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apparent critical Lorentz force and the critical thermal
force increases with decreasing film thickness suggests
that these current channels are associated with the
surface of the specimen. Similar conclusions have been
reached from studies of the Nernst effect and the Aux
Row in thin films of tin and indium. "It is interesting
to note that the discrepancy between the critical
thermal force and the critical Lorentz force disappears
in a thick specimen where surface effects can be
neglected. "

The present results appear to resolve the controversy
between Joiner and KuhP and Swartz and Hart' in
favor of the surface-current model. In their criticism of
the surface Aux-pinning model of Swartz and Hart,
Joiner and Kuhl argue that apparently the critical
current is not a surface current because otherwise the

'r J. Lowell (private communication).

Aux-Row resistivity would be reduced and would de-
crease much more strongly than observed as the mag-
netic field becomes more aligned with the sample
surface. However, since the surface currents affect only
the critical-current value and not the Aux-Row resis-

tivity, this argument of Joiner and Kuhl seems to be
invalid.
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The Langer-Ambegaokar statistical theory of dissipative fluctuations in narrow superconducting chan-
nels is extended to describe the quantum transitions of a closed superconducting ring containing a long
one-dimensional weak-link section. The external magnetic Qux C, linking the loop is the independent thermo-
dynamic variable. Based upon the Ginzburg-Landau free energy, the theory is expected to accurately
describe single-quantum transitions for T near but slightly below T,. Data reported by Lukens and Good-
kind for thin-film Sn rings are reasonably consistent with the theory, but more definitive experimental
tests are required.

I. INTRODUCTION

STATISTICAL model based upon a free-energy
function of the Ginzburg-Landau form has been

proposed by Langer and Ambegaokar (LA) to describe
the onset of dissipation in thin superconducting wires
near T,. Their principal predictions for long, simply
connected wires of uniform cross section have been
con6rmed by Webb and Warburton in experiments on
whisker crystals of tin, structures with remarkable
uniformity. ' ' The original formulas were derived under
the assumption that the gauge-invariant phase dif-
ference Ay across the ends of the wire was held fixed,
but they also obtain for long wires under conditions of
constant current. 4 In this paper we develop the cor-
responding theory of a closed ring of thin superconduct-

' J. S. Langer and V. Ambegaokar, Phys. Rev. 164, 498 (1967)'
'W. W. Webb and R. J. Warburton, Phys. Rev. Letters 20,

46' (&968).
~ J. Franks, Acta Met. 6, 103 (1958); C. Herring and J. K.

Gait, Phys. Rev. 85, 1060 (1952).
4 D. E. McCumher, Phys. Rev. 172, 427 (1968).

ing wire near T, in a weak quasistatic external magnetic
field. The total free energy includes that stored in the
wire plus that stored in the field. The analysis is slightly
more complicated than the cases considered previously
in that the external magnetic field rather than the
phase difference Ay or the current I is the independent
thermodynamic variable.

We do not require that the ring have uniform cross
section nor be everywhere thin compared to the co-
herence length $(T), but we do assume that it contains
a thin weak-link section of uniform cross-sectional
area o. and of length I))((T).The weak-link section is
"one-dimensional" in the sense that its maximum
diameter is everywhere less than f(T). Cases with non-
uniform cross section or with L&)(T) can be accom-
modated in the formalism; results for such systems will

be described in a later paper. BriefIy, the principal
effect of variable o. and finite 1. is to broaden the tem-
perature range of the resistive transition compared to
that for a long uniform sample of the same average
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cross section. Spatial variations in the mean-field
critical temperature T, are an even more serious source
of anomalous bros, dening in thin-film weak links (or
microbridges), for example, where it is well known that
strain between film and substrate can change T, by as
much as a few tenths of a degree Kelvin. ' One important
feature of the Webb-Warburton whisker results' is
that the range of the resistive transition, although still
somewhat larger than predicted by theory for purely
intrinsic fluctuations, ' is an order of magnitude smaller
than that previously reported on thin-film samples~'
and of the order of the Quctuation shift AT, being
sought.

Fluctuations in small superconducting loops with
point-contact weak links have been studied in a pre-
lirninary way at temperatures well below T, by Zim-

merman and Silver. ' Experiments which relate more
directly to the theory we describe below are those of
Lukens and Goodkind on thin-film Sn rings at tempera-
tures near T,."Their samples were formed by evaporat-
ing a 1-mm-wide strip, 1000 A thick, onto a is-in. -diam

sapphire tube; each strip was cut to have a weak-link
section about 8 p long with a reduced width of 3 p, .
These samples marginally meet the conditions for a
one-dimensional uniform-long-wire analysis, but spatial.
variations in T, may be a problem as they were pre-
viously in simply connected thin-film structures. The
experiments do exhibit certain qualitative features pre-
dicted by the theory, but there are significant dis-

crepancies which are discussed in Sec. VII.
In Sec. II we briefly describe the statistical model

appropriate to the ring geometry. Metastable states in
a fixed external magnetic field are described in Sec. III,
and the free-energy barriers separating adjacent
metastable states in Sec. IV. The master equation
governing the time rate of transitions between these
states is developed in Sec. V. Two time-scale prefactors
are given, one proposed by Lander and Arnbegaokar
and another derived from the time-dependent Ginzburg-
Landau equation. Formulas appropriate to specific
experiments are derived in Sec. VI and briefly compared
with the Lukens-Goodkind results in Sec. VII.

II. STATISTICAL MODEL

The system with which we are concerned is a super-
conducting ring of self-inductance L, in a weak quasi-

5R. D. Parks, in Fluctuations in Supercorductors, edited by
W. S. Goree and F. Chilton (Stanford Research Institute, Menlo
Park, Calif. , 1968), p. 141.

'R. D. Parks and R. P. Groff, Phys. Rev. Letters 18, 342
(1967).

7 T. K. Hunt and J. E. Mercereau, Phys. Rev. Letters 18, 551
(1967).

R. P. Gro8, S. Marcelja, W. E. Masker, and R. D. Parks,
Phys. Rev. Letters 19, 1328 (1967).

J. E. Zimmerman and A. H. Silver, Phys. Rev. Letters 19, 14
(1967); A. H. Silver and J. E. Zimmerman, Phys, Rev. 157, 317
(1967)."J.E. Lukens and J. M. Goodkind, )Phys. Rev. Letters 20,
1363 (1968).

static magnetic field. If I is the current in the ring, the
total Aux C linking the ring is

C =4,—L,I, (2.1)

= Id4+L,IdI, (2.2b)

where the second form follows from (2.1) and explicitly
exhibits the superconductor and field components.

Following Langer and Ambegaokar, ' " we assume
that the free-energy density in the superconductor is a
local function at each instant of a complex-valued order
parameter f(r) which ranges with time in a continuous
random fashion over the f(r) function space consistent
with the required boundary conditions. The free-
energy functional F[f(r)] formed from the volume
integral of this free-energy density and from expressions
for the energy stored in the electromagnetic field acts
as a mean effective potential driving the order parame-
ter lt (r). The neighborhood of each point in the order-
parameter function space is visited with a frequency
proportional to the Boltzmann factor e "'~&~. Stable
and metastable states of the system correspond re-
spectively to absolute and local minima of the func-
tional F)g(r)$. In a given metastable state, ~P(r) ~

will

deviate significantly from its average value (at the F
rninirnum) only for points r near the weak link, so that
effectively the free energy F is a functional only of the
order parameter f(r) in and near the weak link. In
narrow links with maximum diameter less than $(T),
the order parameter is a function only of the dimension
along the length of the link, variations of P(r) in the
transverse directions being suppressed by the Boltz-
mann factor.

That part of the free energy stored in the supercon-
ductor can be written as the sum of two terms, one de-
scribing the energy in the weak-link section and a
second that in the remainder or "bulk" section of the
ring. We approximate the latter by the free energy in
equilibrium of a length L~ of wire of uniform cross sec-
tion 0.

& carrying the ring current I. Through terms of
order 12 and to within an additive constant equal to the
zero-current condensation energy this is

Fs= IsC (Pl b/47r(r sH, (T)$(T), (2.3)

where ls= Ls/$(T) is the le—ngth in dimensionless units,
H, (T) is the bulk critical field at temperature T, and

"J.S. Langer, in Fluctuations in Superconductors, edited by
W. S. Goree and F. Chilton (Stanford Research Institute, Menlo
Park, Calif. , 1968), p. 83.

where C, is the externally applied Aux which would link
the ring if broken (I=0). The total free energy F of a
particular state of the system includes that stored in
the superconductor plus that stored in the induced
field. The infinitesimal change in free energy appro-
priate to a reversible infinitesimal isothermal change in
external Aux C, is

(2.2a)
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Cp ——hc/2e is the Rux quantum. " Gaussian units are
used throughout.

If we describe the weak-link section by the Ginzburg-
Landau formulas, '4 the free-energy functional I" for
the system is, to within an unimportant additive
constant,

Z(C,) =
o H.'(T)((T)

L/2

dx [—f'(x)+-',f4(x)

+(df(x)/dx)'+(f(x) Ld ~(x)/dx])'1+-'L&'(C' ), (2 4)

where /= L/$(T—) is the length of the weak link in
dimensionless units (l))1 assumed), where L„ is the
effective self-inductance I Eq. (2.3)]

L,=L,+C psfp/2rra pH, '(T)$(T), (2.5)

and where f(x)e'&'*' is proportional to the gauge-
invariant Ginzburg-Landau order parameter in the
link. "For the weak magnetic fields with which we are
here concerned, y(x) differs from the phase of P(r) by
a line integral of the vector potential. "

Whereas P(r) is constrained to be strictly periodic
(single valued) about the ring, the change Ay of the
gauge-invariant phase q(x) from one end of the link
to the other is a function of the Aux C through the ring

Aq =2xC/Cp —Aq p, modulo 2s. (2.6)

where Cp ——hc/2e is again the flux quantum and A&ps

is the change in gauge-invariant phase across the
"bulk" section of the ring

J„=2~(t) —m)

L/2

—L/2

/L+p
dxf '(x)+, (3.3)

Cp

where m is an integer, and where

t) =—C,/C p (3 4)

is a convenient measure of the external Qux in units of
the flux quantum. Only values of rn such tha, t

~
J

~
(J,

are admissible.
It is useful to express J, 0&

~
I

~
(J„in terms of a

parameter a such that

J =K(1—K'), (3.5)

That solution of Eqs. (3.1)—(3.3) which corresponds
to a local free-energy minimum has

energy (2.4) with respect to variations (6f(x),8&p(x), 5I)
which satisfy the constraint (2.8) but are otherwise
arbitrary. "At the extremes of Ii, the functions f(x)
and q (x) satisfy the Ginzburg-I. andau equations,
which in our notation are

d' f(x)/dx'= —f(x)+f'(x)+ J'/f'(x) (3.1a)

J= f'(x)$dq (x)/dx], (3.1b)

where J is dimensionless, independent of x, and related
to the supercurrent I in the sample by

I=JoH, '(T) &(T)/C p= JIIp/2x, (3.2)

where /Ip/2w vanishes as (hT)'" in the limit AT —& 0+,
as is characteristic of the critical current (J=J,= 2%3/9)
in the absence of fluctuations. J is constrained by (2.8)
to values

Combining Eqs. (2.1), (2.6), and (2.7), we find that

Ay= 2s LC,— LI(C&,)]/C p, modulo 2w (2.8)

f'(x) = 1—K„',

p(X) = KN~X+ (pp )I 5+= lK~ )1

(3.6R)

(3.6b)

where 1., is the effective inductance dined in Eq.
(2.5). Equations (2.6) and (2.8) are fluxoid quantum
conditions.

In the limit hT=—T,—T ~ 0+, the prefactor
oH. '(T)$(T)/4~ in the first term of (2.4) vanishes as
(AT)'I'. The second or bulk-correction term in the
inductance (2.5) diverges as (AT, p+hT) 'i', where
AT, ~

—=T,~
—T, is the diR'erence, if any, between the

critical temperature in the bulk section and that in the
weak link. The "bulk" properties enter our analysis
only through the kinetic inductance 1.,—L,.

III. METASTABLE STATES

The metastable states of the system in a Axed ex-
ternal field C. correspond to minima in the free

'~ To minimize the confusion between the lengths (L,, Lq) and
the inductances (L„L,), we use dimensionless lengths l=L/g(T)
and lf, ——Lf,/&(T) in our principal equations. These latter should
not be confused with carrier mean free paths, which we never
consider.

'3 P.-G. de Gennes, Superconductivity of Metals md Alloys
(W. A. Benjamin, Inc. , New York, 1966), Chap. 7.

where from (3.3)

K = 27r(r) m)/1[1+ (1 —K„')l.,Ip/C. p]—. (3.7)

The corresponding ring current and free energy are

I (C,)= (t)—ns)(1 —K ') p/I)1+ (1 K')L,Ip/C p]—(3.8)

P„(C,) = —PC pIp(1 —K„')'

&& (1—2L,IpK„'/C p)/16m', (3.9)

respectively. The free energy is an absolute minimum
in that state for which the circulating current magni-
tude

~
I

~
is a minimum (m = integer nearest ri).

The integer m is a Auxoid quantum number. It is
constrained by the requirement that Eqs. (3.6)—(3.9)
describe a local free-energy minimum to values such that

~

J
~
(J, or, equivalently, K '( s. Neglecting boundary

effects at the end of a, short wire (l& 1), we can usefully

~4 We implicitly only consider the case l&)1, for which one has
the additional boundary condition bf df/dx=o at x= &&l.
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distinguish three qualitatively di6erent cases:

l(1+2I.,Ie/34 s) &sv3 (3.10a)

»~v3.
(3.10b)

(3.10c)

F~i—Fm= —sC'o(Igni+I ) ) (3.12c)

where rft= m, m+1, or an intermediate value.
Under conditions for which the Langer-Ambegaokar

model is valid, the long-link condition l))1 implies that
the total condensation free energy of the weak link

I
F F,

~
g t; g=lo'I—I (T)&(T)/Sm

= PC,I,/16 ' (3.13)

is very much greater than the thermal energy k&T.
Only those states for which I(, '((3 will contribute
signi6cantly to the system statistics. For such states
Eq. (3.9) simplifies to

F (4 )= PC Ie/167r'+PknT—(ri m)' (3.14)—
where

l3= 4 OIO/2kBT(1+X Ip/@p) )0. (3.15)

States for which the whole link is normal or for which
I(: '=3 will be suppressed by the Boltzmann factor.

'5 W. A. Little and R. D. Parks, Phys. Rev. Letters 9, 9 (j.962);
R. D. Parks and W. A. Little, Phys. Rev. 133, A97 (1964).

r' R. P. Groff and R. D. Parks, Phys. Rev. 176, 567 (1968).

The last two cases differ by the degree of inequality. In
the first case there is at most one admissible quantum
number and sometimes none. A particular integer m is
admissible with ~ '(37 when the external field C,= gC p

is such that

~
'g ter

~
(l(1—+2I Ip/34's)2rrV3. (3.11)

When (3.10a) obtains ranges of external field exist
(r) approximately half integral) for which (3.11) cannot
be satisfied for any integer m. For such 6elds the weak
link becomes normal. Examples for point-contact weak
links are reported by Zimmerman and Silver. ' When
(3.10b) obtains, there is always at least one and pos-
sibly several admissible quantum numbers. By adjust-
ing the temperature T near T., one can vary the
parameters on the right-hand side of (3.11) and measure
a critical temperature T,(p) for which the system will

just remain superconducting for some m at a field
ri=C, /Ce, in essence, this is the experiment of Little
and Parks. ""

In what follows, we are only concerned with /)&1
and the case (3.10c). Many quantum numbers m are
admissible for each value of the 6eld parameter g, and
adjacent values of ~ are sufficiently closely spaced that
to the required accuracy

x~~r —x~= —2s/l{1+L1—3x-'jL.Lo/4'o}, (3 12a)

I +i I = —P1—3—x„-')Is/
(1+L1—3x $L Ip/4'p), -(3.12b)

and

The difference ~I~+i I—
~

in (3.12b) is less than the
lesser of (1—3» ')Ie and 4 s/L„where the latter bound
obtains in the limit L,Ie/4 e»1/(1 —3x ') =1. As
AT= T, T—increases from zero, ~I +i I t

—increases
with Io proportionally to AT until finally, when
Ie»4's/L„ it saturates at the value 4 e/L, . For BT large,
I-, approximates I., and the Aux C linking the ring
LEq. (2.1)j is quantized in units of the flux quantum. 'r

IV. FREE-ENERGY BARRIERS

t'1 —3x~~) r~r

dx j-'(x) =lx„+2 tan-'~
2.-s J

(4 1)

F = —PCeIoL(1 —x ')'(1—2L Ior( '/Ce)
Sv2(1 3x ')'I'/3l~/16s. s (4 2

~'7 B. S. Deaver and W. M. Fairbank, Phys. Rev. Letters 7, 43
(1961);R. Doll and M. Nabauer, ibid 7, 50 (1961.).

More precisely, the probability is proportional to the Boltz-
mann factor times the volume of P-function space for which F(P) is
within a k&T neighborhood of the free-energy minimum F .
This volume depends upon the curvature of F(f) at F=F in
P-function space and varies slowly with the index m. It enters a
thermodynamic description through the entropy associated with
order-parameter fluctuations about the metastable-state solutions
P (r) (Kq. (5.4)g. To the extent that this entropy varies with m, F
is an energy rather than a true free energy (Ref. 25).

1~ Here tan ~( ~ ~ ~ ) is the principal value of the arctangent. Its
sign and that of t (1—3x ')/2s~')'" is the same as that of x~.

With C, fixed, the system will gradually relax
to quantum states for which the circulating current
I is small. The steady-state probability that the system
has a particular Quxoid quantum number m is ap-
proximately proportional to the Boltzmann factor
expL —F (4,)/ksT j." We wish to determine the
probability per unit time that the system will relax from
a highly excited state (I large) to a less excited state
and the probability per unit time that the system will
transfer from one state with appreciably steady-state
probability to another. These rates, which we discuss in
detail in Secs. V and VI, are sensitive to the height of
the free-energy barrier between adjacent minima in the
P function space. ' The minimum barrier corresponds to
motion over a saddle point of FQ). These saddle points
are extrema of F and satisfy the Ginzburg-Landau equa-
tion (3.1) and the constraint equation (2.S) [or (3.3)
suitably interpreted'. The nature of the saddle-point
solutions of Eq. (3.1) has been described in detail by
Langer and Arnbegaokar. '

The saddle-point barrier between the m and m+1
minima described in Sec. III is conveniently char-
acterized by current parameters I(, , J, and I and by
the saddle-point free energy F . The current parame-
ters are related through Eqs. (3.2) and (3.5). In the
large-/ limit with which we are here concerned, the
function f(x) at the saddle is such that4 "
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(1—3»~')'~'4pI 3(Q6)/20

The parameter K lies between K and K~t and closer I,=/Ip&3/9', hF + vanishesas
to the larger in magnitude. This fact Axes the integer
index in (3.3) and together with (4.1) gives [cf. (3.7)]

2w()) —m —rr ' tan '[(1—3» s)/2» s)'~ )

l[1+(1—K„')Ljp/4 p)
(4.3a)

but AF remains Gnite at 40I,.

V. TRANSITIONS BETWEEN
METASTABLE STATES

for k )0 and

2wf~ —~-1—~ '«n '[(1-3» ')l2» '3'")
K=,(4.3b)

l[1+(1—K ')L,Ip/4 p)

for k (0.The case Fc =0 follows as a limiting case. To
avoid excessive duplication, we limit ourselves below to
the case ~ +Pc &0; the case Fc (0 is easily treated by
symmetry arguments or by the use of (4.3b).

It is useful to consider separately the two cases
K~& 0&K~i and »~~i) 0. In the first case (K )0&K~i)
we have under the same conditions for which Eqs.
(3.12) apply

K„—K„=—pr/l [1+L,Ip/4 pg,

I„I= ', I—pl[1+—L,—Ip/4pj,
(4.4a)

(4.4b)
and"

hF +=F F=—l4.pIp—&2/6m' ,'C.p(I„+I—„—), (4.5a)

F i F—=AF +—+4 pI (4.5b)

tjF~+=l4.pIpv2(1 3K ')'~'/67r' ——[4(pI~ +I„,) 2/Ã j
xta —'[(1—3» ')/2» '$'~' (4.7a)

AF =AF ++4pI-,
m = res ——',+ (1/w)

X tan —'[(1—3» ')/2»„'$'~' (4 7b)

Relaxation again proceeds toward states with minimum
circulating current. In the limit K —+ 1/V3 for which
the current I approaches the limiting critical current

PP From the definition (3.2), Ep varies as t ', so that tIp is in-
dependent of the length l.

where the hF + are free-energy barriers appropriate to
transitions from the metastable state ns to the adjacent
states m&i, respectively. As one would expect from
symmetry, these two barriers are equal if I =0. If
I )0 (» )0), the condition tjiF„)hF + is consistent
with our assertion that relaxation is toward states with
minimum circulating current.

When K~i)0, we find from Eqs. (3.12) and (4.1)—
(4.3) that

K K = —2 tan i[(1—3» )l2» q'"/
l[1+(1—3. ')L.I,/4, $, (4.6a)

I~ I~= —(1—3»~')I—p tan '[(1—3»~')/2»~'j'~ /
[1+(1—3K„')L,I,/4 o$, (4.6b)

In the Langer-Ambegaokar model the free-energy
barriers AF + dominate the rates of transitions be-
tween metastable states. If P (t) is the probability
that the system is in ineta, stable state m (Sec. III) a,t
time t, they postulate that the system is always in at
least one such state,

PP„(t)=1, P (t)&0 (5 1)

and that

aP„(t)/at= t,P,(t)O,+(T)e 'r'- "~"-»

+P„+i(t)0„+i (T)e '~"—+' '"—

P„(t)[D—+(T)e s~ +~"s~

+ft;(T)e "=~""j) (5.2)

where L) +(T) are rate parameters which depend only
weakly on the index' and the temperature T, 0(T(T,.
If S (T) is the entropy associated with order-parameter
Quctuations in the neighborhood of the metastable state
of Eqs. (3.6)—(3.9) and if S (T) is the corresponding
entropy for the saddle point of Eqs. (4.1)—(4.3), the
0 +(T) have the form""

Q +(T)—ge—(sm—sm) /ss

Q
—(T) ge—(sm z—sm) isa

where R is a time-scale prefactor. Equations (5.2)
and (5.3) have the equilibrium solution"

=exp
(F TS )——

AT
P exp

(F„TS)——
(5.4)

which predicts state-m occupation proportional to the
Boltzmann factor exp[—(F TS )/kriT j. In —a ther-
modynamic picture, the combination (F TS ) is the-
total Helmholtz free energy of the system in state m."

Since the free-energy barriers hF + enter Eq. (5.2)
exponentially, but the 0 +(T) enter only linearly, pre-
dictions based. upon (5.2) are expected to be relatively
insensitive (logarithmic) to errors in 0 (T). Langer
and Ambegaokar speculate within this lattitude that
0„+(T)= Q(T) with'

n(T) = l~~(T)e,/. , (5.5)

where 7. 10 " sec is a typical electron-scattering time
in the normal state and lo.&(T)n, equals the number of
conduction electrons in the volume lo)(T) of the weak.
link. "This choice is consistent with the experimental

Pr R. Landauer and J.A. Swanson, Phys. Rev. 121, 1668 (1961)."J.S. Langer, Phys. Rev. Letters 21, 973 (1968).
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with
Q(T) = L3'"i/ 7r' 'r(T)gg F(T)/kgTj' ' (5 8)

AF(T) =oII„.'(T) $(T)%2/37r= iC sI@f2/6x', (5.9)

the free-energy barrier (4.5) appropriate to a '=0.
Equation (5.8) and indeed the basic Langer-Ambegao-
kar thermal-activation model is only valid for (T, T)—
sufliciently positive that

tthF(T)/kIrT]'~ exp) —AF(T)/ksTj((1, (5.10)

which is generally not a very severe restriction. In the
limit AT +0, Q(T) in (5—.8) vanishes as (AT) I .

Equation (5.8) differs from (5.5) in its functional
dependence on temperature, on electron mean free
path (in both the dirty and clean limits), and on wire
cross-sectional area 0-. For the one-dimensional wire
both expressions are proportional to the length L

The available experimental evidence is inconclusive,
although the prefactors (5.8) are approximately ten
orders of magnitude less than those of (5.5) for both
the Webb-Warburton and Lukens-Goodkind experi-
ments. ' " The different temperature, mean-free-path,
and cross-section dependence of (5.5) and (5.8) is not
noticeable over the ranges studied but the magnitude
difference is. The Webb-Warburton measurements of
critical current versus hT 6t the Langer-Ambegaokar
estimate (5.5) very well but give a zero-current tem-
perature shift hT, approximately twice that predicted
from (5.8). There is some evidence that internal strains

@A. Schmid, Physik Kondensienten Materie 5, 302 (1966).
'4 E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 (1966);

E. Abrahams and J. W. F. Woo, Phys. Letters 27A, 117 (1968)."D.E. McCumber and B.L Halperin (to be published).

observations of Webb and Warburton, ' but it gives a
transition rate which is much greater than that reported
by Lukens and Goodkind. '

The time-dependent Ginzburg-Landau equation
derived by Schmid" and others'4 leads to rate parame-
ters different from (5.5). In the time-dependent theory,
small Quctuations of the normalized order parameter
decay to a minimum-P configuration according to the
equation

r(T)L(&/&1) —i(2e/k) VgP = (1—
~ f ~

')f
+$(r)/r)x)+i/(T) (2e/hc) A,$'P, (5.6)

where x is measured in units of the coherence length
g(T), V(x, t) is the electrochemical potential, A(x, t) is
the vector potential, and

r(T) = 7rh/8keaT. (5.7)

In steady state, Eq. (5.6) reduces to the familiar
Ginzburg-Landau Eq. (3.1). If Eq. (5.6) describes the
time development of the order parameter lt (x) near the
free-energy saddle points as well as near the minima,
it follows for a long thin wire link with ~ '&&3 that
Q +(T)= Q(T), where to within a factor of order
unj ty21, 22, 25

increase the observed temperature shift even in the
nearly ideal whisker crystals, " but it would be sur-
prising if the Webb-Warburton data on different sam-
ples were so uniformly displaced. '~

Whereas Webb and Warburton measured the onset of
dissipative Quctuations by detecting a small finite
voltage ( 2 nV= 10' transitions/sec), Lukens and
Goodkind measured the rate I'(T) directly Lfor I'(T)
=0.1—10 sec ') by monitoring the flux C through a
loop of the type we have been considering. (Formulas
speci6c to their experiments are derived and discussed
in Secs. VI and VII.) Their published results" favor
Eq. (5.8), but other recent data are more consistent with
(5.5)." A precise theoretical interpretation is com-
plicated by the geometric and compositional uncer-
tainties of the thin-61m circuit.

A. Equilibrium Expectation Values

If the external-field parameter r)(t) is swept suf-
ficiently slowly (Sec. VI C), the system remains close
to equilibrium, and the different quantum states are
occupied with a probability

P„(t)=PLq(1) —mj', (6.1)

where from (3.14) and (5.4)

P(s)'=exp( —Ps')/ P exp) —P(s —e)'j. (6.2)

The function P(s)' has been plotted for different values
of p in Fig. 1.

The average circulating current in the ring when

"J.H. Davis, M. J. Skove, and E. P. Stillwell, Solid State
Commun. 4, 597 (1966).

~7 W. W. Webb, in Fluctuations in Superconductors, edited by
W. S. Goree and F. Chilton (Stanford Research Institute, Menlo
Park, Calif. , 1968), p. 159."J.E. Lukens and J. M. Goodkind (private communication).

VI. BEHAVIOR IN SIMPLE EXPERIMENTS

In what follows, we use the results derived above to
analyze a sequence of conceptually simple experiments.
The experiments we consider are basically those of
Lukens and Goodkind"; their data are brieQy discussed
in Sec. VII.

Given the geometry described in Secs. I and II, we
assume that the external flux C,(t) = ti(1)Cs is a known
controlled variable and that either the total flux C(t)
linking the loop or the loop current I(t) is accessible for
measurement. The flux C (t) and the current I(t)
are related through Eq. (2.1). Because the Langer-
Ambegaokar analysis we have outlined is only valid
under conditions for which states with ~ '&&3 dominate
(Sec. III), we can assume Q +(T)=Q(T) in (5.2) and
neglect the index m in the entropy S (T)=S(T) in
(5.3).
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versely proportional to I., From Eqs. (6.3b), (6.4), and
(6.9b), it follows in this saturated case that

(I(t))„,=- (~—m)„,I„ (63')
where Ic,=C p/I. , The maximum excursion with q of the
ratio (I(t))„e/I+ as given by (6.3') is plotted as a func-
tion of P =P„ in Fig. 3(b).

B. Transitions near Equilibrium

Experiments testing the expressions of Sec. VI A do
not really test the Auctuation dynamics of the Langer-
Ambegaokar theory but rather the probabilities (6.1).
Useful information about fluctuation dynamics can be
obtained by observing the rate at which a system near
equilibrium randomly jumps from one energetically
accessible quantum state to another.

The simplest case is that for which the external Aux

C, is fixed at a half-integral multiple of the Aux quantum
Cp, and AT is large enough that P) 2. Only the two
lowest-free-energy quantum states (m=o and 1, say)
will be significantly occupied, and they will be occupied
with equal a priori probability. Equations (5.1) and
(5.2) reduce in this case to

1=Pp(t)+Pi(t), (6.1Oa)

aPi(t)/at= —r(T) [Pi(t)—Pp(t)], (6.10b)

where the transition rate

gp(.—m)=1, p(z)&0 (6.15)

for all real s. The iirst of Eqs. (6.15) implies

Eqs. (6.1)—(6.9) apply. The circulating current oscil-
lates periodically about a zero time-averaged value. I'or
larger rates p', the quantum index m increases in steady
state at the same average rate as q(t) but lags behind
the equilibrium average value (m)„e predicted from
Eq. (6.5). The circulating current oscillates periodically
about a nonzero time-averaged value I,(rt'). Measure-
ment of I,(g') provides a test of the dynamic theory
farther from equilibrium than in the experiments of
Sec.VI B.

In steady state with rt'= drt/d-t constant, the prob-
abilities P„(t) are functions of the difference [q(t) —m],

P (t) =P[~(t)—m], (6.13)

where P(s)=p(s)P in the limit rt' —+0 (Sec. VIA).
Assuming as before that ~ '((—', and 0 +(T) = Q(T), we
find from Eqs. (4.7), (5.2), and (6.13) that

rt'[dp(s)/ds]=r(T)[ee&*+'&P(z+1)+e e~' '~p(s —1)
—(ee'+e e) P( )s], (6.14)

where r(T) is defined in (6.11).The boundary condi-
tions are P(z) ~ 0 for

~

s
~

~ pp and, from (5.1),

( lCpIpv2
r(T) =n(T) exp~ — —,'P ~.

6m'keT )
(6.11)

dsp(s) =1, (6.16)

The dominant temperature dependence is generally
that of lIp~ (hT)'" in the exponent.

If P(2, it is necessary to consider additional quantum
states. The analysis is mathematically tedious but
straightforward. For example, if the four lowest-energy
states are important (m= —1 to 2, say), Eqs. (6.10)
become

1=P,(t)yP, (t)+P,(t)+P,(t), (6.12a)

ap, /at = r(T) [e-ep, (t)—esp&(t)], (6.12b)

aI', /at= r(T)[e Pp(t) —(1+e—)Pi(t)+Pp(t)], (6.12c)

aPp/at= I'(T)[Pi(t) —(1+e e)p, (t)+esp i(t)]. (6.12d)

With P known from measurements of the type described
in Sec. VIA, the experiments again determine r(T).

If rt=C, /Cp is not precisely half integral, the rate
for increasing quantum number m will be different from
the rate for m decreasing. However, the average period
for a Auctuation cycl" that is, for Quctuations to
return m back to its initial value —is unchanged to first
order in the field deviation hp. More precisely, the
average period in the two-state system of Eqs. (6.10)
is increased by the factor coshPhg.

C. Transitions Farther from Equilibrium

If the 6eld parameter rt(t) increases at a slow uniform
rate p', the system remains close to equilibrium and

g'=2r(T) ds P(s) sinhPs; (6.17K)

the coshmPs moment gives

(mPr//r) dsp(s) sinhmPs

= (1—e—"~) dsP(s) cosh[(m+1)Ps] —(e e —1)

dzP(s) cosh[(m —1)Ps]; (6.17b)

and the sinhmPs moment gives

(mPg'/r) dzP(s) coshmPs

1—e me) dsP(s) sinh[(m+1)Pz] —(e"e—1)

dsP(s) sinh[(m —1)Ps]. (6.17c)

but not conversely.
The first or s moment of (6.14) gives, with (6.16),
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I
~'

I «[2F/X(p) ) sinh( —',p) . (6.28)

For P & 2 this reduces to
I

ri'
I «FP; for P)&1 it reduces to

I
~'I &&Fe'/p.
In the experiment of Lukens and Goodkind, ' the

sweep rate rl' is fixed, P has its saturation value P„,
and I is measured in units of Ie= Cp/L, as —a function
of temperature below T.. From the definitions (6.4)
and (6.9b) and from Eqs. (6.19) and (6.27), it follows
in this case that

I,/Ic, z=P„'——sinh '[X(P„)rf'/2F(T)$. (6.29)

Temperature dependence enters through the transi-
tion rate F(T).

VII. DISCUSSION

The results we have derived describe the effects of
intrinsic fluctuations for T near but below T, (bulk) in
a closed superconducting ring having a thin weak-link
section of uniform cross-sectional area o«P(T) and
length L))$(T). The intrinsic fluctuations are detect-
able only where they are not masked by extraneous
fluctuations or noise. Extraneous temporal fluctuations
can be eliminated by careful temperature control and
by electromagnetic shielding. "' "Spatial fluctuations
(or inhomogeneities) in the superconductor, especially
in the weak-link section, are much harder to control.
The spatial scale is fixed by the coherence length $(T);
typically a micron or less. It is extraordinarily de.cult
to fabricate a homogeneous weak-link section on this
scale. %ebb and Karburton attempted to overcome
this difhculty by using whisker crystals, wire-like crys-
tals which grow remarkably free from defects and with
good geometric uniformity. ' ' The range they measured
of the resistive transition in simply connected samples
was an order of magnitude smaller than that previously
reported for thin films. ~'

Measurements on ring samples containing a whisker-
crystal weak link have not yet been reported. The
published data most directly relevant to our theory are
those of Lukens and Goodkind on thin-film Sn rings. "
The agreement between theory and experiment is
moderately good. Some of the discrepancies can be
attributed to film homogeneities or to the fact that the
thin-film weak links only marginally approximate a long
thin wire. It is not yet clear whether all discrepancies
are of this type or whether some reflect basic flaws in

in place of Xs(p). The resulting expression is exact in
the rapid-sweep-rate limit (Xr)'/F)'»1 and is a con-
venient reasonably accurate interpolation for slower
sweep rates. When used with Eq. (6.19), it gives

I (r)')/Ir 2sin——h '[X(P)rf'/2F j. (6.27)

The ratio I,/Ir is plotted as a function of (r//F) for
diiferent values of P in Fig. 5.

The field sweep rate 7/t' is slow in the sense required
in Sec. VI A if z«0.5 or, equivalently, if

TABLE I. Parameters for thin-61m ring of
Lukens and Goodkindg

A. Experiment'-'

Cross section a =3&&10 cm
Length L=8&&10 4 cm
Bulk/link dimensions o s/o =330, ls/1 = 1870
I„(sat)/Is =0.32
logqoI'(T) =1.67(AT,—10.3), 0.1&I'&10 sec '
I (AT)/Is=0319(AT, —9.2)s~s IIsI &SIc,, for g'=2 sec r

B. Theory

p„=4.5
Inductance L, =9.3&(10 'H
ATp=0.5+0.2 m'K
Is/AT = (3.0+1.2) X10 ' A/m'K
Mean free path (dirty limit) =200+100 A
1/(AT)'"=2.3+0.6(m'K) '", f=L/$(T)—
aT =~T,—1.0+0.3 m'K
O(T) =10"to 10"sec '
AF(T)/ksT, (AT) ~s=0.9+0.1 (m'K) s~s

a Reference 10.
b Reference 28.
o b, T& is measured from temperature vrhere I~ extrapolates to zero.
d Uncertainties reQect the fit of the theory to the data as given; no at-

tempt was made to evaluate separately the intrinsic quality of the data.

the theory. Data on rings with whisker-crystal links
would be useful.

Data of Lukens and Goodkind for the thin-61m Sn
rings described in Sec. I are summarized in Table I.' '
The experimental temperature difference AT, is meas-
ured from the temperature at which I„extrapolates to
zero [Fig. 3(b), Ref. 10$ and is very near the low-tem-
perature end of the resistive transition (R&0.01R„).'s
Prom the saturation value I~(sat)/Ie=0. 32, we infer
from Fig. 3(b) that P„=4.5 or L,= 9.3&&10 sH, which
is reasonable for the geometry. Experimental values
[Fig. 3(b), Ref. 10) of I~(AT)/I~(sat) are plotted in
Fig. 6 together with a theoretical curve derived from
Eq. (6.9a) and Fig. 3(a). The choices AT=AT, 1—
m K and ATp ——0.5 m'K were used to optimize the fit.
The difference AT —AT,= —1 m'K derives from ex-
perimental uncertainty in T,(bulk). The value of
d,Ts is consistent with Eqs. (3.2) and (6.9c) for Sn in the
dirty limit with an electron mean free path of 200A,
which is short but not unreasonable. Condition (5.10)
is met for all AT&)0.5 m K; the theory is not expected
to hold for AT&0.5 m'K.

These results, which test the static or equilibrium
predictions of the theory, agree as well as one might
reasonably expect for the experimental geometry.
Lukens and Goodkind have also measured the rate
F(T). Their results can be expressed equally well (over
the measurement interval 0.1&I'&10 sec ') by the
expression in Table I or by either of the expressions

I'(T) = exp f 0.843[(93)"'—(hT) '"j}sec ' (7.1a)
or

I'(T) = (hT/9. 3)"'
Xexp(0.896[(9.3)s"—(bT)"'J} sec ' (7.1b)
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FIG. 6. Comparison of theory {solid line) and experimen t
(circles) for I„(nT)/I„(sat) for a thin-film Sn ring as described by
Lukens and Goodkind, Ref. 10.The experimental points are taken
from Fig. 3{b), Ref. 10, with a temperature shift AT —5T,= —1
m'K and with I„(sat)/Is=0. 32 as in Table L The theoretical
curve follows from Fig. 3(a) and Eq. (6.9a) with P„=4.5 and
DTp=0. 5 m'K.

for AT in m'K. The first equation is appropriate to the
form (5.5) of the prefactor Q(T) in (6.11), the second to
the form (5.8). With P=P„=4.5, those prefactors are,
respectively,

and
Q(T) =e"'=7.6&&10" sec ' (7.2a)

for A2' in m'K. The expressions for l and Io deduced
from the I„data and listed in Table I give

AF(T)/k~T, =6.6(AT)si' (7.4)

which is approximately one order of magnitude larger
than, both of the expressions (7.3)." We tentatively
ascribe this discrepancy to inhomogeneities in the thin-
film weak link.

Using Eq. (5.5) with 7 = 10 " sec and n, =5&&10—"
cm ', we estimate

Q(T) = 1.2&&10" sec—' (7.5a)

'0 Because AIi (T) appears in the exponent of (6.11),a factor-of-
10 change in AF&20 produces an enormous change in F(T).
Corresponding changes in the prefactor Q(T) are much less im-
portant; they are easily absorbed by a small dilation of the 4T
temperature scale.

Q(T) = (DT/9. 3)"'
&&cps'=3.4(AT/9. 3)"'&&10"sec '. (7.2b)

The zero-current free-energy barrier AF(T) =LC'pIpv2/
6ir' in the two cases (7.1) is, respectively,

AF (T)/kIi T,= 0.84(ET)'" (7.3a)
and

(7.3b)

Fro. 7. Theoretical (solid lines) and experimental (circles)
values of I,(AT) /I& for the thin-61m Sn ring described by
Lukens and Goodkind, Ref. 10. For ~Ir I &51p, the experimental
points are adequately described (see Ref. 28) by l, (nT)/I&=0. 319
(AT —8.2)'", when 7l'=2 sec '. The theoretical curves follow from
Eqs. (6.26) and (6.29) with P„=4.5 and I'(T) given by Eq. (7.1b).

which is twelve orders of magnitude greater than the
experimental number (7.2a). Using the expressions for
L and AF(T) as determined above and listed in Table 1,
we estimate from Eqs. (5.7) and (5.8) that

Q(T)= 1.7(AT/9. 3) t &&10 P sec (7.5b)

which is only a factor of 20 less than the experimental
number (7.2b)."These results favor the prefactor (5.8)
derived from the time-dependent Ginzburg-Landau
theorv, but other. data' "favor the form (5.5) suggested

by Langer and Ambegaokar. The issue remains
unresohIed.

Lukens and Goodkind also measured the average
circulating current I, as a function of temperature for
t)(t) = C,(t)/4» increasing at. a constant rate tl'= 2 sec '.
)The oscillations of the ring current about I have a
sinusoidal form (Fig. 3(a), Ref. 10) consistent with
P=4.5 in Fig. 2.g Their results'P" are summarized
in Table I and Fig. 7. The theoretical curves have been
computed from Eqs. (6.26) and (6.29) with P=4.5 as
determined from I„(sat) and with I'(T) given by the
semiempirical Eq. (7.1b). No parameters were adjusted.
The 6t for p'=2 is remarkably good, better than we
have a right to expect considering the marginal geom-
etry and probable inhomogeneities.

Further tests of the theory on systems with weak
links which more nearly approximate the long one-
dirnensional uniform wire are required. Preferably each
link should be tested with the superconducting ring
intact and with it broken. In the latter case the Langer-
Ambegaokar theory' should apply, perhaps with the
modified prefactor (5.8).

The theory we have described is a statistical theory
based upon the Ginzburg-Landau free energy. It is
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&(P) = Z a-B-(p),

only expected to accurately describe single-quantum where 8» is a Bernoulli number. " If we assume that
transitionsforTnearbutslightlybelowT. tEq. (5.10)). iV(p) can be expressed as a series of Bernoulli poly-
Multiple-quantum transitions are not yet well under- nomials B„(p)
stood nor is there a satisfactory theory of dissipation in
one-dimensional weak links for T((T,. (A7)

(A8)

(A9)a2~+2= 0,&s=ep
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APPENDIX: EIGENVALUE y(g) OF
EQUATION (6.24b)

It is useful to introduce the two-sided Laplace trans-
form L(p) defined for all finite p by

de(0)
0= =Q uNB„ i,

n=O
(A10)

for k& 1. With (A3), the condition (A4) is equivalent to
[GR 9.623(3), GR 9.628(1)$

L,(p) = dzF„(z)e»'. (A1) which with (AS) gives the asymptotically convergent
series

Taking the Laplace transform of Eq. (6.24a) and in-

tegrating the left-hand side by parts, we obtain

L(p)/L(p+1) = X(p) p(1 e»)/pp j—, (A2)

where X(P) is the eigenvalue to be determined. The
normalization condition (6.16) implies

lnX'(p) =pBi pp'"B, i—'/k(2k)!
k=1

(!p)' (!p)'=-(lp)-
18 2/00

(A iia)

L(0)= 1, (A3)

«L(p)
dz zF„(z)=i

E dp
(A4)

which together with (A2) fixes L(p) for all real integral

P when X(P) is known. The eigenvalue X(P) is itself
fixed by the condition implicit in (6.23) that

6 L . 8

59 535 56 7000
(A11b)

This is useful for P& 2 but not for larger values.
To obtain the expression (6.26), we attack (A2) more

directly. We recognize that the gamma function P(z) has
the property I'(z+1)/P(z) =z and exploit this fact in
our solution. We rewrite (A2) in the form LGR 1.43(2)g

The basic mathematical problem is to find the analytic
function L(p) which satisfies (A2) and (A3) for a given

X(P) and then to choose X(P) such that (A4) is satisfied.
We do this by two diferent methods. The first gives an
asymptotic expansion for X(P) useful for P&2; the
second gives the exact result (6.26).

If we define the function X(p) such that

L(p)

L(P+1)

sinh( —,'pp)—Xg
—kPs—

"( p'
=Xe-e & g ( 1+

(2~m/p)s
(A12)

1V(p) = lnL(p),

it follows from (A2) that

Ã(p) —&(p+1)=»X(p)+»L(1 —e ")/ppl (A6a)

and look for solutions of the form

p QPp (p 1) / 4

L(p) = —II L-(p), (A13)

(pp)st „
=lnX(p) —',pp+ p —, (A6b)

2k(2k)!

where Le is a constant fixed by (A3), and where

L-(P)/L-(p+ 1)= 1+P'/(2 &/p)' (A14)
3' Our notation corresponds closely to that in I. S. Gradshteyn

and I.M. Ryzhik, page of In&egreds, $erses araf pro/lets (Academic A a P a e n f ( 14)
Press Inc. , New York, 1965). Pertinent formulas from this refer-
ence are cited in the appendix text as, for example, GR 9.623(2). L~(p) = (2srss/p) "/&(p+&2srstpp) &(p—&2sr'+pp) . (A15)
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Using this with (A5) and (A13), we have

E(p) =lnLO+4pp(p —1)—p lnX

where, because the lower 1imit of the integral is at
t=0, the integrated area under the 5 function at t=0
is only ~s. Relevant integrals for (A19b) are (p=0+)

and

+p Lp ln(2vrm/p)' —inl'(p+i2vre/8)
n=l

—lnl'(P —t2x.m/P) j (A16)

/1 1
dt~

—— ~S(t) = ——,'8;
Et 1—e-') (A20a)

/1 1
dt~ ——

~
=ln(2P) —ln(ee~2 —1); (A20b)

kt 1—e 'I

p(p+i 2—vrv/p) —p(p —i2vrn/p) $, (A17)

where P(s) =d lnl'(s)/ds. We require L(A10)$ that
dX/dP vanish in the limit P ~ 0+ (positive real). We
use the integral representation )GR 8.361(8)j

00

dt $p Q-5(t—N,8)—1j
t n

= lim ( P e ' —1n(2K+1))=Ce —ln2; (A20c)
n=0

P(s) =lns+ dte
1 —e

—
&p

(A18)
dt $P P 8(t —mP) —1]

n

valid for Res) 0 to obtain from (A17)

lnX(p) = —~~p+ lim p in(2~m/p)'
p~0+ n=l

1nj p—'+(2zn/p)') . 2—dte '"

t'1 1
cos(2vret/p)

1—e-'

dt Lpga(t ~p) 1j—

=P P (e"e—1) +ln(1 —e e ') (A20d)
n=l

(A19a) Euler's constant CE is defi.ned in GR 8.367(2). Using
these pieces in (A19b), we obtain

= ——,'p+ lim
p~0+

/1

1—e-'f

)&(p p g(t —np) —1), (A19b)
n=o

lnx(p) =—',p+lnp —C&+p g (ee"—1)-', (A21)
n=l

from which (6.26) follows immediately.


