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A variational principle is used to "solve" an approximate integral equation for the screening functions
of the electron gas. It is shown that the simplest possible trial function gives a solution to the equation for
the dielectric constant which is exact in both the limits of small and large momentum transfers. The re-
sults are compared with other calculations. It is shown that the approximation developed recently by
Kleinman is quite good in the static large-k limit, but otherwise incorrect. The dielectric constant derived
from the variational calculation is used to derive an expression for the ground-state energy; this expression
is similar in its essential features to the interpolation schemes of Hubbard and of Nozieres and Pines, even
though the Hubbard approximation considerably underestimates the exchange enhancement of the vertex
function at large k. Finally, it is suggested that similar variational principles may have other uses, as in
the paramagnon problem.

I. INTRODUCTION

KNOWLEDGE of the linear response of an
electron gas, to external perturbations, aside from

its intrinsic interest, is an essential ingredient in a
large class of calculations in free-electron-like metals.
Of particular interest is the inverse dielectric constant
e '(k), which gives the electric potential surrounding a
unit external potential, and the vertex function As(p),
which gives the matrix element for the scattering of an
electron by a unit external potential from an initial
state p to a final state p+)'e, where k=(k, co) and
p=(p, Q). The static (co=0) values of these functions
are needed for calculations of band structure, thermal
and transport coefficients, and phonon spectra, while
the full frequency-dependent values shed light on col-
lective oscillations, optical transitions, excitons, and
possible charge-density wave instabilities.

Despite their importance, however, e and A. are not
well known at metallic densities except in a few limits.

p+k

To calculate A, one must solve the equation

—1=2VI,
(k)

A (P')G(p')G(p'+I ), (2)

where Vs is the Coulomb matrix element 4sres/k'.

Generally, (1) is simplified by separating out the singu-
lar direct Coulomb part of I, letting Is(p, p') =Is(p,p')
+2Vs and Xs(p) =e(k)t4(p). Then (1) and (2), respec-
tively, become

A~(p) =1+ Is(p,p')G(p')G(p'+&)As(p') (1)
pl

where 6 is the propagator for an electron in the state
p, and Is(p, p') is the spin symmetric part of the ef-
fective particle-hole interaction. The notation Jo is
the abbreviation for

d'p' dD'

(2sr) ' 2sri

In terms of A, the dielectric function is given by

Ik(p, p')

p'+k and

A (P) =1+ I (P P')G(p')G(p'+&)A (P') (3)

e(k) —1=—2 Vs A.(p')G(p')G(p'+)e) . (4)

{b)

Ik(P, P') - Ik(p, p') = 2X

p+k

P

p'+k

P

FIG. 1. In (a) is shown the diagrammatic representation of Eq.
(1). It also gives the diagrammatic representation of Eq. (3)
provided that I and A are replaced by I and h. , respectively. In
(b) is shown the relationship between I and I; the factor of 2
arises from the spin summation over the primed variables. The
internal lines on {a) and (b) represent the propagator G. The
external lines are shown for clarity, but are not included in the
de6nitions of I and h..
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Equations (1)—(4), which are derived in the standard
textbooks, ' are illustrated graphically in Fig. 1.

The difhculty in finding A. involves not only solving
the integral equation (3), but also in determining I
which is itself unknown. Previous w'ork has been re-
viewed by Geldhart and Vosko, ' who emphasize the
importance of making self-consistent (C derivable, in

r p. Nozieres, Theory of Iateraotersg Fermi Systems (W. A.
Benjamin, Inc. , New York, 1954); A. A. Abrikosov, L. P. Gor'kov,
and I. E. Dzyaloshinski, Methods of QNantgm Field Theory irI,
Statistical Physica (Prentice-Hall, Inc. , Englewood Cliffs, N. J.,
1963).

2 D. J. W. Geldart and S. H. Vosko, Can. J. Phys. 44, 2137
(1966).
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I(p,p') = —(4 ./L(p- p') +Z. ]), (6)

where E,was a screening parameter, usually taken to be
the inverse Fermi-Thomas length. ' As & ~0, such a
static approximation can only be viable at metallic
densities if (3) is regarded as an equation for the physical
quantity Zh. ~,o rather than AI, ,O itself, because then the
most important effect of a dynamic interaction (the
appearance of Z) cancels out according to (5). At finite
k, one would then assume that the same cancellation
still occurs, at least approximately. "For very large k,
on the other hand, frequency-dependent effects pre-
sumably become less important. In any case, Eq. (6)
becomes essentially a definition rather than an approxi-
mation if E,' is regarded as a complex function of all
the variables; it will be a useful definition if it turns out
that the various calculated quantities are not very
sensitive to the value of E,'. According to our later
estimates, this is roughly true at large k (assuming that
we have reasonably guessed the size of E,s).

' G. Baym, Phys. Rev. 127, 1391 (1962).
4 T. M. Rice, Ann. Phys. (N. Y.) 31, 100 (1965).
s J. M. Luttinger and P. Nozieres, Phys. Rev. 127, 1423 (1962);

127, 1431 (1962).
s P. Nozieres and D. Pines, Phys. Rev. 111,442 (1958).
r J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957).

See D. Pines and P. Nozieres, Theory of QNuetlm Liquids
(W. A. Benjamin, Inc. , New York, 1966), Vol. I.

'The screening was not added until later. See L. J. Sham,
Proc. Roy. Soc. (London) 283, 33 (1965); S. H. Vosko, R. Taylor,
and G. H. Keech, Can. J. Phys. 43, 1187 (1965);V. Heine and I.
Abarenkov, Phil. Mag. 9, 451 (1964);L. M. Falicov and V. Heine,
Advan. Phys. 10, 57 (1961).

'0 At finite but small k and finite co, this cancellation would not
still occur, even though as k-+ 0, au 6nite Eq. (6) gives an e(kM)
which is exact.

sense of Baym') approximations. The difficulty in
finding A. is compounded by the fact that I is frequency-
dependent as well as momentum-dependent. This is
especially important for small momentum transfer k,
where neglect of the frequency dependence will result
in an error in X by a factor Z (the wave-function re-
normalization factor), even if the effective mass and
compressibility are given. accurately; according to
Rice's calculations, 4Z can differ considerably from unity
at metallic densities. On the other hand, perhaps these
small-k difficulties are not so serious, at least for ~ =0,
because A and e are given by Ward identities'

A ' —+ 1+(res*/m)Z(kpT'/k')

e ~ 1+(kpT'/k') (K/ss),

where s/Kp is the compressibi1ity enhancement due to
electron-electron interactions, m* is the effective mass,
and kp T is the inverse Fermi-Thomas length. The quanti-
ties ~ and m~ in turn may be calculated with some degree
of confidence using the interpolation procedures de-
veloped by Nozieres and Pines, ' Hubbard, ~ and others. '

One common approximation, first exploited by
Hubbard, ~ and used by many others since, was to
replace I by a static interaction

The assumption of a static interaction leads to con-
siderable simplification, and (3) and (4) become

A.-(p) =1—Z I(p,p')a. -(p')A. -(p')
p1

and
e(k, te) =1+2Vs Q g~„(p')A~„(p'),

where

Ck-(p) =(fs+~ f )s—/(~+ ~s+ es es+—s), (9)

where e„=p'/2m++» I(p,p') fs, t) is a positive
infinitesimal, " fs is the Fermi function, and P„ is
shorthand for (2s.) 'J'd'p. Hubbard then solved (7)
approximately by assuming that (p —p')' could be
replaced by k'+kp' (kp ——the Fermi wave number), so
that Ap„(p) was independent of p and given by

Xs„(p) =L1+(I)II&'l(k~o)] ', (10)
where

(I)= $47re—'/(k'+kp'+E, ')]
and &i'&(kto) =Ps g~„(p) is the polarization propagator
of the noninteracting electron gas, first evaluated by
I.indhard. " The corresponding approximations for
c and A are

e(k,ce) =1+2Usii&o&(keg)L1+(I)lf&o&(k&o)] ' (12a)

Lusing (8) and (10)] and

Ag~ =L1+(2Vs+(I))II&'&(kor)]—' (12b)

(using A = eh]. Hubbardr originally used (12) to calcu-
late the ground-state energy of an electron gas, but
since then, many others have applied it in calculations
of other metallic properties.

Recently, however, it was suggested independently by
Kleinman" and Overhauser'4 that the k dependence of
(11) at large k is completely incorrect. Both authors,
in effect, solved (7) approximately with an interaction
similar to (6), finding a vertex function of the form (10)
(at least for &0 =0), but with (I) having a different form
from (11). These assertions, if true, could have large
effects on the properties of the electron gas; in particu-
lar, the correlation energy at metallic densities is
sensitive to the large-k dependence of (12); could it be
that the hitherto believed most reliable calculations of
the correlation energy are incorrect?

Because the connection between Kleinman's and
Overhauser's treatments and the more conventional
formulations is far from clear, we begin by briefly
discussing their calculations. In particular, Overhauser's

~1Having already performed all frequency integrations, we
have no further use for the analytic structure of the time-ordered
product, and thus have switched to the physically meaningful
analytic structure of the retarded commutator."J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 28, 8 (1954)."L.Kleinman, Phys. Rev. 160, 585 (1967). The more recent
calculation of Kleinman's LPhys. Rev. 172, 393 (1968)g appeared
after this manuscript was completed, and will not be discussed
here.

'4 A. %. Overhauser, Phys. Rev. 156, 844 (1967).
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work is outwardly a calculation of the optical properties
of free-electron-like metals. We show that the calcu-
lated modification in the strength of the absorption
results from a final-state interaction due to the exist-
ence of an exciton state, manifested by a zero in e(k, &0).

Since this zero exists even at co =0 for finite k, the ground
state would be unstable to the formation of static
charge-density fluctuations if Overhauser's calculation
is correct.

In Sec. IV, we develop a variational principle to
solve (7). Using the simplest possible trial solution, we
find that the resulting expression for e using (8) is exact
in both the large-k and small-k limits, and provides an
interpolation for intermediate values, regardless of the
form chosen for I(p,p'). Taking I to be given by (6), we
find that Kleinman's approximation (for o& =0) is quite
accurate for large k, but gets worse as k decreases.
Kleinman's frequency-dependent results, however, are
incorrect and we suggest the appropriate modifications.
If we force our results into the form (10), defining an
effective (I) (now a complex function of k and &0), we
find that (I) is not very sensitive to the value of the
screening parameter E, for large k, except for very small
E,. From this we conclude that (i) to the extent that
the evils of the static approximation (6) can be absorbed
into a renormalized screening parameter, their effect is
relatively slight and (ii) only a small amount of screen-
ing is necessary to destroy the exciton (charge-density
fluctuation) instability of Overhauser.

In any case the 7t dependence of (I) (at large k)
proposed by Kleinman and Overhauser is correct. This
leaves the question raised earher about the correlation
energy. To answer it we perform the usual frequency and
coupling constant integration of e ', taking e from our
variational calculation. The result is that the coefficients
of the anomalously k-dependent terms integrate to zero,
and we are left with an expression for the correlation
energy which in its essential features is identical to
those proposed by Nozieres and Pines, ' and Hubbard. '

II. KLEINMAN'S CALCULATION
t

Kleinman calculates h. in the Hartree-Fock approxi-
mation and later includes the effects of correlation
phenominologically. We show here that his approxi-
mation is tantamount to Eqs. (6) and (7). We do this
mainly to make contact with his notation and to see
where his approximations enter, since it is obvious by
inspection that the Hartree-Fock approximation"
consists in letting I(p,p') = —4tre'/(p —p')' in (7), with
e„given in Ref. 10.

Essentially, one applies an external potential V' ",
and calculates the induced one-electron Hartree-Fock
potential VH~ self-consistently in lowest-order pertur-
bation theory, that is,

VHF —Voxt+ Vooui+ Vexoh (13)
' Also called the generalized random-phase approximation;

see Ref. 8, p. 3176.

where U '"' and U'"'" are, respectively, the direct
Coulomb and exchange terms of the Hartree-Fock
equation. For simplicity, one takes U' ' only to have
matrix elements between plane-wave states y and p'

separated by momentum transfer k, so that VHF,

V '"' and U'"'" will also have this property. Thus we
write

with

(P'I Vlp) =V.(p, &)&s,s+.+V-.(p, &)&',,—., (14)

V~(p, ~) =LV~, -(p)e '"'+V.,--(p) e'"']e"', (15)

V.."'(p) =A..(p) V.- "'(p)
and

V.."-'(p) =I -'(k, ) —»V --'(p).

(17)

According to time-dependent perturbation theory, the
single-particle wave function is

4 s (r) =e ""'(e"'+[~~ (P')+~a --(P')]e"'+"'
+[&i—& (p')+a&, (p')]e"~' "}, (19)

where"

a»(P') =[V» (P')e '"'j(o&+itl+ep' ey'+a)]. (20)

By calculating the Coulomb matrix element

(p+k I
V""'Ip) =2 2

p'&kF
d-r& d'r2

g2

ge i p+&k rr&&t&—, w(r2) &t&, (r2)eiQ rt (2 1)
I'y —1'2

and comparing with (14) and (15), one obtains"

Vt ~coo&(P)eight —
2V&t P f&i[&i&(P r)ran+a &r to*(P')]. (22)

p/

Similarly, by calculating

(p+k~ V'x'"~p) = —P f„d'ri d'rs
p/

g2

&« '""'"4 (r2) —4 (ri)e"" (»)
1'y —l'2

"To obtain Kleinman's notation and units from ours, make the
replacements 6~ Gap A. + 6pp M + cl), 1%i +Q, p + k, e2 —+ 2y
2m —+ 1.

'r V&r„n~(y') is the analog of Kleinn&an's V»s. &+& and
Vg, (p') of VI, p

( ). Kleinman's notation seems to imply that
he has assumed that Vg~HF(p') = V g, HF(p'), but this is not true
in the general case, even if the external potentials have this
property by construction. Equation (20) is the analog of Klein-
man's four equations (9).

'8 As implied by our notation, the values of Vz, „ in Eqs. (22)
and (24) are obtained by replacing co with —co, and similarly for h.

where V can have any superscript ("HF," "Coul, "
"exch," or "ext"). Since V is Hermitian, we note that

Va,.(p) =[V «, .(P+k)]*.
Also, in terms of (14) and (15),we may write the vertex
and dielectric functions" as
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one finds that"
4xe'

U' exch(p)either P iy (pr)' -(p —p')'

See'
U' HF(p) U ext(p)+

k2

LU. "'(p')]*U HF (pr)
xPf; +

y' or jtr1+ey —ey~+rc —or tg+—ey ey' k

4m.e'+, G*-.,--(p') (24)
(p+k —p')'

Then using (13), (20), (22), and (24), one obtains four"
equations

written down by inspection in the Introduction, this
constitutes a two-line derivation of Kleinman's results
for co=0.

III. OVERHAUSER'8 CALCULATION

Overhauser's calculation was ostensibly one of inter-
band optical absorption in metals. In fact, however,
since band-structure effects are treated as weak, his
calculation really determines the longitudinal dielectric
constant e(k,ol) in an approximation similar to Klein-
man' s. To see this, we note that to lowest order in the
bare crystalline potential

U(r) Q P eiG r

prr

4rre' Uh„HF(p') 47re'

p
/

(p —p')' ~+ tg+ e, —e,.,„(peak —p')2

LU-h, --"'(p')]*
(25)

the imaginary part of the optical dielectric constant
e2(or) is given by"

e2(or) = (3m'or')-' P t UG
~

'G'{—Im[e(Gror)] ') (28)

—M —Z'g ~6I}r—6I11

We now note that use of the identity (16) in the square
bracketed terms in (25) reduces the four equations (25),
to four identical uncoupled equations, the solutions of
which satisfy (16). Finally, noting that U'"" is indepen-
dent of p, the use of (17) simplifies (25) to

A.-(p) =1— 2 g"(p')A. -(p')
k' p'

4xe'

where G is a reciprocal lattice vector. Effectively, then

e(G,or) is calculated in the Hartree-Fock approximation,
so that e is of the form (12). As in Kleinman's calcula-
tion, (I) is real and approaches a constant at large k,
in contrast with (11).Using (9) and (12) gives

47re2—&m[e(G, or)] '= ~A.G,.~'
Q2

2rr tr(or+ e y
—e y+G) . (29)

p&kp, j p+Gi)kp

or

On the other hand, the "standard" formula" for e2(or)

to lowest order in the potential U is
4~e'

A.-(p) =1+2, g.-(p')~h-(p') .
y' (p —p')'

(27a) 4xe'
e (~) g ~

U HF~2G2

38$ GD 6

Xh(p' —k)4ze'
L,(p)=1+ P

y'(ry (p+k —p')' ey —e, h

4me' Ag
(27b)

(p)

y +hy (p p ) ey ey+&

upon change of the integration variable. Replacement
of (p+k —p') ' by (k'+kF'+E, ') and (p —p') ' by
(kF'+E,') ' renders (27b) trivially soluble and
Kleinman's expression for X emerges. Since (27a) was

We note that Kleinman never used (16), and mad. e

the approximation (p —p')'~kf'+E, ', (p+k —p')'~kf'
+E,'+k' directly in (25). Thus he coupled two
equations that are rigorously uncoupled, and his solu-
tion fails to satisfy the basic invariance (16). All this
is relevant at co=0, but at finite frequency his results
are incorrect.

Equation (27a) makes Kleinman's calculation at ol =0
especially transparent. Substitution of (9) into (27a)
yields

p&kp, [ p+Gi) kp
2rr 6(or+ e,—G,+G), (30)

where VGH is the Hartree-Fock potential used to
calculate the band structure, that is VGHF=AG, pUG.

The ratio of (28) to (30) for a given transition (fixed G
value) is

FG(or) ~AG, „/AG, Q) (31)

Comparison with Overhauser's Eq. (17) shows that the
FG(or) of (31) is exactly Overhauser's "enhancement"
factor. Hence, his calculation is in essence one of the
response of an interacting electron gas.

The second point to be made is that for Overhauser's
large value of (I) (~9rre'/kF'), the function Fh(ol)
[or e '(k,or)] has a pole in the region k)2kF and
ol((k/rry)(2rk —kF). The locus of this pole (or as a func-
tion of k) is sketched in Fig. 2. This pole is the result of
his (assumed) strong electron-hole interaction, and

"J.J. Hop6eld, Phys. Rev. 139, A419 (1965).
ec P. N. Butcher, Proc. Roy. Soc. (London} A64, 765 (1951}.
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represents a particle-hole bound state or exciton. It
would show up as an anomalous direct optical tran-
sition below the interband threshold in the alkali
metals, provided that the 110 reciprocal lattice vector G
lies between ki and ks (see Fig. 2), and might appear as
an indirect (phonon-induced transition) otherwise. The
anomalous threshold behavior predicted by Overhauser
is simply due to the 6.nal-state interaction caused by the
tendency of electrons and holes to form bound states.

Since there is at least some experimental evidence '
in the alkalis, not only for anomalous absorption below
threshold, but also for anomalous threshold behavior,
the above would be an appealing explanation (aside
from the theoretical difficulties of manufacturing such a
large particle-hole interaction) if it were not for the
fact that this exciton state by its very existence implies
an instability of the ground state of the electron gas.
This is seen most simply by noting that the exciton dis-
persion relation goes to zero at finite wave vector; since
this dispersion relation is determined by the zeros of
e(k,co), the electron gas would be unstable toward the
formation of static charge-dentisy Quctuations22 of
wave vector k determined by e(k,0) =0.

IV. VARIATIONAL CALCULATION

The difference between the large-k dependence of h.
in the Hubbard approximation, and that given by the
methods of Secs. II and III, results only from different
approximate solutions of Eq. (7). To solve (7) ac-
curately, we develop a variational principle; we show
that the simplest possible trial function gives (8)
exactly in both small-k and large-k limits and provides
an interpolation for intermediate k.

Although variational principles are commonly used
to obtain approximate solutions to the Boltzmann
equation in transport problems, "so far as I know, they
have not been extensively applied to obtain approxi-
mate diagrammatic summations of the type (7). The
idea is simple: The first step is to 6nd a variational
functional of A, such that variations with respect to
X yield the integral equation (7). We simplify the nota-
tion by writing (7) as

FIG. 2. A sketch of the dis-
persion relation of the exciton
state implied by Overhauser's
calculation.

kF 2kF l ~ 3kF CkF ~

k —+

is

~L) ]=2 ) (p)a(p)I~(p, p')) (p') —2 Z a(p)) (p) (34)
Ppp

because, clearly, the relation

8F[Xj/Q. (p) =0

implies, since I(p, p') =I(p', p), that

Z &(p,p')) (p') = &,
p/

(36)

in agreement with (32). Thus the solution of (32) gives
the J P.) an extremal value.

For certain ranges of k and oo, where gx (p) is real,
we can prove that this extremal value is a minimum,
provided that the particle-hole interaction I is not too
attractive. In particular, g is real for co =0 regardless of
the value of k, so that we have a minimum principle
for the static dielectric constant; it is also real for
co((k/nt)(-', k —kF), which is region where Overhauser's
exciton appears. In these regions, to which we restrict
ourselves for the time being, the quantities g, A, and Ii

are all real. (I is real because of our assumption of a
static particle-hole interaction. )

The proof of the minimum principle consists of three
steps. First, we must define a scalar product space in
which the kernel E is symmetric. Then, if I is sufficiently
weak that E is also positive definite, we can prove the
minimum principle. Finally, we derive a condition on

I, which, when satisfied, is sufficient to insure that E: is
positive definite.

E &(p,p')A(p') = ~,
p/

(32) We define the scalar product (A,B) between two
functions A(p) and B(p) as

where

&(P,p') =8o, '+I(p, p')g(p') (33) (A,B)=(B,A) =—2 a(p)A(p)B(p) (37)

We have for simplicity suppressed the parameters k
and co. The appropriate variational functional FP.(p)]

"H. Mayer and B. Hietel, in Proceed&zgs of the International
Colloquium on Optical Properti es and Electroni c Structure of
Metals and Alloys, Paris, 1965 (North-Holland Publishing Co. ,
Amsterdam, 1966); H. Mayer and M. H. El Naby, Z. Physik 174,
269 (1963); 174, 280 (1963); 174, 289 (1963); but see also N. V.
Smith, Phys. Rev. Letters 21, 96 (1968).

ss Recently, A. W. Overhauser /Phys. Rev. 167, 691 (1968)j
has espoused such charge fluctuations in the alkalis."E.g. , see J. M. Ziman, Electrons and Phonons (Oxford Uni-
versity Press, London, I960).

With this definition of the scalar product, it is a matter
of direct substitution of (33) to prove that X is sym-
metric:

(A,EB)= (EA,B), (38)

where we use the matrix notation

&A—=Z &(p,p')A(p'),
p/

and we have also used the fact I(p, p') =I(p', p). We now
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assume that I is such that K is positive definite, that is,

(A,KA) &0

for all A. Then we may state the theorem: If E is positive
definite and KA=1, then FP.])F[A] for all X. The
proof is simple:

0((P,—A), K(X—A))
= (~,KX)+(A,KA) —(A, KZ) —(X,KA)
= (X,KX)+(A,KA) —2(X,1)
= (X,KX) —2 (X,1)—(A, KA) /2 (A, KA)
=(~,KZ) —2(Z, 1)—(A, KA) y2(A, I). (39)

the integral equation. Furthermore, given an approxi-
mate trial function X depending on several parameters,
the "best" values of these parameters are those that
render F(X) a minimum. It is interesting to note that

—F[A]= (e —1)/2Ui„ (41)

so that the quantity 1—2Ui,FP.] provides a lower
bound for the true value of e as determined by (7) and
(8), for any [X].

Next, we derive a sufficient condition that E be
positive definite, which we state in the form of a
theorem: If I is su%ciently weak that

We note that in the notation (37), the variational
function (34) is P I I(p,p')

I g(p') =1 (42a)

FP.]= P, ,KX) —2(~.1), (40)

so that the last line of (39) implies that F[X])F[A.].
Hence the function X that minimizes E is the solution of

for all p, then (A, KA))0 for all A, that is, K is positive
definite. The proof is straightforward [note that
g(p) &o]:

(~,K~) =2 g(y)~'(y)+2 g(p)I(y, y')g(y')~(y)~(y')&2 g(p) l~(y) I' —2 g(y) II(y, p') lg(p') l~(y) I
l~(y') I

PP PP

&2 g(y) I
~ (y) I'[2 I

I(k y')
I g(y')] —2 g(y) I I(p,p')

I g(p')
I ~(y) I I

~(y')
I

PP

=l 2, g(p) II(p, y') lg(y')[I 4(y) I

—l~(y') I]'&o.
PP

Of course, if I is attractive (I(0) for all y and p', the
absolute value signs are unnecessary. We also mention
that it will sometimes be sufIicient to replace (42a) by
the weaker condition

[Z g(P)] max
I
I(P p ) I

(1. (42b)

To get a feeling for the numbers involved, we briefly
discuss (42b). For ate=0, Psg(y) has its maximum
value of 1V(0) as k —+ 0, so that the kernal is positive
definite at small k if III'(0)(1, where 1V(0) is the
single-spin density of states at the Fermi level, E(0)
=+„5(es—eF). This means that if I is a screened
Coulomb interaction of the form (6), then the kernel
E is positive definite if the screening parameter E,' is
at least half as big as the Fermi-Thomas screening
parameter kFT'=87re'1V(0). The positive definiteness
of E is related to the exciton instability, in that the
exciton pole cannot occur so long as E is positive
definite. In fact, the conditions (42) have previously
been used in this latter context. "In the region k& 2k',
where this pole might appear, Ps g(y)(-,'iV(0); there-
fore, according to (42b), the exciton pole cannot appear
unless. the screening of the electron-hole interaction is at
least four times less effective than ordinary Fermi-
Thomas screening (K,'(rsksT'). The condition (42a)
has been evaluated numerically for a screened Coulomb
interaction in Ref. (24). The results indicate that (42a)

~ P. A. Fedders and P. C. Martin, Phys. Rev. 143, 245 (1966).

is considerably more stringent than (42b) at high
electronic densities, but comparable at lower densities.

We now use the variational principle to "solve"
Eq. (7). An appropriate trial function is suggested by
the calculations of Hubbard, Kleinman, and Overhauser,
who all assume (by modifying the kernel) that A is
independent of p. On the other hand the "best" ap-
proximation of this type may be obtained by substi-
tuting a constant A into (35), from which we obtain

A.-=2 g.-(p)/

[2 g.-(y)+Z g~-(y)I(y, y')g. -(y')] (43)
P PP

We presently will compare (43) with the calcula, tions of
the three other authors, but first we show that it is
exact in several limits.

I.et me make it clear that in what follows, I use the
work "exact" only to denote exact solutions of (7) and
(8). Thus we will be testing the validity of the approxi-
mate solutions to (7) and (8), and not the validity of (7)
and (8) themselves. In particular, the fact that the
relevance of (7) and (8) in the small k limit is unclear,
does not eliminate the small k region as proving ground
for the variational principle.

First, we consider the limit co=0, k —+0. Evaluation
of (43) is trivial since gq„(p) ~ 6(es —e3). We find that

A(p) [1+2I(P,P')~(" — )] ' (44)
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On the other hand, the exact solution of (7) in this
limit is

I~(p) ~ ((1+2 P(PF,P') —I(»p')3&(es —F)l/
p/

[1+XI(pF,P')~(es —eF)j) (45)
p/

Hence (44) is exact for p=ps. Furthermore, substitu-
tion of either (44) or (45) into (8) gives

e(k)0) =1+(2ViiV(0)/L1+Q I(pp)p')6(es~ —eF)]l) (46)
p/

V2kF

so that our variational trial function gives a dielectric
constant which is exact in this limit.

Now consider the large-k limit. Since the first term
in the denominator of (43) varies as k ' and the second
term as k ', we may write (43) as

- 1—2 g.-(p)I(p, p')g. -(p')i
I6 large pp'

Z as-(p)+ " (47)
0

0
l

0.2
l

0.4 0.8 l.0

On the other hand, the exact solution of (7) yields

~k6)
k large

-' 1—Z I(p,p')gs-(P')+
p/

(48)

e(k, to) - 1+2VkLQ gk-(p)
Ic large

—2 a.-(p)I(p, p') g.-(p')+ ], (49)
PP

so that the variational solution gives an exact result in
this limit as well. Note that the variational calculation
is exact in this limit because it reproduces the erst
two terms of the exact perturbation expansion of h. in
powers of I; similarly, other limits that derive from this
property (e.g. , k ~0, ts finite) will hold exactly.

It might be useful at this point to compare the vari-
ational solution (43) with the first terms in the Fred-
holm expansion of the solution of (7), a method applied
to this problem by Hamman and Overhauser. " The
Fredholm solution to (7) is

~=(1+ )/(1+2 I(P,P)a(P)+

Since I(p,p) =max
~ I(p,p') ~, the first Fredholm ap-

proximant above predicts according to (42b) that the
exciton instability occurs erst for a screening parameter
E,' larger than that for which the instability occurs in

25D. Hamman and A. W. Overhauser, Phys. Rev. 143, 183(.'966).

Thus the k dependence of (47) is correct, although the
coefFicient of the k ' term is independent of p (by
assumption) in contrast with the exact result. However,
if we use (8) to calculate e, then the result is the same
regardless of whether we use (47) or (48):

Fro. 3. Comparison of Kleinman's solution of Eqs. (6), (7),
(10) for (I) with the present solution in the k ~ 0 and k-+~
limits as a function of the screening parameter n=E, '/(2kF)'.
The present solution gives an ~ according to (8) which is exact in
these limits. Hubbard's solution agrees with Kleinrnan's in the
k=0 limit, but gives (I)=0 in the k= ~ limit. Overhauser s
solution gives —(I)/Vsrz=9 in the k= ~ limit.

PP PP

We now let I(p, p') be given by (6), and let to~0, and
compare (50) with Kleinman's value

2Z'8

(I&.=- +
k'+kF'+k. ' kF'+k, '

2KB

(51)

llecause of the uncertainties in I(p, p'), a complete
numerical evaluation of (50) is probably not warranted,
and we restrict our comparison to small k and
large k. For large k, Eq. (50) becomes fin units of
Vs)„=4rres/(2ks) s)

—(I&/Vss„, =12L-', —-'n —n'" tan 'n "'
+sn(3+n) ln(n+1)/n], (52)

the exact solution. On the other hand, the variational
solution, being derived from a minimum principle,
predicts that the instability occurs for a screening
parameter smaller than that for which the instability
occurs in the exact solution.

Now we compare our calculation with that of Klein-
rnan. To do so, we force our expression (43) into the
form (10'):

As„——f1+ (I)s„II"i(k,ce)]—',
where now (I)s„ is a complex, frequency- and wave-
vector-dependent function

(I&s- =2 gs-(p)I(p, p')as-(P')/2 g"(P)as-(P') (5o)
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where o. =E,'/(2kp)'. In the same limit (51) becomes

—(I)/V2g, , =2(1+4n) '. (53)

(I)=ln(1+n)/n,
while (51) becomes

(I)=4(1+4n) '. (55)

As illustrated in Pig. 2, the Kleinman approximation
(55) is not so good here, but on the other hand it never
differs from (54) by more than 30'P~ for reasonable
values of o..

At this point, we briefly mention a recent approxi-
mation for e due to Singwi et al."Here the expression
for e naturally falls into the form (12a) with

4z.e' k (q+k)
Z C~(&)-1],

Xk' ~ (q+k)'

where $(q) is the structure factor (Fourier transform of
the pair function) which must be determined self-
consistently. The only point we wish to make here is that
at large k, this evaluation of (I) has the same k depen-
dence as the original Hubbard approximation, that is
(I)&~ 0.

We now compare with Overhauser's calculation,
returning to the large-k case, the only one considered
by him. Overhauser argues that additional correlation
effects nullify the screening effect, so that effectively
E,' is very small and may be taken to be zero. Setting
n=O in (52) gives (I)/V ~,p4.5, —while on t——he other
hand Overhauser obtains —(I)/Vp~, =9. The factor of
two difference has nothing to do with spin, and arises
because phase-space considerations cause roughly half
of the particle-hole interaction to become ineffective at
large k. Thus, even if Overhauser's conjecture about the
size of E, is correct, he has overestimated the magni-
tude of (I). (Note that for smaller k, the discrepancy
between the two figures would not be so great. )

Actually it would seem that E,' is closer to k»' than
it is to zero. Two countervailing effects are involved:
first, the electrons and holes in the screening cloud
correlate with each other, thus making the cloud
tighter than its mean field value, whence increasing

"K.S. Singwi, M. P. Tosi, and A. Sjolander, Nuovo Cimento
54, B160 (1968); J. Hubbard, Phys. Letters 25A, 709 (1967);
K. S. Singwi, M. P. Tosi, and R. H. Land, Phys. Rev. (to be
published).

Although (52) looks completely different from (53), the
latter provides good approximation for reasonable
values of n, as illustrated in Fig. 3.Note that if E, kFT,
then i3&n& 1 for metallic densities. The fact that (53)
is very poor for small n is probably irrelevant, since one
does not expect such ineffective screening. We emphasize
again that in this limit. the Hubbard approximation (11)
is incorrect, since it predicts (I)~ 0.

Consider now the small-k limit. Equation (50)
becomes

E, ; second, the scattered electron or hole can exchange
and correlate with the electrons and holes in thescreen-
ing cloud, which tends to increase the amount of
scattering, and hence to decrease the effective value of
E,'. Of course, to calculate accurately the particle-hole
interaction at metallic densities is beyond the present
state of the art, but to the extent that the two effects
above cancel each other, the above estimate may not be
unreasonable (for large k). It should also be noted that
if E,2 k»', then (I) is not very sensitive to the value
of E,', Fig. 3 shows that for 0.3&n&1, (I) only
varies by a factor of 2; it is only for very small n that
(I) shoots up to the large values used by Overhauser.
In what follows, we proceed under the assumption that
the best value of E,' is not small, but of the order of
kFT'.

YVe have discussed on a unified basis the approxi-
mations of Hubbard, Kleinman, and Overhauser. In
all of these, X is given by (10'), although (I) varies
considerably. On the other hand we have shown that
the best variational approximation of this type is also
given by (10'), with (I) given by (50). The latter ex-
pression for (I), however, is rather unweildly; it would
be desirable to have a simple numerical approximation
to it. Here we are guided by the fact that we have shown
by explicit calculation that the Hubbard-Kleinman
method of approximating (y —p') ' in I works very well
for large k. Explicitly, the numerator of (50) is

PP
(co+zx/+ e p 6 p+k) (4)+1'/+ Cps

—e p+g)

4xe'
X f„,(1—f,) f, „(1—f, )

(1 —P')'+&.'

+fp(1 fp+.) — f. (1—fp+.)
(1 —P')'+&.'

4m-e'—fp(1 —fp+~), fp+~(1 —fp )
(1 —I ')'+&.'

—fp+~(1 —fp), —fp (1—f.+~) (56)
(p —1')'+It.'

In approximating (56) we must be careful not to destroy
the exact invariance (16). We must also be careful not
to introduce any spurious imaginary parts. For this
reason we have added and subtracted the factors
fp+]&fp and fp +zfp in writing (56). In the first two
terms in the curly brackets we replace 4~e't(p —p')'
+E,'] ' by 4n.e'Lkp'+E. '] '. These two terms give
the dominant contribution for large k and this approxi-
mation to them has been explicitly tested in Sec. III.
On the other hand, in the last two terms in the curly
brackets, we replace 4m.e'P(p —p')'+X, '] ' by 4ire'
t'k'+kp'+E, '] ', because at large k the Fermi factors
associated with this term force it to be small. We thus
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obtain

4m.e'
(I)= tI:x(k,~)]'+[x*(—k, —~)]'}

kp'+E, '

where

4xe'
+ [2x(k,a))x*(—k) —(o)] ik'+kp'+E, 2 )

Xp(k, ~)+x*(—k —~)] ' (57)

fp(1 —f~+~)

P 0)+ZY/+6& —6&+g
(58)

where"

AI, ,p '=1+L1—f(k)]F(k),
e(k,O) =1+F(k)/L1 —f(k)F(k)],

(59)

The corresponding values of e and A are given by
Eq. (12). Equation (57) should. provide a reasonable
estimate of the size of the correlation and exchange
contributions to A. For more accurate values one would
have to evaluate (50) numerically. We do not think
this effort would be justi6ed in view of the uncertainty
in the form of the particle-hole interaction. Note that
(57) is different from Kleinman's approximation, even
though both used the Hubbard method of approxi-
mating the integrals. Our relation does not violate the
exact symmetry (16), and does not have spurious
imaginary parts in regions of k and co where the exact
solution of (7) is real. We should also mention again
that (57) is not valid for small k because (6) and (7)
are not valid for small k.

In the limit ao =0, (57) reduces exactly to Kleinman's
value (51). Hence in this limit

V. GROUND-STATE ENERGY

We raised the question earlier of what effect the
rather larger value of (I) will have on the standard
calculations of the correlation energy of the electron
gas. Here we use our variational solution for e to derive
an expression for the correlation energy. As usual the
correlation energy is written as

F...„=PE,(k), (61)

with' '

such that this compressibility limit is right, and to use
(59) as an interpolation formula between large and
small k, following the procedure espoused by Geldart
and Vosko. ' Thus we pick E,' as given by Nozieres-
Pines interpolation formula'

k '/(E '+kp') =-', L1+0.158(kpT/2kp)'] (60)

For the higher-density metals (60) yields values of E.'
close to but somewhat less than kpT', as anticipated
from earlier arguments. Of course for small k, the values
of A. and e can only be consistent to the extent that
Zm*/m 1, which at best limits one to the high-
density metals. We mention, however, that the value of
A implied by (59) is considerably less sensitive to the
magnitude of k than Hubbard's A. in the range 0(k
(2k', as might be expected from Rice's calculations.

We conclude this section by emphasizing that the
formulas derived here should be treated with caution.
For the high-density metals we feel that they are
reasonable and give simple estimates of the magnitudes
of the corrections to be expected. Screening calculations
known a priori to be accurate at metallic densities do
not exist, and are unlikely to exist in the near future.

1( k' k'
f(k) =-( +

4 k k'+kp'+E, ' kp'+E. 'I
kpT'-1 kp( k' ) k+2kp

F(k) =
k' 2 2k k 4kp') k —2kp

The evaluation of F(k) above has approximated e~ by
p'/2m. As pointed out by Geldart and Vosko, ' such an
approximation results in the failure of the k ' terms in
~(k,O) to cancel, even though the leading large-k de-
pendence of A. is still correct. Numerically this is prob-
ably not important, but if it is one should evaluate
F(k) from (58) without replacing e~ by p'/2m, as
discussed by Kleinman. The use of the original Hubbard
approximation for e would be better at large k, than the
use of Kleinman's original form above with e„=p'/2m.

We remark that although (59) has no a priori validity
for small k, the Ward identity (5) shows that our ex-
pression for e is qualitatively correct in this region in
that the coeKcient of the k ' term is considerably
larger than kpT'. It is therefore tempting to pick E,'

This is the normal coupling constant integration, where
all factors of e' contained implicitly in the curly brackets
are replaced by g. According to our variational calcu-
lation

2Vg,II("

1+I2V +(I)]II"'
(63)

where (I), a complex function of k and a&, is given by
(50).For small k, this value of (I) is not correct, but this
is irrelevant because the terms in the square brackets in
the denominator of (63) are dominated by VI, in this
limit, so that the integral (62) is insensitive to the value
of (I) in this limit. Furthermore, in performing the
coupling constant integration, we assume that the
particle-hole interaction I and hence (I) is proportional
to g; this is only a good approximation for large k, but

dg dc'
E,„.(k) =-

p g p 2x'

&&1m(L(e(k,co)) ~ —1]+2Vqll&o&(k, &u)) . (62)
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(I) is important only in this regime. We obtain

E,.„(k)=—

ln(1+ [2Vg+ (I)]II~'&)

XIm 2VaII{'~ 1—
[2U,+ (1)]11«&

(64)

these terms is identically zero. Therefore they do not
contribute to E,(k) at all. In the last two terms in (69),
we replace I(y,y') by the Coulomb interaction —U. ..
because the Fermi functions there force ty —y'~ to be
large when k is large. Hence we And that

p 1 p+&) p' 1 p'+k)

P P f p++kEp~.k 6 p
—6 p'

E,.„(k)
dQ)—Im{V/, (II~'&)'[2V/, +(I)]). (65)
2'

For convenience define

E..„(k)=Ed(k)+E.(k),
with

(66)

Numerical evaluation of (64) would be dificult.
Instead, we discuss its limiting forms for small and
large k. For small k, (I) may be neglected and (64)
reduces to the random phase approximation, which is
known to be accurate in this limit. ' On the other hand,
for large k we may expand the logarithm to obtain

Notice that E,(k) as given by (70) is just the exchange
integral of second-order perturbation theory.

Thus the interpolation scheme for evaluating the
integral (61) which follows naturally from the approxi-
mation (50) is identical to the Nozieres-Pines scheme. '
Actually, for computational reasons Nozieres and Pines
replace E,(k) by ——,'Ez(k), which is only exact at
in6nite k, although a good approximation for smaller
k. Here the exact form comes out of the coupling-
constant integration automatically.

We might also mention that if we had used the ap-
proximation (57) for (I) rather than the more exact
form (50), we would have found that for large k

de—Im2 U/, '(ll &P/)',
2'
dM

E,(k) = — —Im V/, (I)(II&o&)'.
Q 2'

(67a)

(67b)

E..„(k)={1——,'[k'/(k'+kp'+E, z)])Eg(k) (71)

with Ez(k) given by (67). This is precisely the form of
E„„(k)in the Hubbard approximation for large k.

VI. CONCLUSIONS

Equation (67a) is easily evaluated, yielding

fp(1 —
p+~) .(1—p+~)

Ed(k) = —2Vp' Q . (68)
PP E ygp+E ygp—Ep

—Ep~

Notice that Eq(k) is just the direct Coulomb integral of
second-order perturbation theory. To evaluate (67b),
we use the expression (50) for (I), obtaining

fp+~(1-fp)1(y,y')f p+~(1-fp )
(I)lip' ——P

PP (M+ZZ/+6P —Ep+k)(M+ZZ/+Epl —Ep~+g)

fp(1 —fp+~)1(y, y')f'(I —f.+~)

(M+Zg+ E p
—6 p+g) (M+ZY/+ 6 p~

—6P~+g)

fp(1 —fp+~)I(y, y')fp+&(I —fp )

(M+ZZ/+E p
—fp+g) (M+ZZ/+Ep~ —

Ep ~g)

fp+~(1 —fp)1(y, y')fp (1—f;+~)
(69)

(M+ZZ/+Ep Eppes)( +ZM/+t ZEP'pr+g)

Notice that it is the first two terms in the curly brackets
in (69) which give the predominant contribution to (I)
in the static limit, and are the ones that cause our ap-
proximation to have a larger value of (I) than the
Hubbard approximation —these are the terms that have
the diGerent k dependence. Notice on the other hand
that the frequency integral of the imaginary part of

We have touched on two questions here, first of
solving the integral equation for the vertex function for
large k, and second of determining the form of the
particle-hole interaction itself. We believe that the
variational principle provides a reasonable answer to
the erst. We have, however, said little about the second
more dificult and more important question. Indeed,
we have shown that the momentum transfer

~ y —y'~

across the part of the particle-hole interaction does not
increase indefinitely with k, but remains k F. This
means that frequency-dependent screening and vertex
corrections to the particle-hole interaction itself are
bound to have some importance even at large k. These
have not been considered, except to the extent that they
can be lumped into one screening parameter. Ideally
one should put the process through another iteration,
using our vertex and dielectric functions to calculate the
full frequency and wave-vector-dependent particle-
hole interaction, then resolve the integral equation to
check for self-consistency.
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