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The fluctuation and correlation properties of light scattered by a fluid are studied, without

neglect of the spectral linewidth of the incident field. When the source is a single-mode laser,
it is shown that, although the instantaneous amplitude of the scattered field obeys a Gaussian

probability density, the scattered field is not a Gaussian field. The linewidth of the laser beam

is reflected in the amplitude correlations of the scattered light, but not in the intensity cor-
relations. On the other hand, when the laser is oscillating in more than one mode simulta-

neously, the spectral profile of the laser beam makes a contribution to the spectral density

of the scattered intensity fluctuations, and cannot be neglected.

1. INTRODUCTION

The problem of light scattering by a fluid, par-
ticularly near the critical point, has been the
subject of a great many experimental' ' and
theoretical' "~'~' investigations since the early

work of Brillouin. '6 In recent years additional
interest in the field was stimulated by the light
beating technique developed by Benedek'»'~' and
his coworkers, although light beating experi-
ments were first reported by Forrester, Gud-
mundsen, and Johnson" in 1955. It has been
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demonstrated that measurements of the frequency
shifts and the scattering angles are capable of
yielding valuable information about the correla-
tion properties of the fluid scatterers. But,
while the fluid correlations have been treated in
considerable detail, the coherence properties of
the incident light have tended to be disregarded
almost completely. It has usually been assumed
that the incident field is completely monochro-
matic, or completely coherent, or both, so that
the correlations of the scattered field reflect the
properties of the scatterers and nothing else,
As a consequence, it is frequently taken for
granted that the scattered field may be treated
as a Gaussian random process.

Vfhile it is true that the light beam from a
single-mode laser can be almost completely
spatially coherent and has a long coherence time,
the coherence time is always finite. Indeed, the
frequency spread of the incident light beam is
usually much greater than the frequency shifts
introduced by the scattering process. The co-
herence properties of the incident field can
therefore not be disregarded, even if it is a laser
field.

In the following we examine the correlation
properties of the scattered field on the basis of
some reasonable assumptions about the fluctua-

tions of the laser field and of the fluid scatterers.
No theoretical treatment of the fluid correlations
is attempted. We show explicitly that, while the
probability density of the instantaneous scattered
wave amplitude is Gaussian, the scattered field
is cot a Gaussian random process, as has often
been assumed. The amplitude and intensity cor-
relation functions of the scattered field in general
do not satisfy the relationship expected for a Gaus-
sian field. The linewidth of the incident laser beam
is strongly reflected in the amplitude correlation
of the scattered light, but not in the intensity cor-
relation, if a single-mode laser is used. We
find, however, that the for mula which is usually
derived on the basis of the Gaussian assumption,
with the further assumption of zero linewidth for
the laser beam, is correct, since the effects of
these assumptions cancel.

On the other hand, if the laser is oscillating in
two or more modes simultaneously, the spectral
profile of the laser beam makes an explicit con-
tribution to the intensity correlation of the scat-
tered light. Particularly if the laser beam con-
tains a number of off-axis modes, the laser's
spectral profile may distort the measured spec-
tral density. This is illustrated by an example in
Sec. 6.

2. REPRESENTATION OF THE SCATTERED FIELD

Vfe suppose that the incident field is in the form of a plane beam falling on a medium whose suscepti-
bility fluctuates both in space and time. The incident beam induces an oscillating polarization which
causes the medium to radiate, and we refer to the radiation from the susceptibility fluctuations as the
scattered field. Since quantum properties of the field do not play any significant role in the problem, we
treat the radiation field classically throughout.

It is convenient to make a plane wave expansion of the incident field Eo(x, f) in the usual form

E (x, t)=Q fd'k e [vk expi(k x —ckt~)+c.c. ], (I)s k, s k, s

where the wave vector k and polarization index s label the modes of the field, and Zk s is the unit polar-
ization vector. The field is assumed to be nearly plane and quasimonochromatic, so that vk vanishes
with high probability except for wave vectors pointing in the same direction, whose magnitudes lie within
a small range Ak centered on k,. If the susceptibility y(x, f) is a scalar, then the induced polarization at
each element dsx of scatterer is

y(x, t)E,(x, t)d'x,
and the scattered field E(x, f) radiated by this polarization at some distant point X, is given by the usual
dipole formula" for each Fourier component of Eq. (I),

E(X, f) = —f d'xR 'ay(x, i It/c)Z -fd'kk'[g-- expi(k x-ckt)+c. c.]e (p j—I) . (2)s k, s k, s
Here p is the unit vector in the direction X- x, 8 = I X-xt, and the space integral is to be taken over the
volume 'U of the scatterer. hy(x, f) is the deviation of y(x, f) from its mean value (y(x, f)), which we take
to be independent of space and time within the scattering region U.

In addition to the scattered field given by Eg, (2), the incident, or diffracted, field may also make a
contribution at (X, f), but this contribution can be made small by suitable choice of X, and can also be
distinguished experimentally from the scattered field, and we shall not be concerned with it here. A sim-
plification which may appear to be completely unjustified is the neglect of any difference of refractive
index between the scattering region and the surrounding space in Eq. (2). A moment s thought will show
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that the effect of a significant index difference is to introduce very complicated geometric corrections to
the phase of E(X, t), but that the degree of amplitude correlation, and any intensity correlation, will not
be affected.

In view of the quasimonochromaticity of the incident fieM, the factor k may be treated as nearly con-
stant under the integral in Eq. (2) and replaced by k, . Finally, if the incident field is linearly polarized
at right angles to the scattering plane, i.e. , normal to both k and p, then ek e p=0, and Eq. (2) reduces
to

E(X, t) =k ' f&d'xR '4y-(x, t-R/c)E (x, t-R/c)
We now introduce the analytic signal representation of the fields, "by making a one-dimensional

Fourier expansion of both hy(x, t) and E,(x, t) in the form

&y(x, t) = f &g(x, (u)e
' d(u, E,(x, t) = f u(x, (u)e

' der,
so that

E(X, t) = k ' f d 'x R ' ff d(u'd(u a y(x, (u')u(x, (u) exp[- i((o+ (u')(t — R/c)]
'U

= k,' f d 'x R ' ff d(o "d(o a g(x, (u" —(o)u(x, (u) exp[- i(u "(t —R/c)],0 gg

when we make the substitution &u+ &u'= ~". The analytic signal representation V(X, t) then follows if we

suppress the negative frequency range of e", so that

V(X, t) = k,' f d'x R '
f0 d(u" f d(v 4 g(x, (o"—(u)u(x, (u) exp[- i(o "(t—R/c)] .

We now observe that, while u(x, &u) is appreciably different from zero only for high (optical) frequencies
) &u j-k„bg(x, ~) is appreciably different from zero only for low frequencies of some thousands

cps, ' '~' '~"~" since the susceptibility fluctuates slowly. It follows that the negative range of the &u in-

tegral makes a negligible contribution and can be disregarded. The inverse substitution co"- ~ = ~' then

leads to

V(X, t) =k,' f d'xR 'f0 d-(u f d(u'ag(x, (u')u(x, (u) exp[ i((o+-(u')(t —R/c)]

= k,' f&d'xR 'dg(x, t R/-c)V, (-x, t- R/c) (7)

where V,(x, t) is the analytic signal corresponding to E,(x, t).
Finally we observe that, since the amplitude of a single-mode laser beam (far above threshoM) may be

treated as constant to a very good approximation, we can substitute

V,(x, t) = e(I,)'Imexpi[k, x- ck,t P(x, t)]- (8)

in Eq. (7). Here the phase P(x, t) is a slowly varying, random function of space and time, I, =V, (x, t)
~ Vo (x, t) is the mean light intensity, ko is the wave vector of magnitude k, in the direction of propagation,
and it is assumed that the linear dimensions of g are small compared with the coherence length c/Ak of

the incident light. We can therefore treat P(x, t) a,s constant under the integral in Eq. (7), and obtain

V(X, t) =e(I )'I'k, 'exp[- iP(x„t-R, /c)] f&d'xR '4y(x, t R/c)expi[k, -x- ck,(t-R/c)] (9)

where x, is the midpoint of U and Bo )X xpI.

3. PROBABILITY DENSITY OF THE SCATTERED AMPLITUDE

In order to establish the probability density of the scattered complex wave amplitude V(X, t), we make

the assumption that, since the susceptibility fluctuations are produced by the random motions of particles,
hX in Eq. (9) may be treated as a Gaussian random process. '0 This implies that the joint probability den-

sity for 4X, evaluated atany number of distinct space-time points, may be taken to be a multivariate
Gaussian function. This conclusion is implicit in many of the theoretical treatments of the scattering
problem. P is a random phase angle which we take to be distributed uniformly over the range 0 to 2v.
We may therefore express the real part E(X, t) of V(X, t) in the form

E = eicos(tx —P) (10)

where
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(12)

q=(A'+B')'", tan+ =B/A,
A= (I,)'I'k, 'f d'x R-'&X(x, t-R/c) cos[R, x- ck,(t-R/c)], (»)
B= (IOPlmk02 1 d~xR ~By(x, t R/c-) sin[ko ~ x- ck,(t R/-c)],

and A and 8 are themselves Gaussian random processes of zero mean, by virtue of the Gaussian nature
of 4y.

In order to show that z is almost uniformly distributed over the range 0 to 2m, we note thatA and B
have the same variance but are practically uncorrelated. For, if the factor R ' may be treated as nearly
constant under the integral, we have

(A') = (I,t,'/R, ')ff d'xd'x'(by(x, t R/c)-by(x', t R'/c-))

xcos[k, x-ck, (t-R/c)]cos [k, x'-ck, (t R'!c-)]

= (I,k,'/R, ') f~d'x fd'x" (by(x, t R/c-)by(x+x", t R'/c)—)

xcos[k, x —ck,(t-R/c)]cos [k, (x+x")—ck, (t R'/c)]—

(by(x, t- R/c)by(x+ x", t R'/c)) = p(x—", (R —R'}/c)

It is known that p(x, v) is a slowly varying function of v from measurements' '~' '~"~" which show that
the corresponding spectral density is usually limited to some thousands of cps. Then, for all laboratory-
size scatterers, we may put

p(x", (R —R')/c) = p(x", 0}. (13b)

%e now make the far-field approximation, which allows us to express R in the form

R= fR, p —(x-x,)t =R, —p (x —x,) (14)

for sufficiently distant R, where x, is the mid-point of the scattering region, R, = IX- x,t, and p is the
unit vector in the direction X-x,. With the help of Eqs. (13b) and (14) we can now perform the integra-
tion over x in Eq. (12). For a rectangular volume of linear dimensions t„l„l, we obtain

(A ) = —,'(I 0 '0/R 2) Jd'x"p(x", 0)(cos[(k +K)'x"]

os[2k +(k +K) x"-2ce (t-R / )] II
j = 1, 2, 3

where K= 0,p is the wave vector of the scattered light received at X. If l„l„and l, are much greater
than typical wavelengths of the light, as we may assume, then the second term is negligible compared
with the first, and (A') is very nearly proportional to the cosine transform of p(x", 0).

Similarly, we may show that

(B') = ,'(I0k ''0/—R ') 1'd'x "p(x",0)(cos[(k +K) x"]

sin[(k0+ K).l.]/(k +K). l. ].

—cos[2k0
x0+ (k0+K) 'x"- 2ck0(t-R0/c)] g sin[(k0+K). l. ] /(k0+K). l. )

j = 1, 2, 3

so that, to a very good approximation,

(A') = (B') = Z .
However, for the correlation (AB) we find, by a similar argument,

(AB&= —,'(I0k 4&/R ') J'd'x"p(x", 0)(sin[(k +K) x"]

+cos[2k0'x0+ (k0+ K) x"-2ck0(t- R0/c)] g sin[(k0+ K). l. ]/(F0+K). l. ]0 0 . 123 0 jj 0 jj
The contribution of the first term vanishes by virtue of the symmetry of p, (x",0), while that of the second
term is very small compared with (A') or (B'). Thus, to a good approximation, t(AB) I «K. But since
A and B are jointly Gaussian from Eq. (11), it then follows that A and B are uncorrelated Gaussian ran-
dom processes.

when we substitute x'- x =x", provided the correlation range of 4X is very small compared with the linear
dimensions of U. It seems reasonable to suppose that the susceptibility fluctuations are not only station-
ary in time, but also homogeneous over the scattering volume U, so that we may write
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The joint probability density of Q and o. given by Eq. (11) is therefore

~( )
~ ~

—Q'/ —Q'/2' dQdo 2m%
(1S)

We see that n is uniformly distributed over the range 0 to 2m, independently of Q. Since P is similarly
distributed, and n and P are independent, it follows that 5 =n —P—is also uniformly distributed over 0 to
2m, and the probability density p(E) of E = Qcos5 must be similar to the probability density of A = Q cosa.
We have therefore shown that

P(Z) = (2~x) ' e ~/ (20)

and the scattered field fluctuates in a Gaussian manner at each space-time point. We shall see, however,
that the random process represented by the scattered field E(X, t} or V(x, t) is not Gaussian.

4. AMPLITUDE CORRELATIONS

Let us now form the second-order correlation function of the scattered field. From Eq. (9) we find

I"~' '&(X„X,v) —=(V*(X„t) V(X, t+ v')& =Iok~~(expi[P(x, t+ v- R 2/c) —P(x, t- R,/c)]) exp( —ick v)

& ff dsx, dsx2(R,R,) '(hy(x„t- R, /c)b X(x mt+ v-Rm/c)&expi[ko (x —x)+k(R2 —R,)]
(21)

where R, -=IX, —x, l, R, =-IX, —x, t, R„=-IX,—x,I, R„-=lX,—x,l, and we have takenthe fluctuations of
P(x, t) and X(x, t} to be statistically independent, as before. For the correlation of the susceptibility
fluctuations we may use Eq. (13) to write

(hy(x„t - R, /c) 4 X(x~, t+ 7' R2/c})=-p(xm —x„7+R,/c —R'm/c) = p(xm —x„v) (22)

since p(x, v) does not vary appreciably over a time interval (R, —R,}/c. Similarly, if I R» - Rom l /c is
much less than the coherence time of the incident light beam, as is almost certainly the case in practice,
then, since P(x, t) is a slowly varying function of time, we may write

(expi[P (x„t+ v- R„/c)—P(x„t —R„/c)]& exp(- ick,v)

=(expi[P(x„t+ &) —P(x„t)]& exp(- ick,v) =y, (v) [by Eq. (8)] (23)

where y, (r) =(V,*(x„t). V,(x„t+ 7')&/Io (24)

is the normalized amplitude autocorrelation function of the incident laser beam. "
In order to arrive at a plausible form for yo(v') for a single-mode laser beam, we make the usual as-

sumption that the phase function P(x„t) may be considered to perform a one-dimensional random walk in
time. 'y The phase changes are thereby viewed as the result of a very large number of small indepen-
dent perturbations. Although a proper derivation of the laser spectral density requires a quantum treat-
ment, this simple model appears to be satisfactory both as regards the intrinsic limitations of the laser
process, and the external disturbances acting on the laser cavity. It is convenient to write

(25)

where f(xo, t) is some random frequency function of zero mean, which is assumed to have a Gaussian
probability density and negligible time correlation, and plays the role of the "velocity" of a Brownian
particle. It is convenient to put

(f(x„t)g(x„t+ ~ ))=De(v), (28)

where D is a constant characteristic of the "diffusion" rate of the phase p(x, t), with a, magnitude of the
order of the spectral width of the laser beam. Then y, (7) is given by

y, (v) = (exp[i f f(x„t')dt']& exp(- ick,~)

in which the first factor is the characteristic functional of a 5-correlated Gaussian random process. We
may therefore make use of the general properties of the Gaussian characteristic functional, "to obtain

(~y) = exp[ 21 ff,
'

&-y(xo, t')f(xo t"}&«'«"I]exp(- icko~) =exp(--,'Dl ~~)exp(-ick, 7) (27)



L. MANDE L

(30)

From Eqs. (21), (22), (23), and (27) we then have, if R, and 8, are much greater than the linear dimen-
sions of 'U )

r, &(X„~,.}=(fq./~„~„}ep(- —;D~.
~

i.~..}
xgd'x d'x, g(x, —x„r)expi [k, ~ (x, —x,)+k,(A, —8,)] . (28)

'U

We now introduce the far-field approximation as before, which allows us to write [c.f. Eq. (14)]

Bg —Ba = I Bog pg —(xj —xo)i—t 802 pa —(x2 —xo)i Roy —Roy —pi ' (xi —xo) + p2 ' (x2 —xo) (29)

where p, and p2 are unit vectors in the directions X,—xo and X, —x,. From Eqs. (28) and (29) we have

I &' »(X„X„~}=(IP,»/ft, P„)exp(- —.'D~ ~~) exp[- ia,(c~+f~„-f~„)+i(K,—K,) x,]
x ff d sjd x2p(x2 —x~q T) expg[ko ' (x~ —x~) + R~ ' x~ —K ~ x2]

$0 py and K2 00 p, are the wave vectors of the scattered field in the measured directiong. If
the linear dimensions I„I„l, of 'U are great compared with the spatial correlation range of p(x, v) then,
with the help of the substitutions x, —x, =x', x, + x, =x", this reduces to

I&'»(X„X„~)=(fu»/Z Z )exp(-2D~~~)exp[-~J (c~+ft -ft )]

~3

x fd'x'p, (x', ~)expi[k ——,'(K +K )] x'» f f f d'x" exp[-,'i(K -K ) ~ x"]
1 2

=(I u»~/Z ft )exp(--', D~~ ) epx[-in (c~+Z ft )]-M[k, --.'(K, +R,), ~]

x g»n[-,'(K2- KI).f. ]/-,'(K2- KI). l. (31)

where M(k, r) = fd'xp(x, 7.)e (32)

is the spatial Fourier transform of the susceptibility correlation function. Thus, from an exploration of
the scattered field in various directions, it should be possible to determine the correlation propert&gs of
the scattering fluid.

A number of comments are perhaps worth making. For a fixed —,'(K, + K,) vector, the dependence of the
correlation I"t'~'& (X„X„r}on K, —K„i.e. , on the separation of the points X„X„is governed entirely
by the dimensions l„l„l, of the scattering region, and not at all by the correlation range of the ele-
mentary scatterers. No useful information about the properties of the scatterers can therefore be ob-
tained from measurements of the spatial coherence at two points in the scattered field, which cannot
equally (and more conveniently) be obtained from measurements at one point. "

If we allow the points X, and Q to coincide at R, we obtain the somewhat simpler formula

r&' '&(X, X, ~) = (r,n,» V/f~, ') exp(- —.'Dt~l —zen, ~)M(k, K, ~), — (33)

from which it is seen that the r-dependence of I'&'~ '&(X, X, v) is a reflection of the spectral width both of
the incident laser beam and of the susceptibility fluctuations. %'hichever spectral width is the greater
will tend to dominate the behavior in Eq. (33). Since the frequency ranges of typical fluid fluctuations
appear to be of order kc/sec or tens of kc/sec, ' '~'~" while the spectral width D of even the most stable
commercial single-mode laser is usually some hundreds of kc/sec, it is the exp(- -', Dirt) term which is
likely to determine the v dependence of ti"4~ '&(X, X, 7') t. We see therefore that the spectral width of the
incident field cannot be neglected in the calculation of the correlation function T"~'y '&.

As a special case of Eq. (33), on putting v =0, we obtain the mean scattered light intensity at X,

(I(X, t)) = (fob,» &/8, ')M(k, —K, 0),

which also contains the information about the spatial correlations of the scatterers.

5. INTENSITY CORRELATIONS

Since it has become customary to study the properties of the scattered field with a combination Of yhoto-
detector and spectral analyzer, and since the output of the spectral analyzer contains a contribution de-
pending on the intensity autocorrelation function of the field~ (in addition to the shot noise), we now ex-
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amine the nature of this correlation. From Eq. (9) we can readily form the fourth-order correlation
function defined by

(I(x, t)I(x, t+ v )) -=(v*(x, t) ~ i(x, t ) v'~(x, t+ 7 ) v(x, t+ 7 ))

=I,'I,' ff f f (dx)» (R,R@+) '(~y(x„t R,-/c)~y(x„t R,-/c)

«)t(x„t+ ~ —R, /c)~q(x„ t+ ~- R, /c))

x exp[zk, (-x, +x, —x, +x») —ik,(-R, +R, —R, +R,)]. (35)

Since by(x, t) is assumed to be a Gaussian random process, we may make use of the moment theorem for
the Gaussian process to reduce the fourth-order correlation of 4y to products of second-order correla-
tions. s' Thus,

(&)t(x„t- R, /c)ay(xz, t Rz/c)-&y(x„ t+ ~- R,/c)by(x„ t+ v' -R»/c))

= p(x, - x„R,/c —R,/c) p(x —x„R,/c —R,/c)+ tz(x, —x„&+R,/c —R,/c)tz(x, —x„v+R,/c —R»/c)

+ tz(x» —x» &+R,/c —R»/c) iz(xz —xz, 1 + Rz/c —Rz/c)

= tz(x, —x„0)tz(x,—x„0)+p, (x, —x„~)p, (x» —x„~)+y, m, —x„~)p, (x, —x„7),
where the last equation follows from the previous one [c.f. Eq. (14)] by virtue of the fact that y, (x, 7') is
a slowly varying function of v. 1f X is sufficiently distant from the scatterer so that the factor (R,RQQ») '
may be replaced by 1/R,' (R, = I X- x, l ) under the integral, and the far-field approximation given by Eq.
(29) may be used, and if we assume, as before, that the linear dimensions f„l»l,of '0 are all large
compared with the correlation range of p, (x, v ), then with the help of Eq. (36), Eq. (35) reduces to

(I(R, t)I(X, t+ T)) = (I,'0,'g'/Ro») ffd'x'd'x "y(x', 0)p (x",0) exp[i(k, —K) ~ (x'+x")]

+ (I,'tz, '/Ro») ffd'x'd'x"p(x', v) p (x", z') exp[i(k, —K)' (x"-x')]

x fJcPg,d''g, exp[2i(R, - K) (x,- x,)]

+(I ~A»gm/R») ffd x'd x"tz(x', &) p(x", ~) expi(k, K)'(x—'-x")

Io0 s'U2

M (kO —K, 0)+ IM(ko —K, &)I '
(sin(k —R).l.)2

II
j =1, 2, 3 k —K .l.

(3V)

If the lmear dimensions of the scattering region are very great compared with the wavelength of the in-
cident light, then the third term will be negligible compared with the second for almost all directions of
scattering except the forward direction. On subtracting (I(X, t))' given by Eq. (34) from both sides of
Eq. (3V), we obtain

iM(k, -K, ~)t' 1+ g
j =1, 2, 3

sin(k0 —K).l.

(k —K).l.
(33)

%A have shown, therefore, that the properties of the susceptibility correlations are simply related to
the intensity correlations of the scattered field. They can therefore be obtSined from an autocorrelation
Or Spectral analysis of the current fluctuations of a photodetector exposed to the scattered field. Thus,
it is now well known that the spectral density G(~) of the current fluctuations of an illuminated photode-
teetox' is given by~

G(e) = zzcS(I(X, t)) K(&o)I'[1+ncS%'(X, &u)/(I(X, t)) ], (39)

where n is the quantum efficiency of the photodetector and S its surface area, 4(R, &o) is the Fourier
transform of (rLI(R, t)rhI(g, t+z)) and K(u) is the frequency response of the detector circuit. Alterna-
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tively, the intensity correlation on the left of Eq. (38) could be obtained from an analysis of the emission
times of photoelectric pulses at the photodetector. " But perhaps the most interesting feature of Eq. (38)
is the fact that the correlation properties of the incident laser field do not appear in it. The spectral
linewidth of the laser beam therefore plays no role at all in the measured photoelectric fluctuations. We
emphasize once again that this linewidth is not negligible compared with the spectral width of the sus-
ceptibility fluctuations; on the contrary, it is likely to be many times as great. It is because of the con-
stant absolute amplitude of the field from a single-mode laser, that this linewidth does not appear in
Eq. (38). However, with a scatterer of sufficiently large dimensions t„I„t, this conclusion would
not hold, and the phase fluctuations of the laser beam would show up in the intensity correlations of the
scattered light.

6. MSCUSSSON

From Eqs. (38) and (33) we find that, for any
direction other than the forward direction,

(~I(x, t) ~I(x, t+ ~))
=!l.~'»(x x ~)!'eDj v')

(40)

so that the complex scalar amplitude V(X, t) of
the scattered field does not satisfy the moment
theorem for a Gaussian random process. The
scattered field is therefore not a Gaussian field,
i.e. it is not a field obeying the usual statistics
of thermal light, despite the fact that the instan-
taneous wave amplitude at each space-time point
has a Gaussian probability density, as we showed
in Section 3. Evidently the non-Gaussian features
of the field will only become apparent if we ex-
amine the joint probabilities of wave amplitudes
separated by time intervals of order l/D at the
same point (or corresponding intervals at dif-
ferent points). But, clearly, the non-Gaussian
properties will not appear at all in measurements
involving only the correlations of the light inten-
sity.

By starting from Eq. (9) we may readily show
that the nth moment of Ig, t ) satisfies the re-
lation

v(x, t) = v,(x, t) + v, (x, t), (42)

so that

field. Inspection of Eq. (40) shows that, if we
put D =0, then the Gaussian condition does indeed
hold. In other words, the effect introduced in
Eq. (33) by the neglect of the laser spectral width,
and the effect introduced in Eq. (40) by the Gaus-
sian assumption, cancel each other, and the re-
sulting equation for the intensity correlation is
then correct. But this fortunate circumstance,
which depends on the special properties of a
single-mode laser beam, must be regarded as
somewhat fortuitous.

It is not difficult to envisage a situation in which
neglect of the laser linewidth would not give the
right answer. Let us consider a laser which is
oscillating in two modes simultaneously, and
let us suppose that these modes are centered on
frequencies k, and k, [with k, = & (k„+k,)],
that they have associated linewidths D, and D„
and equal constant amplitudes (2I,)'~'. For sim-
plicity we assume that the two modes are statisti-
cally independent. Then, if these modes result
in scattered complex wave amplitudes V, (x, t) and
V, (X, t) respectively, the resultant complex wave
amplitude at (R, t) will be given by

( I (X, t) ) =n! (I (X, t )) (4l) I(x, t) =I,(x, t)+I,(x, t)

at a distant point R, other than in the forward
direction, so that I (X, t) has an exponential prob-
ability density. As a result, the number of photo-
electric counts registered by a photodetector at
R in a short time interval will obey the Bose-
Einstein distribution, y' which is characteristic
of thermal light. However, it should now be
clear that it is not possible to draw the conclusion
that the scattered field is a Gaussian field (in the
sense that the probability functional or phase-
space functional is Gaussian) on the basis of
yhotoelectric counting measurements, as has
sometimes been done. '

As we pointed out in the introduction, it has
been customary in many previous treatments of
the scattering problem to treat the incident laser
field as strictly monochromatic, and to take it
for granted that the scattered field is a Gaussian

+ V, (X, t) ~ V, (X, t) + c.c.

and

(I (x, t)IN, t+~)) =(I,(x, t)I,(x, t+~))

+(I,(X, t)I, (X, t+~)&+2(I,(~, t))(I,(X, t))

+(v,*(x,t) V,(x, t+~))(v, (X, t).v,*(x, t+T )),
(43)

provided both modes are similarly polarized.
With the help of Eqs. (33), (34), and (38), we
can evaluate each term in this equation, and we
find that, except for points in the forward di-
rection,

( AI (X, t) 4I (R, t+7 )) = (Io'k sg'/R 4)
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& IM(k, —K, v) I'2(1+cos[(k, —0,) ~]
&& exp[- & (D, +8,) I ~ I ]], (44)

which should be compared with Eq. (38) under the
same conditions. This time we note that the
spectral features of the laser beam appear explic-
itly in the second term in Eti. (44). Whether the
contribution of the second term is apparent in
measurements of the spectral density G(u) of
the photoelectric current fluctuations (given by
Eg. (39) ), depends largely on the mode separa-
tion k, —k,. If this frequency difference is ap-
preciably less than about a Me/sec, as it might
be for off-axis modes, the effect of the second
term may well be to distort the measured spec-
tral density. This situation is illustrated in Fig.
1, in which the Fourier transform 4'(&o) of

( B,I (X, t) b,I (R, t+ v ))

~ ~
~ ~ ~

~
. '

i' ''

I

I ki- kg I

FIG. 1. Illustrating the form of the spectral density
+(co) of the intensity fluctuations of scattered light, for
a two-mode laser beam. The broken and dotted curves
show the separate contributions of the first and second
terms in Eq. (44), respectively.

is shown as a function of frequency +. If D, +D,
is comparable with —or greater than — tk, —k, I,
the effect of light beating between the modes will
be superimposed on the contribution from the
susceptibility fluctuations. It is possible that this
phenomenon may have contributed to a few rather
wide measured spectral densities which have been
reported.

%e conclude, therefore, that, while the effect
of the laser spectral width is unimportant in the
usual measurements so long as a single-mode
laser is used as source, this is not necessarily
so in all measurements, or under multimode
conditions.
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A perturbation study of the && states of two-electron atoms has been made. In particular,

oscillator strength values for the (1 8, 2 P) and (2 S, 2 P) transitions are obtained. The 2 P
and 2 I' states are studied through ninth and tenth order, respectively. In addition, the N I'
and N Pstates are studied in first order through the 10P member of the series. Perturbation

energy coefficients and other expectation values for several important operators have been

computed. Perturbation energy coefficients for the 1 8 state (through 25th order) and 2 S

state (through 17th order) are also reported. Where comparison is possible, these results

are in satisfactory agreement with the results obtained from variational calculations by C. L.
Pekeris and co-workers. The variational-perturbation method for excited states requires

auxiliary conditions on the perturbation wave functions. The condition on the nth-order wave

function is derived here. This is a generalization of the first-order condition given by

Sin anoglu.

I. INTRODUCTION AND PROCEDURE

This study was undertaken in order to apply the
variational-perturbation methods previously de-
veloped' to a study of the oscillator strengths in
the 2 P to I S and the 2 P to 23S transitions for
the helium isoelectronic series. This task neces-
sitated the construction of accurate 2P perturba-
tion wavefunctions through high orders, and, con-
comitantly, the availability of I'S and 2'S wave
functions of comparable accuracy and order. For
reasons+of computational convenience, a new I'S
ground-state wave function was determined, al-
though similar wave functions already are in ex-
istence. In addition the 2P perturbation wave
functions are themselves of interest, and a study
has beeri made of their eigenvalues, expectation
values with certain operators, etc. The pertur-
bation energy coefficients for the I'S and 2'S

states are also reported. The S state calculations
were regarded as of secondary interest, and no
detailed study of them is presented. Further,
first-order studies of the NP states, N from 3 to
10, were completed, and are briefly reported.

1. Notation

The notation used here is as follows. Let the
Hamiltonian be given in atomic units' by

H = Ho+ H, = Ho+ 1/Zr, 2, (1)

where Z is the nuclear charge and 1/Zr» is re-
garded as the perturbation. Then a solution @'lMl

for the Mth state can be written

with eigenvalue


