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The pseudopotential approach of Phillips and Kleinman is extended beyond the one-electron
approximation for the purpose of obtaining correlated low-energy continuum and excited bound
states of atomic and molecular systems with a minimum of computational effort. Pseudopoten-
tial equations are derived by a variational method. These and other nonvariational pseudo-
potential methods are shown to be quite useful in conjunction with either adiabatic or close-
coupling methods. Calculations are performed on the following two-electron systems: e-H
S-wave elastic scattering, e-He+ S and S elastic scattering, and S and S Rydberg states

of He. In general, good results are obtained. The calculated Rydberg-state quantum defects
usually agree with the experimental values to three decimal places, and the calculated e-H
S zero-energy scattering length of 5.90 + 0.08, which is a strict upper bound to the true value,

compares favorably with the value 5.965 + 0.003 obtained by Schwartz in a very much more
involved calculation. The possible extension of these methods to larger atomic systems and
to molecules is discussed. A differential equation method for obtaining bound-state wave func-
tions and energies based on asymptotic properties of Coulomb functions is outlined in the Ap-
pendix.

I. INTRODUCTION

Calculations of Rydberg and electronic continu-
um wave functions can be useful in describing
many dynamic atomic and molecular processes
such as photo-ionization, autoionization, photo-
detachment, elastic and inelastic electron scatter-
ing, etc. However, wave functions calculated by
the Hartree-Fock method are frequently not good
enough for this purpose. Accurate correlated
wave functions are often needed.

The object of this paper is to develop a priori
methods, based on the pseudopotential approach,
by which one can calculate accurate correlated
(bound or continuum) excited-state wave functions,
but which involve only a small increase in compu-
tational effort over the Hartree-Fock method.

The "pseudopotential" approach developed by
Phillips and Kleinman for application to solid-
state problems has recently been applied by sev-
eral workers to the calculation of atomic and
molecular wave functions. ' " The pseudopoten-
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tial method, in its simplest form, arises from
the one-electron approximation as a consequence
of the Pauliprinciple that requires valence orbitals
to be orthogonal to the occupied core orbitals.
Szasz" and Weeks and Rice' have generalized the
approach to a wide class of problems that involve
orthogonality constraints. For example, equations
for correlated pair functions can be simplified by
replacing the "strong orthogonality" constraint
with a pseudopotential. '~"

While many go beyond the one-electron approxi-
mation, all of the previous pseudopotential calcu-
lations cited here' "are based on conditions of
orthogonality to one- electron functions. In this
paper we propose a straightforward extension
of the basic Phillips-Kleinman approach that is
based on many-electron orthogonality conditions.
We show that, just as in the one-electron case,
the many- electron pseudopotential formalism can
provide useful physical insight into atomic and
molecular excited- state calculations. This in-
sight can guide one in utilizing information con-
tained in accurately calculated bound functions to
describe correlation and polarization effects in
excited states of the same system.

Sample calculations of e-H and e-He+ scatter-
ing states and He Rydberg states are performed
by several related methods, with excellent results.
These methods can be applied to much larger atom-
ic systems and to molecules without the huge in-
crease in complexity that occurs with some other
methods, and yet can be expected to give accurate
results for such systems. One of these pseudo-
potential methods, which is shown to satisfy a
strict variational principle, shares those advan-
tages common to variational methods: The cal-
culated zero-energy scattering length is an upper
bound to the true one, and the method can be sub-
sequently improved in a systematic way to ap-
proach exact results.

The plan of the paper is as follows: The pseudo-
potential formalism is defined in Sec. II, and
qualitative results of previous calculations within
the one-electron scheme are considered in Sec.
III. In Sec. IV the approach is extended to many-
electron systems. The pseudopotential equations
are derived by a variational principle in Sec. V.
In the following section various alternative meth-
ods are used to obtain excited eigenstates of the
atomic two-electron systems H and He. Section
VII contains a discussion of the effects of the ap-
proximate nature of the bound functions used to
construct the pseudopotential; it also includes a
comparison of the present methods with the re-
lated one used by Kestner et al. to calculate
electron-helium scattering states. We conclude
by discussing the limitations of many-electron
pseudopotential methods and the great potj(.ntial of
these methods in molecular excited-state calcula-
tions.

In this paper all positive-energy wave functions
are obtained by numerical solution of radial dif-
ferential equations. For bound- state calculations
one is faced with an eigenvalue problem, so the
differential equation method cannot be used direct-
ly. In order to obtain the Rydberg states in part
D of Sec. VI, we use a very efficient method of
solving the differential equation —eigenvalue
problem based on the asymptotic properties of
Coulomb functions as discussed by Seaton. " This
procedure is outlined in the Appendix.

II. THE PSEUDOPOTENTIAL FORMALISM

(T+ V)e =re (2.1)

be the equation for which we wish to find excited-
state solutions. Equation (2.1) could be the com-
plete many-electron equation for an atomic or
molecular system or it could be a one-electron
approximation to such a system. In either case,
in this section and the following one, we will take
(2.1) to be the exact problem; eigenfunctions will
be considered approximate only to the extent that
they do not satisfy (2.1) exactly. Assume that we
know a few solutions of (2.1) exactly; i.e. , we
know the eigenfunctions 4, j =1, .. . , c, satisfy-
ing

(T+ V)4'. =EX'., j=1,... , c (2.2)

Hereafter in this paper we will assume that the
4& are the lowest few bound solutions of (2.1), al-
though for the present discussion they could be
any eigenstates of (T+ V).

Following Phillips and Kleinman, ' we can write

(T+ V+ V )4 =El, (2.3)

c
where V&4'= Z P.(E —E.)4.

]
(2.4)

(2.5)

where we have simply added and subtracted the
term

to Eq. (2.1), using the relation (2.2). For the
present the P, i.e. , the overlap(4, 4.), may be
considered completely arbitrary. Using the ter-
minologyof Weeks and Rice, ' we call V&, defined
by (2.4), the "pseudopotential" and (V+ V ) the
"effective potential. "3 Equations (2.3)—2.5) de-
fine what is meant by "pseudopotential formalism"
in this paper: Instead of solving Eq. (2.1) for the
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wave function 4 and eigenvalue E, one solves the
modified equation (2. 3) for a pseudo wave func-
tion 0 belonging to the same eigenvalue E. The
pseudofunction 4', defined by (2.5), differs from
0 in that 0 is not necessarily orthogonal to the
states Cz. The desired function 4 is obtained
simply by orthogonallzlng 4 to all the ej

ONE-ELECTRON PSEUDOPOTENTIALS

Several workers have recently applied the pseu-
dopotential method within the one-electron approx-
imation' 'y' where the function 4 is the wave
function of a valence electron (possibly excited)
and the 4. are occupied core orbitals of the same
spin and symmetry as C. The usual procedure
employed is as follows:

1. The effective potential (V+ Vft) is approxi-
mated by a "model potential" V~. Since the
pseudopotential Vg is not unique due to the ar-
bitrariness of the P&, the choice of model poten-
tial involves, either explicitly or implicitly, a
unique choice for the P .

2. The equation

is solved, and the approximation to 4 is obtained
by orthogonalizing 4~ to the core states 0&.

It is usually not necessary to calculate Vg ex-
plicitly, so the pseudopotential method is more
complicated than a direct solution chiefly in that
it requires orthogonalization to core states. The
use of the pseudopotential method in calculations
can be justified if, when the effective potential is
approximated by a relatively simple model po-
tential, the resulting approximation to 0 is bet-
ter than that which would be obtained by solving
(2.1) directly with a somewhat more complicated
approximation to the real potential V. Szasz and
McGinn have shown that the effective potential V
+ V~ can be quite oscillatory, 4 and so it would
seem unlikely that V+ Vg would be well repre-
sented by a simple model. Nevertheless, the re-
sults of the calculations cited' 'y" show that for
several atomic and molecular systems the one-
electron pseudopotential approach is very useful.
We feel that the fundamental reasons why this
method works so well are not completely under-
stood. But we can note certain features which
are common to all of these successful pseudo-
potential calculations. The coefficients p&

are
chosen, either by the methods of Cohen and Heine'
or otherwise, to remove the oscillations of 0 in-
side the core, thereby generating a smooth pseudo
wave function C. The resulting decrease in ki-
netic energy of 4 must be accompanied by an in-
crease of potential energy if 4 is to belong to the
same eigenvalue E as C. Therefore V& is a
strongly repulsive potential. ' ~' The "pseudo-

electron" can be expected to spend only a rela-
tively small fraction of its time in the region of
space where Vg is most repulsive. Therefore,
a model potential which deviates considerably
from the true effective potential in this region but
is reasonably accurate elsewhere produces an
accurate approximation to 4 because the pseudo-.
electron ventures relatively infrequently into the
region where the model is poorest. This effect
is clear in the calculations of Abarenkov and An-
tonova' who show plots of approximate pseudo
wave functions for a valence electron in the field
of the Na+ ion and a free electron in the field of
Cl . It is even more striking in the results of
Schneider et al. "on electron-helium and electron-
oxygen atom scattering states. In all of these
cases the pseudofunctions are quite smooth, but
more importantly, for small x values the ampli-
tudes of the pseudofunctions are very much small-
er than the amplitudes of the corresponding real
wave functions in this region.

IV. MANY-ELECTRON PSEUDOPOTENTIALS

Two of the most common general methods of
treating low-energy electron-atom and electron-
ion scattering are the adiabatic approximation
and the close-coupling methods. " We will begin
this section with a short review of some aspects
of these methods.

The basic assumption of the adiabatic method
as applied to electron-atom scattering is that the
free electron moves much more slowly than the
core electrons. A particularly good discussion
of the adiabatic hypothesis is given by Sloan. "
Summarizing the situation very briefly, while
accurate for large x, the adiabatic approximation
grossly overestimates the effective potential in
the region of small x. However, the inaccuracy
to which the adiabatic potential is usually calcu-
lated and the insertion of somewhat arbitrary cut-
offs combine to cancel much of the error and fre-
quently fortuitously good results are obtained by
this method.

The close- coupling approximation is very power-
ful in describing certain resonance and inelastic
processes, but the expansion is very slowly con-
vergent. Burke and Schey, "from their close-
coupling treatment of electron-hydrogen atom scat-
tering, attribute this slow convergence mainly to
the inadequacy of the method to include the short-
range correlation effects. Most of the long-range
n/y polarization is provided by the inclusion of the
lowest few p eigenstates of hydrogen. '

Both the close-coupling method and the adiabatic
method are similar in that they describe long-range
effects relatively well, but they are less accurate
at small values of z. Recalling the discussion of
the previous section, we might expect the pseudo-
potential formalism to be useful in conjunction with
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C

V 4 = Q P.(E —H)4'. (4.1)

But it is assumed that the C. reflect the true eigen-
states to at least the accuracy which we hope to
achieve in the excited-state solutions.

We may now proceed in a manner analogous to
the procedure used in one- electron pseudopotential
calculations. We pick a model potential (adiabatic
or, implicitly, with the close-coupling approxima-
tion) to approximate the effective potential V+ VH.
We must also remove the arbitrariness of the
P&. Methods for doing this will be discussed be-
low. We then solve Eq. (2.3) to obtain the pseudo
wave function 0, and, finally, obtain 4 by orthog-
onalizing 4 to the lower bound states 4&. For
scattering problems for which we need only the
asymptotic form of 4 the final orthogonalization
step is not necessary since 0 differs from 4 only
in regions where the 4 are nonzero; i.e. , the
phase shift of 4 is the same modulo m as that for
4'.

To illustrate the procedure more clearly, let
us consider the two-electron problem of e-He+
ion, S-wave elastic scattering. Let h be the
Hamiltonian and Q~ be the ith wave function of the
isolated He+ core:

a,y.(l) =~.y.(1) . (4.2)

The equation we wish to solve is

(H-z}[q(1,2)+q (2, 1)]

-=(h, +h, + I/t, —E)[p(1, 2)+q(2, 1)]=0, (4.3)

where+ refers to singlet, and- to triplet. Inthis il-

both of these methods if pseudo wave functions can
be found which have small amplitudes in the region
of small r. There is the further hope that the adia-
batic assumption will be much more realistic when
applied within the pseudopotential framework, be-
cause the pseudoelectron can be expected to move
slowly everywhere due to the cancellation of ki-
netic and potential energy. But both the close-
coupling and the adiabatic methods go beyond the
one-electron approximation in an attempt to in-
clude correlation/polarization effects. It is there-
fore appropriate to abandon the one-electron ap-
proximation at this stage and use complete many-
electron operators and wave functions in the pseu-
dopotential equations (2.3)- (2.5).

We now assume that the 4& in (2.5) are accurate
correlated bound states of the complete N-electron
system (not just the core), having the same over-
all symmetry and spin as the excited function we
wish to calculate. The 4 are assumed known.
Since in practice they wi6 probably be variation-
ally obtained wave functions and will therefore be
somewhat approximate, we will replace Eq. (2.4)
with

lustration we will use only one state, the lowest 'S or
'S state of the helium atom, to form the pseudo-
potential. Transforming to the pseudopotential
scheme, using (2.3) and (4.1), we have

(h, + I,+ I/r„- E)[j(1,2)+ y(2, 1)]

+ P(z —H)4, (1, 2) = 0, (4.4)

where 4',+(I, 2) is an accurate approximation to the
lowest singlet (+) or triplet (—) state of He. " We
may expand the pseudofunction y(1, 2) in terms of
He+ eigenstates:

v(1, 2) =Z. &I,.(1)x(2), (4.5)

where n is the antisymmetrization operator.
If we are considering only those energies E which
are lower than the threshold for inelastic colli-
sions, then only the elastic channel is open and
the scattering process can be completely deter-
mined from the asymptotic part of y, ." Using the
Feshbach projection technique" [we multiply (4.4)
from the left by Q,(l) and integrate over dr, ] we
obtain the following equation for g -=))),:

where k'/2 =E —e, — (4.7)

fy, +(1)(Z H)e, (—1, 2)dr,
and $ (2)—=

= fy, *(1)e, (1, 2)dr, . (4.6)

E,+ is the expectation value (O'PH@,+) .
We could remove the pseudopotential term in

Eq. (4.6) by setting P = 0. If we were to do this,
(4.6) would become the usual Feshbach equation
for the open channel. The potential in such an
equation is often referred to as the "optical poten-
tial" or "effective potential" of the open channel,
and in nuclear physics it is sometimes even
called a "pseudopotential. " Hereafter in this
paper we will refer to this type of potential as the
optical potential. The terms pseudopotential and
effective potential will be used only as they were
defined in Sec. G. Thus in thi. s case

k 1
I ——+ P *(1)—P (1)dr X(2)2 2 0 x„0

y *(1) e ——+—X(1)dr y (2)
k2 1

0 0 2 z» 1 0

+ p(z —z )~ (2)

+ Z, j,(2)feo'())—e.())dr')
z40

rg, (2) Q "(l)(r,———)),(1)dr =0, (4.6)
k' 1

i 0 i 2 +&2 i 1
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v tx(2) = (2/~)x(2)

())f.(0"()) 4.())&~)
2=0 2 0 x,2 2

k2
s (f&,(2) (t) *(1) e, ——+ X.(1)dr, (4.9)0 i 2 y, 2 i 1

((t),(1)4, (1, 2)& and ($,(1)H4, (1, 2)&,

need be calculated only once.
The second method of choosing P can be obtained

from the following considerations. The one- state
approximation in the pseudopotential scheme is
equivalent to approximating the real wave function
by

vox(2) =P(z-z0 )g (2),

and V =V +V
eff opt

(4.10)

(4.11)

e„„.,= &0(1)x(2).y, (2)x(1)

+ Pe (1,2), (4.13)

where x is a solution of (4.12). We then have
Equation (4.6) is exact for any value of P (even if
4,+ is approximate}. I et us now use the one-
state approximation to find an approximate solu-
tion to (4.6). The one-state approximation is ob-
tained by assuming that all of the X, i 40, are2' .zero so that the la.st term of (4.6) vanishes, giv-
ing

4approx'

=2(y (1)X(2)e '(1, 2)&+ p

=2&x(2)$ (2)&+P (4.14)

h, —+ $,~(1) (,(1)dr,)))(2)
3,2

+1 E —2+ $1ar, 2
12 P=- 2&x(2)& (2)& (4.15)

Therefore the choice of P which will result in
4'approx being (very nearly) orthogonal to 4o is

+P(E-E, )& (2)=0 . (4.12)

If we set P = 0, we have the ordinary one-state
approximation. This is considered to be the ex-
act starting equation to which one-electron pseu-
dopotential methods are applied to find approxi-
mate solutions. But our earlier discussions sug-
gest that zero is not the optimal choice for P.
We would prefer to choose a value for P which
would result in the pseudofunction y being very
small for small values of x. One way we might
do this is to use methods similar to those sug-
gested by Cohen and Heine'4 for the one-electron
case. This has not been done in this paper. In-
stead, we have used two different methods of re-
moving the arbitrariness of P. The first, which
for convenience will be referred to as the "small-
est pseudofunction" (s-p) criteria, is to find that
solution of (4.6) for which x() )/) I is identically
zero at x=0. As we shall show in Sec. VI, with
a noniterative method similar to that proposed
by Marriott and Percival, "and also by Omidvar, '
this solution can be obtained from a linear com-
bination of the solutions of two uncoupled differ-
ential equations. Since the solution to the ordi-
nary one-state equation with P = 0 is also most con-
veniently found in this way, once $+ ha. s been cal-
culated, the amount of effort required to solve the
s-p equations is almost identical to that required
to solve the one-state equations. In a series of
calculations at different energies, $+, or more
precisely

The choice of this expression for P, which will
be referred to as the "pseudopotential-variation-
al" (p-v) method, will be derived from a varia-
tional principle in Sec. V. This choice of P re-
sults in a new nonlocal term in (4.12) in addition
to the nonlocal exchange term. The solution of
(4.12) in the p-v method involves the solution of
three uncoupled differential equations, compared
to two such equations in the one-state and s-p
approximations.

Referring back to the exact equation (4.6) for
e-He+ elastic scattering, it is apparent that both
the s-p and p-v methods can be easily extended
to many-state close-coupling approximations.
This will be done for the p-v case in Sec. V.

The adiabatic approximation consists of ap-
proximating the final summation in Eq. (4.6) by a
polarization potential which for large z approach-
es n/~4 In this c.ase the p-v criterion for choos-
ing P is no longer appropriate because we no
longer have an explicit expression for the approx-
imate total wave function analogous to (4.13}.
But the s-p criterion, which results in the small-
est y for very small r, is very appropriate.
This method of choosing P does not arise from a
variational principle, but by introducing an ad
hoc polarization potential into (4.6) we have lost
the variational principle anyway. We will call
the method of choosing P by the s-p criterion while
introducing a polarization ansatz into (4.6) the
"pseudopotential- polarization" (p-p) method.
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V. VARIATIONAL PRINCIPLE

The close-coupling approximation to the pseudo wave function @ can be written

S
(1, . . . , N) = Q 8$.(l, . .. , N 1))(.(-N)

z=

Rearranging E(l. (2.5) we then have for the approximation 4't to the real wave function 4

(5.1)

(5.2)

It is instructive to use a wave function of this form as a trial function, to form the integral

I = fC *(E—H)4 d~, (5.3)

and to determine the p and the yf from the condition that If be stationary to arbitrary variations of hl f. '4

To do this for the general many-electron case is straightforward but quite involved. Instead we will con-
sider the special case discussed in the previous section, e-He+ scattering with only one state appearing
in the second summation in E(l. (5.2).

We choose a trial function of the form

S —1
4' (1, 2) = Q l(t).(l)y. (2) a (t).(2))(.(1)]+Phld (1, 2)

z=

where p and the )(I are undetermined. Substituting into (5.3), we have

S —1 S-1
I =2 Q )f."(2) (E —e.—h ))f.(2) — Q )(. (2) Q.*(1) Q. (l)dr

z z 2 z . ~ j z ~2 g 1z=0 j= 0

(5.4)

S-1
4.(2) 4.*(1) E- e.-& — q. (1)dr +2

0 j z z 2 rl2 j 1j=0 ,*(l)(E—H)hldo (1, 2)drl dr2+ p (E —Eo ), (5.5)

where we have used E(ls. (4.2), (4.3), and the relation y, (1,2)=ay, +(2, 1). Setting sI&/sp=o, as inthe
Kohn procedure, we obtain

S—1
4 5 j *(2)[fg. +(1)(E . H)e -(1, 2)dr ]dr +2P(E E')=0-,

i=o

so the "best" choice of P is

S-1
P= 2Z &X,.h,.-'&

i=0
where g. (2)=- fp. (1)(E—H)210 (1, 2)drl/(E —Eo )

Substituting this choice of P back into (5.5), we have

(5.5)

(5.7)

(5.8)

S-1
I „S—1

I =2 Q ) j. (2) (E —e.—h2))(.(2) — Q j.(2
z=0 j=0

. (1) p. (l)drl
z

S-1
2.(2)(d. (1) d —r. —2 — 2.(2)dr rd(Z —Z *)(, dr

0 7 i 2 r,2 j 1 0 ij=0
This results in a set of S coupled Euler-Lagrange equations for the y'z'

S-1
(d —r.—2 )2.(2) — Q 2.(2)fd. (1) 2.(1)dr(

j=0

(5.9)
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$-1
+ L ( (2.)f(. ())(z-~.-) — '

~), .())ar +))(z-); ')(.*=0 .
y=0

(5.1o)

Equations (5.7) and (5.10) define the p-v method in the close-coupling scheme. In the special case of the
one-state approximation (S = 1), we obta. in the same results as Eqs. (4.12) and (4.15) of the previous section.

In this section we never needed to mention the word "pseudopotential. " We merely applied a Kohn varia-
tional approach to a trial function of the form (5.2) to obtain Eqs. (5.7) and (5.10). The pseudopotential
formalism was important in our developing the insight which led to the choice (5.2) for the trial function.
But there are other arguments which suggest that a trial function of this form might be very useful. In
particular, the valence electron can be said to possess an instantaneous kinetic energy (K. E. ) given by
T = E —Vopt where Vopt is the optical potential discussed in the previous section. Vopt becomes quite
attractive at small x values, so that the instantaneous K. E. of the electron is approximately —Vopt in this
region. This is true for any low-energy eigenstates, and it leads to the conclusion that at small ~ values
electrons behave quite similarly regardless of which low-energy eigenstate they happen to be in. This
suggests that including in a trial function accurate eigenstates belonging to different energies might be
useful in obtaining a good description of short-range correlation effects. We can further conclude that the
closer the energies of these eigenstates are to the energy of the state that is being calculated, the better
we can expect the description of the correlation to be. "

It is necessary to work within the pseudopotential formalism when the approximations used are not ob-
tainable from a variational principle, as for example, when an adiabatic approximation is used. When the
close-coupling approximation is used, the conceptual shift to the pseudopotential formalism is not neces-
sary. Nevertheless, because of the simple physical pictures it suggests, even in this case the pseudo-
potential scheme can be quite useful in the role of a guide. We feel that this will be especially true when
these methods are applied to molecular systems. This will be discussed more fully in Sec. VDI.

A. Numerical Procedure

All of the results reported in this paper were
for l = 0 states and were obtained by numerical
solution of the radial equation

[-—'d /dr —Z/r e-2 2

+ f, Q (r')(1/r )PO(r')r' dr']u(r)

+rQ (r) f, Q (r')(e —&+1/r&)u(r')r'dr'

+V u(r)+p(z-EO )r] (r)=O,
pol

(6.1}

VI. CALCULATIONS OF EXCITED STATES OF 8 AND He (G- ~)y(r) ~ry, (r) =O,
which satisfies the boundary condition (dy/
dr)r 0=0. The operator G is defined by

Gu(r) =-[- —,'d'/dr' - z/r

+ f y(r')(1/r )(t (r')r"dr']u(r)

arQ (r) f Q (r') ———,r'u(r')dr'
0 o 0

+V,u(r) .
pol

Let us define an operator M such that

Mu -=f y, (r')(e, a+1/r'—)r'u(r')dr' .

(6.4)

(6.5)

(6.6)

u (r) =x(r)+C y(r), (6.2)

where e = Z —c, and we use the fact that (I), and u
have l = m =0 for the cases we treat. The approx-
imation to y(r) of Eq. (4.6) is given by u(r)/r.
The results differ in the particular 4,+(I, 2) used
to construct the pseudopotential, the method of
choosing p and the polarization potential V ol.

Setting P = 0 in Eq. (6.1), we have the usua one-
state approximation with or without the inclusion
of a polarization ansatz, depending on whether or
not Vpol is included. The solution in this case
is obtained from

Then C, is given by"

C, = Mx/(1 —My)

The p-p (s-p) solution is

u (r) =C2y(r)+u(r),p-p

(6.7)

(6.6)

where y is obtained from (6.4), and u) is the so-
lution of

(G —cbv(r) —2r(E —E, )$ (r) =0 (6.9)

satisfying the boundary condition (du)/dr)r 0 = 0.
C, is given by

where x is any nontrivial solution of the equation

(G - ~)x(r) = O, (6.3)

and y is the solution of

C, = Mu)/(I —My)

The p-v solution is

u (r) =x(r)+ C3y(r)+ Pu)(r)/2

(6.1o)

(6.11)
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p = - —, (6.12)
—2(& «'&. &y~"&M./(1- ~y0
(1 + &~t &+ &yg'&~~/(1 —~y)"I

and C, = M(x+ Pau/2)/(1 —My) (6.13)

The differential equations (6.3), (6.4), and (6.9)
were solved numerically by Milne's predictor-
corrector method~ with an interval between radial
points of 0,05 tn 0.025 a.u. For the He 'S calcula-
tions, the equations were integrated to a distance
xmax =16 a.u. For the H and He 'S calculations

xmax = 24 a.u. Integrals were obtained by Simp-
son's rule. Phase shifts were obtained in this way
with a probable numerical error of less than about
+0.003 rad for e-H and about +0.0005 rad for e-He+.
Bound-state quantum defects were obtained to with-
in +0.001. All calculations were carried out on
the IBM 7094 computer of the University of Chicago
Computation Center. A typical continuum-function
calculation by the one-state, s-p or p-p methods
required about 0.25 min, and by the p-v method,
about 0.35 min. A typical Rydberg-state calcula-
tion required about 0.45 min per iteration.

TABLE I. Comparison of phase shifts (radians) for singlet S-wave electron-hydrogen atom scattering calculated by
different methods. (Zero-energy scattering lengths are given in parentheses. )

One state
k (ap ) (Ref. 15, Chap. XVII)

Two state Three state
(1S-2' (1S-2S-2P)

Present
calculation

p-v Temkin Schwartz

0.1
0,2
0.4
0.6
0.8
0.85

(8.09)

2.396
1.871
1.239
0.869
0.651
0.615

(8.05)

2.404
1.878
1.257
0.89
0.70

(6.74)

2.491
1.974

0.93
0.77

&3.00

(5.43)
+ 0.08

2.604
2.107
1.461
1.057
0.802
0.762

(5.90)
+ 0.08

2.552
2.042
1.371
0.953
0.698
0.658

(5.6)

2.59
2.11
1.45

0.87

(5.965)
s 0.003

2.553
2.067
1.415
1.041
0.886

I.Scheortz
2.Ternkin

O

I
I-
V

~~
40a
C

~ 2 .3 4,5 .6 .7,8 .9
Wove Number k in o~'

FIG. 1. Electron-hydrogen singlet S-vrave phase shifts.

B. Singlet S-Wave Elastic e-8 Scattering

A six-term multiconf iguration self- consistent-
field (SCF) H ground-state function, "with an en-
ergy expectation value E,= 0.527 00 a. u. (Pekeris's
value: —0.527 75), "was used to form the pseudo-
potential. Table I and Fig. 1 show the resulting
phase shifts by the one-state, s-p and p-v approxi-
mations with no polarization potential added.
These are compared with calculations performed
by other workers. The elaborate variational
calculation by Schwartz using 50 Hylleraas-type
functions, "and the results of Temkin's "nonadia-
batic approach'"' are the most accurate available
calculations of this system at very low energies.
The two-state (1$-2$) and three-state (1$-2$-2P)
close-coupling calculations of Smith, McEachran,
and Fraser, "and Burke and Schey, "respectively,
are also included.

Results of the p-v method agree extremely well
with Schwartz's calculations at very low k. The
p-v zero-energy scattering length of 5.90+0.08,
which is a true upper bound to the exact value
since it satisfies a Kohn variational principle, '
compares quite favorably with Schwartz's value of
5.965 + 0.003. 29 At higher 0 values (& 0.6a, ') the
p-v results begin to deviate considerably from
Schwartz's results. Table II, in which Schwartz's
results are assumed to be exact, illustrates this
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TABLE II. Percent of correlation in electron-hydrogen 8 scattering calculations by various methods.

u (a,-')
One state

(a,ef. 15, Chap. XVII Two state Three state
calcula. tion

p-v Schwartz 28

0.1
0.2
0.4
0.6
0.8

5
4

10
12
20

35
51

99
87
75
49
20

100
100
100
100
100

effect dramatically. Recalling the discussion at
the end of Sec. V, this trend is not surprising.
The H bound state which was used to construct
the pseudopotential is bound by only —0.027 a.u.
and so it is very close in energy to the k = 0 con-
tinuum function. We therefore expect the two-
electron pseudopotential methods to work very
well for this system. For higher k, the energy
difference between bound and continuum functions
begins to become significant, and as expected the
pseudopotential does not describe the correlation
effects as well. From Fig. 2 we can reach the
same conclusions using the pseudopotential argu-
ments of Sec. IIL Figure 2 shows plots of u(r)
= rj(x) calculated by the one-state, s-p and p-v
approximations. The k = 0.1 pseudofunctions re-
main quite small compared with the one-state
function out to a distance of 4 or 5 a.u. At this
distance polarization is no longer very important,
so we expect most of it to be accounted for by the
pseudopotential. The k =0.8 pseudofunctions be-
gin to become large at much smaller x, and will
therefore less adequately take into account the
long- range polarization. In most variational cal-
culations of scattering states the very low energy
(0 & 0.2a, ') states are more difficult to obtain ac-
curately than those for somewhat higher k. This
suggests the possibility of combining the pseudo-
potential approach with other basis functions in
an attempt to obtain accurate results over a wider
energy range.

It is interesting to note the behavior of the phase
shift for k between 0.8a, ' and the inelastic thresh-
old at 0 = 0.866ao '. The two- and three-state cal-
culations show the presence of a resonance due
to a long-lived 1$-2S H- species. Resonances
in this region have been experimentally verified. "
Since the correlation in the H ground state used
to form the pseudopotential introduces some 18-
2S character, we might have hoped that the pseu-
dopotential calculations would also predict a reso-
nance in this region. This is not the case. No
trace of a resonance appears in the pseudopoten-
tial calculations.

Looking at the results of the s-p method, the
zero- energy scattering length of 5.43 + 0.08,
while not a bound to the true value, is quite good

r I r

-0
k= i

~ ~

~ ~

One - stote function
---"P-V pseudo function
----S-P pseudo function

~g ~ ~ ~ ~
~oL +~ ~

~ ~

0

~ ~
~

~ /
~ ~ ~ ~ ~

0 2
5----~

5 6
r (otomic units)

FIG. 2. Electron-hydrogen singlet 8-wave wave func-
tions u(x) =xX(r). All functions have the same asymptotic
normalization.

when compared with the one-state value of 8.09.
It is, in fact, remarkably good when it is remem-
bered that the s-p method requires almost the
identical amount of computational effort as the
one- state approximation. ~~" Phase shifts calcu-
lated by the s-p method are consistently larger
than those calculated by the p-v method. Thus
at higher k the s-p results are closer to the re-
sults of Schwartz than are the p-v results.

The simplest polarization ansatz is the Bucking-
harn potential

V = —n/(2+ d')',
pol

(6.l4)

where the polarizability n = 9/2@4 for H-like sys-
tems, and d is a cut-off parameter which has the
purpose of keeping the potential from becoming
too large for small x values. The wave functions
calculated using this potential are quite sensitive
to the value of this parameter d, and there are no
simple adequate criteria for choosing d." From
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the pseudopotential discussion of Sec. IG, we
would expect that the pseudopotential formalism
would reduce the sensitivity to the parameter d.
In fact, if the pseudofunction can be kept small
out to an x value for which the potential is ac-
curately represented by its asymptotic value n/r',
then the value chosen for d should hardly mat-
ter at all, so long as it is sufficiently small.
Table IG shows results of calculations in the one-
state-plus-polarization and the p-p approxima-
tions with Vpoi given by (6.14) using several val-
ues of d. The pseudopotential formalism does
its job very well. When d is varied from 2.5 to
1.0 a.u. , the k = 0.2 phase shifts change by 0.706
rad when no pseudopotential is used, but by only
0.015 rad when the pseudopotential is included.
The p-p results also agree quite well with
Schwartz's results, but in this case the s-p re-
sults (no polarization added) are equally good ex-
cept at high energies, and so e-H scattering does
not serve as a good test of the p-p method.

the correlation/polarization. But at higher en-
ergies the e-He+ results do not appear to get
significantly worse as they did in the e-H case.
This behavior could have been anticipated since
the energy of the bound He function used to con-
struct the pseudopotential is considerably differ-
ent from that of the continuum functions. Figure
8 shows plots of u(r) calculated by the one-state,
s-p and p-v methods. The pseudo wave functions
become large at a much smaller value of r than
the corresponding functions in the e-H case.
Nevertheless, the s-p function is sufficiently
small at very small x so that we can expect the
p-p method to work well. Table V shows that
the p-p functions are much less sensitive to the
value of the cut-off parameter d than the one-
state-plus-polarization wave functions, just as in
the case of e-H. Table IV shows that the p-p
phase shifts agree very well with those extrapo-
lated from quantum defects. "~" %e emphasize that
the p-p method, with such a simple polarization

TABLE III. Variation of electron-hydrogen atom singlet 8-wave phase shifts for k=0.2 a.u. As a function of the
parameter d in the polarization potential - n/(t +d ) with n=+z .

d (a.u. )

Without

pseudopotential
%'ith

ps eudopotential

(no polarization)

2.107

1.966

2.113

2.0

2.028

2.110

1.5

2.106

1.0

2.672

2.098

Schwartz

2.067

C. Singlet S-Wave Elastic e-He Scattering

In this case the pseudopotential was constructed
from a 10-term multiconfiguration SCF function"
(E,= —2.90289 a.u. , Pekeris's E,= —2.908 72). z8

Table IV shows phase shifts calculated by the one-
state, p-v and p-p methods. These are compared
with phase shifts extrapolated from experimental
quantum defects. " The latter are assumed to be
essentially exact at very low energies.

The p-v method is not nearly as successful at
very low energies in this case as it was in the
e-H calculations, accounting for only -50%% of

ansatz, involves roughly the same computational
effort as the one-state approximation. We con-
clude from these results that the p-p method
might be very powerful, especially when applied
to large systems for which close-c'oupling and
accurate adiabatic methods become very tedious.
Much less accurate polarization potentials are
probably sufficient when used within the pseudo-
potential formalism.

I I

One - state function

P V udo- function
udo- function

TABLE IV. Phase shifts for singlet 8-wave e-He
scattering.

Present calculation
One state p-v p-p @D36

~ ~

0.2
0.3
0.4

0.384
0.381
0.376
0.370

0.409
0.407
0.402
0.395

0.437
0.434
0.430
0.423

0.436
0.433
0.427
0.420

0 2
r (atomic units)

FIG. 3. Electron-He+ ion singlet S-wave functions
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TABLE V. Variation of e-He ion S-wave phase shifts for k=0.3 as a function of the parameter d in the polarization
potential —o/(r +d ) with o =+.

d (a.u. )

%'ith out
pseudopotential

Kith
pseudopotential

No polarization

0.376

0.423

2.0

0.384

0.428

0.390

0.430

0.407

0.430

0.9

0.428

0.428

0.7

0.479

0.424

QD36

0.427

+
D. Triplet S-Wave Elastic e-He Scattering

A 19-term configuration interaction 'S state of
He" (E,=2.17521 a. u. , Pekeris's E, = —2.17523)"
was used to construct the pseudopotential. Phase
shifts calculated by the one-state, p-v and quan-
tum defect (QD) extrapolation" are tabulated in
Table VI. At low k, the p-v and QD results agree
exactly. At higher k the quantum-defect extrap-
olation becomes less accurate, and one might be
tempted to attribute small deviations between the
p-v and QD to this. However, it is known in this
case that at higher energies the QD phase shifts
err because they are too small, "although at k
= 0.4 they are probably still quite accurate. Thus
the p-v results are even more in error at ener-
gies around k =0.4, and we see the same effect,
although to a lesser extent, that occurred in e-H
'S scattering: The p-v method becomes poorer
as k increases.

The s-p and p-p methods are not directly ap-
plicable to 'S e-He+ scattering. This is due to
the fact that y(r) = u(r) jr may contain any arbi-
trary amount of the He+ ground state Q, (r), even
when the pseudopotential formalism is used, and

$ (r) is a "28-like" function rather than 1S-like
as is $+(r) The to.tal wave function is written

4'(I, 2) = (f& (1)j(2)—Q (2)j(l) + Py (1, 2), (6.15)

so any amount of Q, appearing in j(2) will be sub-
tracted out by the second term on the right-hand
side (rhs) of (6.15). The s-p criteria of choosing
P, i.e. , requiring that y(0) =0, is therefore no
longer unique in this case. Because of the great
success of the p-v method for this system, no at-
tempt was made to find simple satisfactory ways
to remove this arbitrariness in the s-p method.

E. Rydberg States of He

one does not in general know the eigenenergies
before performing the calculation.

The usual procedure for determining the ener-
gies and wave functions of bound states by a dif-
ferential equation approach is the following:
(1) make an initial guess of the energy eigenval-
ue; (2) starting from r =0, integrate the differen-
tial equation with this value of E until the wave
function begins to increase exponentially in the
asymptotic region; (3) adjust the energy to re-
duce the amount of divergent behavior in the
asymptotic region; and (4) iterate until an energy
is found for which the wave function remains
nearly zero in the asymptotic region.

For Rydberg states with principal quantum num-
bers greater than about 4 or 5, direct application
of this method becomes intractable because the
Rydberg orbitals become so diffuse that the inte-
gration would have to be carried out very accu-
rately to extremely large distances. In this paper
we use a modification of this method which takes
advantage of the asymptotic properties of Coulomb
functions. The procedure we use, which is dis-
cussed in detail in the Appendix, is the following:
(1) guess a value for the energy; (2) integrate
the differential equation for this energy to a dis-
tance xo at which the potential has become essen-
tially a pure Coulomb potential. (For these cal-
culations r, was taken to be 16 to 24 a.u. ); and
(3) by matching the solution and its derivative at
r, to a linear combination of regular and irregu-
lar Coulomb functions of the same energy, we
can calculate the quantum defect p, (E) for this
value of E. If p(E) is a slowly varying function
of E, and if E is fairly close to an eigenvalue
Ez, then p(E) should be an excellent approxima-

TABLE VI. Phase shifts for triplet S-wave e-He
ion scattering.

Thus far we have talked almost exclusively in
terms of the calculation of scattering states. But
almost everything discussed applies equally to
bound states. In particular, the equations (6.1)
to (6.13) are valid for bound states as well as for
continuum states. The major difference is due
to the fact that for bound-state calculations we
are faced with solving an eigenvalue problem;

k (a.u. )

0.1
0.2
0.3
0.4

0.919
0.916
0.910
0.902

0.931
0.926
0.919
0.910

Present calculation
One state p-v QD

0.931
0.927
0.921
0.912
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tion to p(E„). We can therefore obtain a better
approximation to Ez from

E =[n- p, (E)] ' . (8.18)

In these calculations p(E) was found to vary slow-
ly enough so that even for fairly crude initial
guesses, the energy was found sufficiently accu-
rately by only one solution of the equation; p(E)
and p(E„) agreed to at least 4 decimal places.
So if one is interested only in the energy, the
equations need only be solved once, just as in
the case of positive-energy states. If the Ryd-
berg wave function is desired, not just its ener-
gy, then the equations must be solved a second
time using the correct energy.

Quantum defects were calculated for the 'S
states of He by the one-state, p-v and p-p meth-
ods. The correlated He ground-state function2'
reported in Part C of this section was used for
these calculations. In Table VII these results are
compared with the "best single configuration"
calculations of Davidson ' and with experiment.
The results are very similar to those for singlet
S-wave e-He+ scattering reported in Part C of
this section. Quantum defects calculated by the
p-p method agree almost exactly with experiment,
while those calculated by the p-v method contain
only about 40-50% of the correlation.

The 'S bound function" used in Part D of this
section was used to construct the pseudopotential
in the 'S He Rydberg- state calculations. In Table
VIII, 'S quantum defects calculated by the one-
state and p-v methods are compared with the re-
sults of Davidson" and with experiment. The p-v

results are in essentially exact agreement with
experiment, but in this case the correlation ef-
fects are small enough so that even the one-state
approximation gives good results. The one- elec-
tron pseudopotential calculations of Hazi and Rice, '
which should be almost equivalent to the one-state
results, are also included in Table VIII.

VII. USE OF APPROXIMATE BOUND STATES IN
CONSTRUCTING PSEUDOPOTENTIALS

In the calculations of the previous section, fair-
ly accurate correlated bound- state functions were
used to construct the pseudopotentials. Even so,
these functions were not assumed to be exact
eigenfunctions, since we replaced Eq. (2.4) by
Eq. (4.1), and obtained $(x) from Eq. (5.8). Some
calculations were performed in which we assumed
that these same 4,(I, 2) functions were exact eigen-
functions of the two-electron Hamiltonian; i.e. ,
we obtained $(x) from the equation

g(~) = fy,*(1)e,(l, 2)dr, , (7.1)

which would be exact if H C, =E,C,. In the
e-He+ 'S calculations, making this assumption re-
sulted in only a slight change in the phase shifts.
However, in the e-H 'S and the e-He+ 'S calcula-
tions, for which the bound functions 4, are much
more diffuse than the helium ground state, using
(7.1) instead of (5.8) gave erratic results. We
conclude that (5.8) should be used unless the
bound functions are extremely accurate.

The question remains: How effective is the
pseudopotential method when the pseudopotential

TABLE VII. Comparison of calculated and experimental quantum defects for S states of He.

3
4
5

10

Davidson

0.124
0.122

One state

0.126
0.124
0.124
0.123

Present calculation
p~v

0.133
0.132
0.132
0.131

p-p

0.142
0.141
0.140
0.140

Exp erimenta

0.143
0.141
0.141

C. E. Moore, Atomic Energy Levels, National Bureau of Standards Circular No. 467 (U. S. Government Printing
Office, Washington, D. C. , 1949), Vol 1, p. 4.

TABLE VIII. Comparison of calculated and experimental quantum defects for S states of He.

3

5

10

Davidson

0.298
0.298

~ ~ ~

Hazi and Rice

0.298
0.296
0.294

0 ~ ~

0.297
0.295
0.294
0.293

0.301
0.299
0.298
0.297

Present calculation
One state p-v Experimenta

0.302
0.299
0.298

C. E. Moore, Atomic Energy Levels, National Bureau of Standards Circular No. 467 {U. S. Government Printing
Office, Washington, D. C. , 1949), Vol. 1, p. 4.
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is constructed from bound functions which are not
as accurate as those used in the previous section?
In an attempt to partially answer this question,
we calculated e-He+ 'Sand 'S phase shifts by the
p-v method, using Hartree-Fock (H-F) bound
wave functions" to construct the pseudopotential
by Eq. (5.8). The results shown in Table IX con-
firm our expectation that H-F functions add al-
most no correlation at all. For e-He+ '$, a p-p
calculation was also performed using a H-F func-
tion. The results (Table IX) are very poor.
This is somewhat puzzling considering the argu-
ments of the next paragraph, but at least it can
serve as a warning. In summary, it is important
that the wave functions used to construct the
many- electron pseudopotential be fairly accurate
and contain a fair amount of correlation.

The calculations of Kestner et al. ' on e-He scat-
tering are very similar to our p-p method. They
use the three-electron analog of Eq. (6.1) with
quite accurate adiabatic polarization potentials.
But instead of using bound He three-electron
wave functions to form the pseudopotential, as
the p-p method would require, they simply let $
in Eq. (6.1) be the He H-F one-electron core
orbital. (I course, a bound He function does
not exist, so the p-p method is not applicable to
their system. ) They obtain very good results in
this way. However, the role played by the pseu-
dopotential in their calculations seems to be con-
tradictory to that which it plays in the present cal-
culations. We use very accurate wave functions
to construct a pseudopotential in order to lessen
the effect of making a less accurate approximation,
e. g. , the adiabatic approximation, in solving the
equation. In their work they use an adiabatic ap-
proximation which goes beyond the one-electron
approximation, but the pseudopotential which mod-
ifies it is obtained within the one-electron approx-
imation, so that at first glance it might seem that
they would do better without. the pseudopotential.
They would not. The pseudopotential they use
does not by itself introduce any correlation, as
ours does, and it does introduce some error since
it is obtained in the one-electron approximation.
But because of the compactness of this orbital and
the rather devious way in which it manifests it-
self in the calculation, this error can be argued
to be relatively small. On the other hand, the
error introduced by using an adiabatic approxi-

mation in the region of small x is quite large.
Thus the role of the pseudopotential in the Kestner
et al. calculation is really the same as in our
p-p method: The pseudopotential makes it diffi-
cult for the pseudoelectron to venture close to
the nucleus where the adiabatic potential is poor,
and it slows the pseudoelectron down so that the
adiabatic hypothesis is somewhat more valid in
this region.

VIII. DISCUSSION

No triplet S-wave electron-hydrogen atom scat-
tering calculations were reported in this paper.
This is because no bound triplet states of H ex-
ist, so the many-electron pseudopotential ap-
proach is inapplicable to this system. This points
out a basic requirement of the many-electron
pseudopotential method: The N- electron system
must possess at least one bound state of the same
total spin and symmetry as each of the excited
states to be calculated. This is a very severe
limitation on the applicability of the method to
electron- neutral scattering (photodetachment)
problems, as typified by the e-H system. On the
other hand, for Rydberg state or electron-positive
ion scattering (photo-ionization) calculations this
is no limitation at all.

The second requirement of the many-electron
pseudopotential method is that there exist reason-
ably accurate calculations of the correlated wave
functions for these N-electron bound states. This
might also be a serious limitation in some cases,
although increasingly more bound-state calcula-
tions are becoming available.

Our calculations show that the many-electron
pseudopotential method, even used in its simplest
form with the one-state approximation, can in
many instances give extremely accurate results
with a minimum of effort. There are, however,
two situations in which the pseudopotential in
this simplest form cannot by itself account for
most of the correlation effects. The first such
situation is the one in which the bound state used
to construct the pseudopotential has an energy
very much lower than the excited states that one
is calculating; e. g. , the He '8 calculations of
this paper. It was shown for this case that a tre-
mendous improvement results from the addition
of a simple polarization ansatz, and that the in-

TABLE IX. The use of H-F versus correlated bound functions to construct pseudopotential. Phase shifts (in radians)
for the He atom (S-wave, 4=0.2).

S
3g

One state

0.381
0.916

p-v (8-F)

0.382
0.916

p-v (Corr. )

0.407
0.926

p-p (H-F)

0.377
~ ~ ~

p-p (Corr. )

0.434
~ ~ ~

0.433
0.927
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accuracies associated with using an adiabatic po-
tential in the region of small x are almost com-
pletely eliminated. Another method of treating
this situation which is perhaps superior to the
addition of a polarization ansatz is the use of
more than one bound function to construct the
pseudopotential. For example, in the He 'S prob-
le'm, the first excited 'S state of He has an ener-
gy even closer to the continuum than the lowest
He 'S state, and so it is reasonable to expect
from the 'S results that using both the ground and
first excited 'S states of He to construct the pseu-
dopotential would give extremely good results.
This method has the advantages that it obeys a
strict Kohn variational principle and that it can
be systematically improved by addition of more
terms to the trial function, in particular, close-
coupling terms. A further reason for possibly
avoiding adiabatic methods is that, while they
may provide very good phase shifts and energies,
because they involve only the elastic channel
they cannot provide the entire wave function to the
same accuracy that the close-coupling pseudopo-
tential methods can.

The second type of problem for which the pseu-
dopotential with the one- state approximation is
insufficient is the study of resonance effects or
inelastic processes. For such cases, the pseu-
dopotential and close-coupling methods should
complement each other well. The close-coupling
states can account fairly well for long-range po-
larization, and are the natural way to describe
resonances and inelastic channels. The pseudo-
potential can supply the short-range correlation
effects very well and therefore greatly reduce the
slow convergence problem of the close-coupling
method "~"

Burke and Taylor~' have performed very suc-
cessful calculations on e-H and e-He+ elastic and
inelastic scattering using a trial function construct-
ed of the 1$, 28, and 2P close-coupling states and
up to 16 "correlation terms. " It is quite possible
that by replacing the correlation terms by a pseu-
dopotential, one might obtain comparable results
while greatly reducing the labor involved.

Many dynamic molecular processes appear to
require for their description the calculation of
highly excited Rydberg states and of the corre-
sponding low-energy electronic continuum states
at a large number of fixed internuclear distances. 4'

The angular dependence of these functions can
usually be assumed to a very high degree of ac-
curacy to be pure spherical harmonics in the
asymptotically large x region. 4' But for small
values of r the potential can become very non-
spherical, causing the wave functions to be non-
spherical as well. Temkin and Vasavada44 have
recently obtained a fairly good description of
e-H, + continuum states using their "method of
polarized single-center orbitals, "which restricts

the angular dependence of the continuum function
to be a single spherical harmonic at all r values.
Since this is a poor approximation only for small
x, the discussions of Secs. III and IV argue that
the pseudopotential method, combined with Tem-
kin and Vasavada's single-center approach (with
or without an adiabatic potential) might be very
effective in molecular calculations. A function
of the form

where the 4& (rl, . . . , r~) are accurate bound-
state functions, might describe the nonspherical
nature of the continuum or Rydberg states quite
well, and still be easily calculated by solution of
a "simple" radial equation.

In conclusion, it has been remarked that con-
sidering the fact that most interesting atomic
and molecular processes involve excited states,
there is at present a disproportionate amount of
effort being applied to the calculation of lowest-
energy bound wave functions. In this paper we
have shown that there is a large amount of in-
formation about excited states that is contained
in these lower bound functions, and that with the
aid of the pseudopotential formalism, this infor-
mation can be readily used in excited-state cal-
culations.
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APPENDIX

In this Appendix we present a differential equa-
tion method for obtaining normalized wave func-
tions and eigenenergies of bound states based on
asymptotic properties of Coulomb functions. We
make use of many of the results presented by
Seaton, "and follow his notation closely.

Assume that there is a distance x, from the ori-
gin beyond which the potential is essentially purely
Coulombic. Then we can write the differential
equation in the form

(A1)

where V and e = —1/v' are in Rydberg units. V(r)
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P(v, I; r) = [vv /P(s)1'(l+ 1 —v)]

x(1+p(s)[A(v, I) cot(vv)+G(v, l)]]
xy, (v, I; r)+y, (v, I; r), (A2)

where

A(v, I) = I'(v+ 1+1)/v r(v- I),2l+ 1

G(v, I}= „X(v,I ),
and

(AS)

(A4)

= —2/r for r & ro and V(r}= —2Z/r for r small.
Consider the following solution 8'(v, I; r) of (Al)
which is regular at x =0 but not necessarily regu-
lar at ~=~:

The functions y, and y, can be conveniently ob-
tained by expansions in powers of &. "& ' The ex-
pansion formulas given by Kuhn~' were used in the
calculations of this paper.

In order to obtain a solution of (Al) for a nega-
tive energy, one can solve (Al) numerically with
an initial guess of the eigenenergy and at some
points r„x,&x, match the resulting solution to the
pure Coulomb functions y, and y, to find P(s) in
Eq. (A2}. Then from (A5) one can obtain p, (e).
If g(e) = g(sn) then a much improved approxima-
tion to en can be obtained by substituting g(e) for
it(s„) in Eq. (A6). This procedure can be re-
peated until the energy does not change.

Seaton" shows that for ~ &~, the normalized
bound wave functions are given by

P(s}=[A(v, f)cot(vp(e})- G(v, f}]-',a&0 . (A5)

Equation (A5) defines the "quantun defect" tt(e)
which is a continuous function of e and which for
eigenvalues satisfies

p(s )=n- v
n n

I' (r) = k(v, l)y (v, I; r),ne n' 5 n' '

where

k(v, I) =[](v )v 'r(v +I+ I)
n n n

xI'(v —I)] 'I'
n

(A8)

(A9)

For van, y, and y, are two linearly indepen-
dent solutions of the pure Coulomb equation.
is regular at x =0 but increases exponentially for
large r. y, approaches zero as x- and can
be written

y, (v, I; r) =- [mv /1(f+ I —v)]
l

x[&(v, &) cot(vv)y, (v, I; r)+y, (v, I; t)].
(Av)

and &(v ) =1+ ay/sv (A10)

fI' '(~)dr =1 (A11)

without it being necessary to perform the integral
(A11).

so the resulting solutions of Eq. (Al) can be easi-
ly normalized such that
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