the dashed curve.

pickup coils along principal axes and perpendicular
to k. The harmonic signal was found to depend on
the square of the fundamental signal as is shown in
Fig. 2. This result is in agreement with the expres-
sions obtained in Sec. II. In almost all cases where
a harmonic signal was observed, there was a maxi-
mum in the signal at low magnetic fields (1-3 kG)
as is shown in Fig. 3. If the expression for the harmonic
signal given in Ref. 1 or Eq. (11) of this paper is used, a
maximum in the harmonic is predicted as was mentioned
in Ref. 1. Our use of those expressions was incorrect,
however, since in addition to the difficulties already
pointed out, they apply only to an infinite medium. If
the expression for harmonic generation in a slab given
by Eq. (13) is used, no maximum is predicted. This is a
result of the fact that the dielectric mismatch between
the slab and air depends on By. We now believe that the
maximum in the harmonic curve is a geometric effect
due to the fact that the size of the drive and pickup
coils is comparable to the slab thickness. This con-
jecture is supported by the fact that the damped Alfvén
transmission curve saturates for large By as is shown in
Fig. 3. This should not occur according to Eq. (12) for
transmission through a slab. Bartelink and Nordland?®
observed similar effects in their damped Alfvén wave
studies and found by using coils of different sizes that
the saturation is a geometric effect. In our experiment
it would be difficult to make the coil size small compared
with the slab thickness to eliminate this geometric
effect due to the low level of the harmonic signal. In
principle, a geometric correction factor could be cal-
culated from the damped Alfvén transmission if the
correct value of 7 is known. Comparison of the harmonic

curve with theory could then be made using Eq. (13)

( ng J. Bartelink and W. A. Nordland, Phys. Rev. 152, 556
1966).
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F16. 4. Theoretical curves for by, as a function of By for damped
Alfvén wave propagation with Bo,k||2 and the fundamental wave
polarized ||1. The solid curves represent the magnitude of bx; and
the dashed curves the magnitude of bn;;. The curves were cal-
culated for two values of 7(r.=7,=7) as indicated in the figure.
Values for the effective masses are from Y. H. Kao, Phys. Rev.
129, 1122 (1963).

and Table I for the special cases listed there. In this
paper we have not tried to make quantitative com-
parison with theory for the magnetic-field dependence
of the harmonic generation due to the uncertainties
introduced by the geometrical effect. Even though two
of the nonlinear coefficients, S22 and Ssi1, have been
evaluated (Appendix C), we have not been able to
satisfactorily compare the experimentally observed
ratio of the harmonic signal to the fundamental signal
with theory for several reasons. One is the geometrical
effect mentioned above which may not be the same for
the two signals. In addition, the magnitude of the
harmonic is usually quite sensitive to the value used for
7, and knowledge of the value of the fundamental
magnetic field at the surface of the sample is required.
In Ref. 1 we estimated that the magnitude of the
effect should be ~10 times greater than that observed
experimentally. The expressions used in that paper
were not valid, however. If we use the results of the
present paper and ignore the geometrical effect, an order-
of-magnitude calculation for low values of Bo(Bok|[3)
leads to about the same result as we reported earlier.
In view of the uncertainties in the calculation which
we have mentioned, this sort of disagreement between
theory and experiment is not unreasonably large.

In the subsections below, specific details of the
damped Alfvén results for the three principal orienta-
tions are given.

R. T. BATE AND W. R. WISSEMAN
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By,k||2

The harmonic curves shown in Fig. 3 were obtained
when the fundamental field was polarized in the 1
direction. For the magnetic-field range covered, | by
>>|bns|. This configuration is relatively simple to
treat theoretically since only one coefficient, Ssi, is
involved in the expressions for 4,.° and b, given in
Table I. We have used these expressions in Eq. (13) to
calculate the relative magnitudes of b,y and b5 as is
shown in Fig. 4. The difference in the harmonic curves
for these two cases results from the fact that b,°
o Borb,® when wr<<1. bpa would vanish completely
if p15°=0 for Bo||2. When 7= 10" sec, by, >>bs3 at low
Bo. Although the theoretical curves cross at high B,
this crossover was not observed experimentally. When
the fundamental damped Alfvén wave is polarized in the
3 direction, the theoretical expressions for b,1° and b 50
are complicated by the fact that two coefficients, S11;
and 4313, are involved. Experimentally, we found that
the curve for by, was very similar to the dashed curve
in Fig. 3. The curve for bu;s peaks at ~4.5 kG at a
value ~ X2 higher than the dashed curve in Fig. 3. This
indicates that A3 is probably the dominant coefficient.
If Su13 were dominant, the same polarization observed
forby||1 would have been seen.

Bo,k”3

This orientation was discussed fairly extensively in
Ref. 1. The components of the harmonic signal for the
fundamental polarized in the 1 and 2 directions are
shown in Fig. 5. According to Table I, the harmonic
should be polarized in the 2 direction in both cases. The

o

b, (ARBITRARY UNITS)
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— -
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F16. 5. Components of the 30-MHz harmonic signals as a func-
tion of By for bismuth sample 75-4 with Bo,k(|3 at 1.2°K for the
15-MHz fundamental damped Alfvén signal polarized (a) ||1 and
(b) [|2. The vertical scale is the same for all curves with the zeros
displaced.
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F1c. 6. Amplitude (X10%) of the 30-MHz harmonic generated
by a 15-MHz helicon wave (also shown) as a function of By for
Te-doped Bi sample 74-9A at 1.2°K with Bo,k[|3. The quantity
n—p in the sample was 2.5X10'® cm™3.

experimental data are in reasonable agreement with
theory. bas is relatively large for by||1; however, this is
probably a result of misorientation of the coils since
the 1 and 2 axes are only 30° apart in the trigonal plane.
It should be noted that the magnitude of the quantum
oscillations are approximately the same in all cases. The
theoretical curve for by is similar to the solid curves
shown in Fig. 4 for By||2. The theoretical prediction for
bra is zero because p12°=0 when By||3.

B,k||1

No effect is predicted for this orientation according
to Table I. Experimentally this was verified except when
b;||2. In this case a relatively large signal was observed.
The curve was similar in shape to the solid harmonic
curve of Fig. 3 for By||2;by, ba||1, but it was scaled down
by slightly more than a factor of 2. The observation of a
signal for this orientation is probably a result of mis-
orientation of the magnetic fields relative to the cry-
stalline axes since Bo||2; by, bs/|1 is only 30° away.

B. Helicon

Harmonic generation was observed for helicon pro-
pagation through Te-doped Bi samples for k, Bl
principal axes. It is difficult to compare results for the
three orientations since the doping level and attenua-
tion were quite different. Therefore, comments will be
restricted to some qualitative statements. The effect
observed when By, k||1 or 2 seemed to be primarily due
to quantum oscillations. No effect is predicted for By,
k|1, but the misorientation problem mentioned above
in connection with the damped Alfvén data probably
was responsible. No quantum oscillations were observed
for By, k||3 as can be seen in Fig. 6. The peaks in the
harmonic curve result from Fabry-Perot resonances
given by Eq. (13) similar to the resonance in the helicon
transmission curve given by Eq. (12). We have not

GENERATION IN Bi 769
attempted to fit the harmonic curve using Eq. (13) and

the values of ,1° and b,9° given in Table II.

V. CONCLUSIONS

The situation with regard to our present understand-
ing of the observed effects is as follows:

(1) The occurrence of harmonics, and the dependence
of the polarization of the harmonic on that of the
fundamental which is summarized in Table I of Ref. 1,
is completely consistent with the proposed mechanism,
and our estimates indicate that this nonlinearity is
dominant over all others. The nonlinearity arises be-
cause the dielectric constant of the meduim is a func-
tion of the magnetic field present, and particularly be-
cause it is sensitive to the magnetic-field component of
the wave itself. This sensitivity occurs, in the case con-
sidered here, because of the anisotropy of the Fermi
surface and its lack of reflection symmetry.

(2) The magnetic field dependence is understood
qualitatively, and is influenced by geometrical effects
related to the launching and detecting coils. The quan-
tum oscillations are a manifestation of the Shubnikov—
de Haas effect. A detailed analysis of these will not be
possible until an experimentally confirmed theory of the
Shubnikov—-de Haas effect in bismuth is available. It is
significant, however, that the mechanism which leads to
the quantum oscillations is dominant for large B,.

ACKNOWLEDGMENTS

We wish to thank C. A. Collins for his able technical
assistance, G. R. Cronin and D. Thompson for pro-
viding the bismuth crystals, and D. L. Carter, T. E.
Hasty, and T. C. Penn for helpful conversations about
various aspects of this work.

APPENDIX A: HARMONIC GENERATION
IN A SLAB

We have treated the problem of harmonic generation
in a slab by first applying the appropriate boundary
conditions to Eq. (3) in order to find the magnetic field
associated with the fundamental wave inside the slab.
This solution for the fundamental wave is then used to

S
REGION 1 REGION 2 REGION 3
/ /7 7 7
AIR ANISOTROPIC AR
PLASMA
be, Ef yan ——8,
> 7 7 7 T h s E
b+ B 510 Egy
bfr ' Efp y »z
0 A < -
Dy o Ebr C e byt Ept
ot he Bhm + Ehm —ht'oht
S

F1c. 7. Harmonic generation in an anisotropic
plasma slab.
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determine the source term in Eq. (4), and then the
same boundary conditions are applied to the harmonic
wave. This situation is illustrated in Fig. 7 for normal
incidence with By, k, and k, taken in the z direction. We
carry out the calculation for the x# component of b and
the y component of E, and suppress the subscripts x and
v for simplicity. The fields associated with the funda-
mental wave in the three regions are given by the
following:

Region 1
by=bV¢ilet—wz/o)
Ej= —cbeitet—oz/0)
byp=bydeitwiteslo)
E = b O¢iwttozlo);
Region 2

by 6 @ FD b, Opilotiha)
Efm'—_ (__wa"H‘O/k)ei(wt*kz)_*_ (wamﬁO/k)ei(wH-kz) ;
Region 3
bﬂ___bﬂ()ei(wt——wz/c) ,
E ;o= —cbfeitot=azlo) s
we have used VXE;=—0b;/dt to relate the electric
field components to the corresponding magnetic field
components. The coefficients in the preceding equations
can be evaluated in terms of b,° by requiring that £
and b; be continuous at the two boundaries (assuming
u=po in all three regions). The magnetic field inside
the plasma is given by

26 cosk(l—2z)+ (tkc/w) sink(l—z)Je*
T 2 coskldi(w/kethe/w) sinkl

o (A1)

In the helicon and damped Alfvén wave experiments
reported here, the condition |kc/w|>>1 holds. In addi-
tion, & is complex if we assume finite damping so that
the denominator of Eq. (A1) can be simplified since the
sinkl term does not vanish and always is much larger
than the coskl term in the region of interest. The con-
tribution of the term cosk(l—z) is also negligible.
Therefore,

bym=2b,° sink(l—2) e¢i@t/sinkl. (A2)

In the analysis of our results we have also used the
transmitted magnetic field just outside the second sur-
face which is given by

b — 2itwb et 1) /kc sinkL, (A3)

where again |kc/w|>>1. Equation (A3) appears in the
test as Eq. (12).

Equation (A2) when substituted in Eq. (4) for the
harmonic leads to a particular solution of this equation
which is given by

b= —2b,° cos2k(l—z) e?¢!/sin%kl, (A4)
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where the components of b, are still defined by Eq. (9).
Referring to Fig. 7, we have

Region 1
bhr= bhrOei(Zwt+2wz/c) ,
Epy=cby,dei@ut+202/0) -
Region 2
bim= [b hmy V€™ kse by Ogiksz
—2b,0 cos2k(l—z)/sin%lJe2t
—2w ' 2w )
Ehm = |: bhm_*_ﬁe——zksz_I___ﬂbhm_Oelksz
k k

8 8

2icob 0 sin2k(l—z):|
- ei?wt ;

k sin%kl
Region 3

bht= bhtﬂei(2mt—2wz/6) ,

Eht: _Cbhlnei(th~2wz/0) ;

here we used VX E,= — db,/dt. Requiring by, and E, to
be continuous across the two boundaries and taking
|ksc/20|>>1 leads to

sin[4(2k+ks)0] sin[(2k — k) [ Jei2et=1/e)

Onte =8iwb "
ksc sink,l sin?kl

(AS)
Equation (A5) appears in the text as Eq. (13).

APPENDIX B: LIMITATIONS OF CRYSTAL SYM-
METRY ON HARMONIC GENERATION IN
AN EXTERNAL MAGNETIC FIELD

We consider here the case where nonlinear effects
arise via the magnetic field component b of the wave.
We ignore the influence of the electric field E, an ap-
proximation which is valid for highly conducting
materials.

The magnetoresistivity tensor ¢ is defined by the
relations

E=o(Bo+b)J (B1)

and is considered a function of the static magnetic field
By and of b. Since E and J are polar or true vectors,
o(Bo+D) is a second-rank polar tensor which is a func-
tion of the axial vectors By and b. It is convenient to
separate ¢ into symmetric and antisymmetric parts:

pii* =% (pis+pii) = pii*(B)=p;s*(B) , (B2)
pis*=3(pij—pji) =pi*(B)=—p;*(B).  (B3)

The behavior of these tensors under time reversal,
which reverses B, is properly specified only by the
Onsager relation

pii(B)=p;i(—B), (B4)

which gives
pii*(B)=pi;*(—B), (BS)
pii*(B)=—p;*(—B). (B6)
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TasLE IIT. Symmetry operations of 3 point group. TasBLE V. Excerpt from Table 7 of Ref. 11.
lorE Identity i tensors ¢ tensors
+350r 2C;  Rotation by =3 about 3 axis M%glli;tic Magnetic  Polar Axnjl Polar Ax1a1 N
€. t even € X
3(21) or 3C;  Rotation by = about each 1 axis direction grooll‘:p (pi*,Sijer) (Aijr) (pii®, Al}:kl) (S!:k) % ;S z
lors Inversion -
+350r 2S¢  Rotation by =3 about 3 axis followed by General 1 Am An Am An 1 23
_ inversion Binary plane 2/m Bm Ba Cm Ca 2 31
3(21) or 30, Rotation by & about three 1 axes followed by Bo||1 2/m Bn By Bm Ba 2 31
inversion Bol|2 2/m Bn Ba Cm Ca 2 31
Bo||3 3m Lm La Mn Mn 2 —-13

Thus p;;* is even, or invariant under time reversal, and
pi;* 1s odd, and changes sign under time reversal. This
means that Eq. (B1) isnof invariant under time reversal,
a fact which has caused some confusion in the literature,
as pointed out by Shtrikman and Thomas.!® Following
Birss,!! we shall call tensors which are invariant under
time reversal ¢ tensors, and those which change sign
under time reversal ¢ tensors.

Noting that 5By, we expand the symmetric and
antisymmetric parts of the magnetoresistivity tensor in
Taylor’s series:

pi;*(Bo+b) =p:;*(Bo)+Sijr(Bo)bs
+S’L]kl(BU)bkbl+ Tty (B7>
p‘lf]a(Bo—l'-b)=p’LJa(BO)_i—'A’L]k(BO)bk+A’L]kl(B0)bkbl+ ttt .

(Summation over repeated indices is implied.) Applica-
tion of Egs. (BS) and (B6) to Eq. (B7) yields the
following relations:

pii*(—Bo)=pi;*(Bo) pii*(—Bo) = —p:;*(Bo) ,
Sii(—Bo)=—S:(Bo), Aijr(—=Bo)=A4:By),

Sin(—Bo)= Siiti(Bo) , Asir(—Bo)=— A:1(Bo).

Since b is an axial vector, it is apparent from Eq. (B7)
that S;jr and Aj are axial tensors, and Sy;z; and A
are polar tensors. Since from Eq. (B8), p;;%, Sijr, and
Aijri change sign under time reversal (reversal of By)
they are ¢ tensors, and, similarly, p;;*, 4:jx, and S;ji; are
1 tensors. If Bo=0, the ¢ tensors vanish, and the %
tensors become the usual weak-field galvanomagnetic
tensors.?

(B8)

TABLE IV. Symmetry operations for point group
3m in presence of magnetic field.

Direction Symmetry Magnetic
of By operations?® point group
General 1,1 i
Binary plane 1,1,2.% 2% 2/m
Binary axis (1) 1,12, Q 2/m
Bisectrix axis (2) 1,1, 2% 2. 2/m
Trigonal axis (3) 1,1, :{:3z, +3., 3m
3(21M), 321

2 The asterisk indicates the time reversal operation.

10 S, Shtrikman and H. Thomas, Solid State Commun. 3, 147
(1965); 3, civ (1965).

1R, R Birss, Symmetry and Magnetism (North-Holland Pub-
lishing Co., Amsterdam, 1964).

12H. J. Juretschke, Acta Cryst. 8, 716 (1955).

The number of independent nonvanishing tensor
coefficients in Eq. (B7) is limited by the symmetry of the
crystal, and the forms of the tensors for the 3m point
group characteristic of bismuth, for Bo=0, are well
known.> When an external field is applied, the only
conventional symmetry operations of the crystal which
are preserved are those which leave the direction of By
in the crystal unchanged. If the additional operation of
time reversal is allowed, conventional operations which
reverse By, combined with time reversal, are also sym-
metry operations. The inclusion of time reversal as a
symmetry operation defines a new category of point
groups called magnetic point groups, which have been
thoroughly investigated and applied to magnetic
materials.?

The symmetry operations defining the 3m point group
are listed in Table III. The symmetry operations, in-
cluding time reversal, denoted by addition of an asterisk
to the conventional symbol, are given for various direc-
tions of By in Table IV. (It is important, when deter-
mining the symmetry operations, to remember that B,
is an axial vector.) We see that, in each case, the group
of symmetry operations can be identified with a mag-
netic point group. The value of making this identifica-
tion lies in the fact that the allowed form of the galvano-
magnetic tensors has been determined for each of the
magnetic point groups. These tensors are listed in
Ref. 11. Table V gives entries from Table 7 of Ref. 11
which are relevant to the present discussion. The
entries in columns 36 refer in turn to Tables 4(a)—4(f)
of Ref. 11. The nonvanishing components of the tensors

TaBLE VI. Nonvanishing tensor coefficients
up to third rank.

Magnetic
field pi*(Bo)  pij*(Bo) Sijk (Bo) Aijr(Bo)
direction =pji* = —p;ji%(Bo) =Sjir(Bo) = —Ajir(Bo)
Binary (1) p11® p23s S11151225123 AsiAi224 123
pags S22153125313 Asz124 313
p3sd Ssa1
p2s® Ses1
Bisectrix (2) p118 p12¢ S12151125113 Ass1Ad 1224123
P22t p13® S311.52225 223 As2d313
p3ss S3325333
P23t S2325233
Trigonal (3) p118 = paos p12® Si121=—S222 A=Az
p3se Sa11=S232 Az
S1a=—S22
S113=S223
S3a3
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Tas1E VIIL Forms of tensors 8p;;° for By,
k along principal axes.

Bok|1
5p220=5p330=§p230=5p320=0, to first order in b?
Bo k|2
8p13°=S511(2) 61— A4 315(2) b5°
8031°=S311(2) 51"+ A 313(2) bs°
Bok||3

5p11°=S115(2) b5°
8p33° = S'335(2) bs°

Sp11°= —S222(3) 2"
0p22°=S222(3) b2°

8p120= —S222(3)01°
8p21°= —S222(3)D:°

are listed in Tables 4(a)-4(f) opposite the appropriate
letter and subscript combination given in Table V.
The proper assignment of axes is also found from
Table V. The nonvanishing components of the second-
and third-rank tensors obtained in this way for B,
along the three principal axes are given in Table VI.
We have also derived them independently by applica-
tion of the symmetry operations of the magnetic point
groups. The connection to the theory of harmonic
generation derived in the text is made by noting that
the 8p;;° appearing in Eq. (9) are given, using Eq. (B7),
by
3pii"=8pi;**+8pii*°= pij*(Bo+b®) — ps;*(Bo)

+pi*(Botb?) —pi;*(Bo)

(B9)

or
0pi°= Sijr(Bo)0i'+ A ijn(Bo)bs

to first order in b°. For a general orientation of k, Eq.
(B9) will contain many terms. However, we are re-
stricting our attention here to cases in which B, and k
are parallel to a principal axis of the crystal. In these
cases, Eq. (B9) takes a simple form, and we have
tabulated results for each of the principal axes in
Table VII.

It is interesting to note that second harmonic genera-
tion of the type considered here cannot occur for
Bo||k in any crystal when k is perpendicular to a reflec-
tion plane. To see this, we write

Rijn(Bo)=Siir(Bo)+ A:x(Bo) ,
where R;;z(Bo) is an axial tensor and B, is an axial
vector. If we reflect axis 1 in the 2-3 plane (reverse the 1
axis) noting that both R;;;(Bo) and B, change sign under
such an improper rotation, we get [Bo=(B1,Bs,Bs)]
Rijr(B1,B2,Bs) = — Riji/ (B1, — By, — By),
where 4, 7, k%1, and the prime refers to the new co-

ordinate system. If the 2-3 plane is a reflection plane, as
is the case for Bi, we must have

Rij1(B1,B2,Bs) = —Rijx(B1, — B, — Bs) ,
and, in particular,
Rijk(Blyoyo) = _Rijk(Blr():O) =0 (ﬁs j7 k# 1) .

When k is parallel to axis 1, the dispersion relation con-
tains only components of the type pij;, (4, 7, k#%1), so
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that only third-rank tensor components of the type
Rijx(Bo), (4, 4,k#1) produce harmonics, and they
vanish for this case.

APPENDIX C: COMPUTATION OF NONLINEAR
COEFFICIENTS FROM FERMI-SURFACE
MODEL

In this section, we show how the nonlinear tensor
coefficients S;x(Bo) and 4x(Bo) can be computed from
the usual tilted-ellipsoid model of the Fermi surface of
bismuth.

As a preliminary step, it is convenient, though not
necessary, to write down expansions analogous to
Eq. (B7) for the components of the conductivity tensor

oii*(Botb)=0.*(Bo)+5:5sBo)bs+- - -,
ai*(Bo+b)=0s;2Bo)+aiju(Bo)bst- - - .

The nonvanishing coefficients in these expansions are
those with the same indices as the coefficients appear-
ing in Table VI. These coefficients are also required by
symmetry to satisfy relations analogous to Eq. (BS).
The coefficients S;;z(Bo) and 4;x(Bo) of Eq. (B7) can
be expressed in terms of s:;x(Bo) and a.;.(Bo) of Eq. (C1)
by means of the relations

oii(Bo+b)pjx(Bo+b) =821,

(C1)

(C2)
0:%0ix= 8 [G'ij():a’»;j(Bo> s etC.] ,
which may be combined to yield the relation
St Aije=—pip’(S pgrt Apgr)pes- (C3)

Separate expressions for S;;; and 44 can be obtained
from Eq. (C3) either by making use of Eqs. (B2) and
(B3) or by using Egs. (BS).

The coefficients :;*(Bo), :%(Bo), six(Bo), and
a;;:(Bo) of Eq. (C1) are obtained in turn by writing
down general expressions for o;;(Bo+b) using results
given in Appendices I and IT of Ref. 13. These results
are derived classically assuming isotropic relaxation
times and ignoring nonlocal effects. For a given com-
ponent o;;(B) the result is the sum of four contribu-
tions, one for each of the three electron ellipsoids
(actually six hemiellipsoids) and one for the hole
ellipsoid (two hemiellipsoids). If By and b are along
principal crystallographic axes, and if terms of order 42
are neglected, these contributions are of the form

atBb «a 1 ad
%—+~<ﬂ——>b,
v+ v v Y

where a, 8, v, and § depend on By and the mass-tensor
components. These contributions are expanded as in-
dicated on the right side of Eq. (C3) and summed over
the four ellipsoids to give a;;(Bo)+ [s:x(Bo)+ a:ju(Bo) 10

13 B. Lax et al., Phys. Rev. 102, 715 (1956); corrected expressions

for Bo||2 are given by G. E. Smith, L. C. Hebel, and S. J. Buchs-
baum, zbid. 129, 154 (1963). )

(C4)
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and broken up into symmetric and antisymmetric

parts using Eq. (B8). Expressions for ¢:;*(Bo), ¢:;4(Bo), .

siix(Bo), and a;;x(Bo) can then be identified.

As an example, we carry out the procedure here for
the simplest case, Bo, k||3. Referring to Table VII, we
see that, for k||3, the only nonlinear coefficient we need
is S222(Bo). Writing out Eq. (C3) for S222(3), using the
nonvanishing coefficients from Table VI, we get

S222(3) = — 22”5290 p21%p12%5 112
or
S229(3) = —[p11%(3) +p12"(3) Is220(3)
5222(3) 3222(3)
=== —p"(3) . (CY)
0110 (3)+012° (3) 0'110(3)

Expressions for ¢11°(3) and ¢12°(3) are given in Ref. 13.
s222(3) is found by writing down, using the expressions
in the Appendix of Ref. 13, the contributions of each
ellipsoid to o9, assuming =0, w,7>>1, and ignoring
terms quadratic in bs:

ao mims3
a2 (ellipsoid 1) =— ——————
3 msbs'24-2m by by’

oo dms(my+3ms) —12m4?
o2 (ellipsoids 2 and 3)=—
12 domgbs'2—dmab by’

: 1
022 (hOlCS) =00,
3h,

where go=mne’r./mo, con=pe*rr/mo, b/ =eb;r./mo, bi'
= —eb,m1/mo. Rewriting these contributions using
Eq. (C4) we get

. oo My 200 My
o2z (ellipsoid 1) =— ———
3 b3,2 3 m;3b313

2,

. oo 111'3(m1+3”$2) —3M42
o292 (ellipsoids 2 and 3) =—
12 M3b3,2

oo msma(myi+3mse) —3m4d ,

N 2
12

m32b3’3

1
0922 (holes) = 0’0},——;— .
3h 2
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- Adding up these contributions, we get

oo (mitma—mi2/ms) oo
092(3) =— T M,

by'? 2 ban'®

which agrees with Ref. 13, and

g0 bzm4
5222(3)[72:—’
3’3 ms

(—%m1+m2—m42/m3) .

For Bi mi<me and if we let MQI = MQ“‘WI42 m3, WE can
) ) )
write

mo ’}’Wﬂzl le
0'11(3) -—_—0'22(3) =—B;—<

32

. e
); 12 )—E;—s(ﬂ—?),

27, Th

nmgy My
—‘—m;bz .
Bgdtomg

8222(3>b2=

From Eq. (C5) we now get

2my pM 7, -1
Sin@) = =put9)~ <1+2 > . (Co)

3Ms3 nms T,

which is identical to the expression given earlier,! ex-
cept that itis a factor of 2 larger. (The earlier expression
was in error.) Assuming p=m, 7,= 73, and using repre-
sentative values of the mass parameters, we get

S222(3) = — 10p11°(3) Bs ™1,
p110(3) = 2.3(332T/’I’LM()) .

As a comparison, for the case, considered in the Intro-
duction, of fast Alfvén waves propagating perpendicular
to the field in an isotropic semimetal, the nonlinear
coefficient is

S=2pB~, p= Br/nm*,

where m* is the effective mass, in units of my, of the
two identical bands.

For By||2, the calculation of the nonlinear coefficients
by this method becomes much more involved. The
case b||1 also requires only one coefficient, S311(2).
Assuming #n=p, T.=r1n, m<Lme, M and mz<<KM 3, our
result is

B2T my .
S311(2)z —3———- .
mon mM3(1+3M1/m2)

(C7)



