
O. P. HANSEN 181

and, from (11) and (12),

() /xr, )2h '
j2 —1 {zrt (X/2df) sinh(2df/))+17

Lcosh (fd/X) +-,'sa sinh (fd/X) 7'

+(d/dry'f')P(X/2df) sinh(2df/X) —17+(1/y'f')(cosh(2df/X) —17}. (A11)

The average value of A is found to be

() /fd) h(fd/) )+(2/7'f')L o h(fd/) )—17
(A)..=-
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(A12)

Here @re have used the abbreviations
yp

——hc/2e,

h, = 22rrrdrH, /pp.

(A13)

(A14)
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W'e have made measurements of the evanescent decay of the irreversible magnetization induced by
magnetic cycling of solid superconducting cylinders in order to elucidate the mechanisms of Anderson's

thermally activated Qux-creep process. A superconducting quantum interferometer device coupled to the
creep specimen by a superconducting flux transformer made possible observations of Qux changes with
a resolution of one part in 10 . The general applicability of Anderson's theory of Qux creep was con6rmed
and the results were analyzed to show that: (1) The total flux in the specimen changed logarithmically
in time, i.e., Ad ~ lnt/tp (2) The logar. ithmic creep rate dd/d lnt is proportional to the critical current
density J, and to the cube of the specimen radius. (3) The logarithmic creep rate appears to be only weakly

temperature-dependent because a proportionality to T is nearly compensated by the proportionality to
J„which decreases as T increases. (4) The creep process is a bulk process that is not surface-limited (in
this case). (5) Flux enters and leaves the surface in discrete events containing from about one flux quantum

up to at least 10 Qux quanta. (6) On departing from the critical state to a subcritical condition, the creep
process tends to remain logarithmic in time, but the rate is decreased exponentially by decreasing T and
is decreased extremely rapidly by backing o6 of the applied field from the critical state. (7) At magnetic
fields H &H, i on the initial magnetization curve, no Qux creep was observed, but the logarithmic creep
rate showed a modest increase above H, i and a broad rise as H approached H, 2. The creep process is char-
acterized by a dimension parameter VX consisting of a Qux bundle volume V and pinning length X, and

by an energy Uo, both of which are supposed to be material-sensitive parameters characteristic of the irre-
versible processes. These parameters were determined from the experiments. Bundle volumes V=10 "cm'
and energies U0=1 eV were found, indicating that groups of Quxoids must be pinned and must move co-
operatively. The results are found compatible with a recent model for Qux pinning that includes these
cooperative effects.

L INTRODUCTION

ASIC to our present understanding of the re-
markable current-carrying capacity and charac-

teristic magnetic hysteresis of hard superconductors
are the critical-state model' ' and Anderson's' theory

*Now at Division of Engineering and Applied Physics, Harvard
University, Cambridge, Mass.

f Now at the Institut fur Metallphysik, Gottingen, Germany.
' C. P. Bean, Phys. Rev. Letters 8, 250 (1962).' Y. B. Kim, C. I". Hempstead, and A. R. Strnad, Phys. Rev.

129, 528 (1963).

of Qux creep. In the critical-state model the virtually
static hysteretic internal Geld and current distributions
are ascribed to the pinning of the Quxoid distribution
against the electromagnetic driving forces by material
inhomogenieties. The Anderson-Kim'4 theory of Qux

creep describes dynamic effects arising from the ther-
mally activated motion of the Quxoids past the pinning
barriers and thus generalizes the concept of the critical

2 P. W. Anderson, Phys. Rev. Letters 9, 309 (1962).
P. %. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39

(1964).
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state. In particular, it defines the sense in which there is
a well-de6ned critical current and predicts a slowly
decreasing decay rate for the persistent currents in hard
super conductors.

The critical-state model appears to provide a satis-
factory description of the transport current and mag-
netization measurements on hard superconductors, ex-

cept at low fields in very-low-~ materials, where surface
effects are believed to be important. ' In addition, many
qualitative and some quantitative studies of the critical
current density in the critical state have been made in a
search for better understanding of pinning mechanisms. '

However, the only substantial experimental studies of
the Qux-creep process are the original studies of Kim,
Hempstead, and Strnad. ~ 8 They observed the loga-
rithmic decay of the persistent current due to Qux creep
in hollow cylinders of hard superconductors and con-
vincingly demonstrated the basic ideas of Anderson's
theory in studies of the resistive transitions at the
critical transport current in hard superconductors. In
neither of these original studies was the Qux-creep
process systematically studied over a range of condi-
tions. We suppose that it is the difficulty of the neces-
sary measurements of very small changes of magnetiza-
tion that has inhibited the characterization of the
Qux-creep process.

This paper reports an experimental investigation and
theoretical analysis of the Qux-creep process. We have
aimed to improve our basic understanding of the Qux-

creep process and to use Qux-creep measurements as a
means of studying the basic pinning mechanisms opera-
tive in hard superconductors. We have observed Qux

creep in some typical hard superconductors by mea-
suring changes in the average magnetization as the
nonequilibrium currents in the material decayed via
Qux creep, and have compared the results with the
behavior expected on the basis of the Anderson-Kim
theory. We studied a series of plastically deformed lead
alloys in the critical state, along the initial magnetiza-
tion curve, at fields above H, 2, and after departures
from the critical state effected by changing field or tem-
perature. The sects of cold working, specimen size,
and temperature were investigated for magnetic his-
tories in the critical state.

This paper is divided into several major parts. In
Sec. II the Anderson-Kim theory of Qux creep is out-
lined, the equations are solved for the rate of Qux trans-
port through the surfaces of solid cylinders such as were
used in these experiments, and the solution reformu-
lated to facilitate display of the relationships between
the material-sensitive parameters and the character-

' For a review of these studies with a list of references, see J.
D. Livingston and B. W. Schadler, Progr. Mater. Sci. 12, 183
(1964).' See W. A. Fietz and W. W. Webb, Phys. Rev. 178, 657 (1969).' Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev.
Letters 9, 306 (1962).

8 Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev.
131, 2486 i1963).

istic quantities describing the Qux-creep process. The
experimental techniques are outlined in Sec. III, where
we brieQy describe the highly sensitive magnetometer
(based on quantum interference effects in supercon-
ductors) that was specially developed for these ex-
periments. In Sec. IV the results are presented and in
Sec. V they are compared with theory and analyzed to
identify the characteristics of the Qux-creep process.
For one alloy, the material-sensitive parameters were
determined as a function of magnetic induction and
amount of cold working. In Sec. VI the results are com-
pared with current models of Quxoid pinning, and are
found fully compatible with a pinning model proposed
by Labusch' and Fietz and Webb, ' in which cooperative
interactions between pinning points lead naturally to
the large activation energies and Qux bundle volumes
observed in the Qux-creep experiments.

which assumes the useful "one-dimensional" scalar
forms

Ii =yBJ/c = yBVB/4r. ,
— (2.1b)

where H(B) is the magnetic field that would be in
thermodynamic equilibrium with the magnetic induc-
tion B inside the superconductor, and y—=BH(B)/BB.
J is the current density corresponding to the macro-
scopic flux density gradients.

When a sufficiently large magnetic field is applied to
a hard superconductor, an internal gradient in the Qux

density is formed beginning at the surface, and Quxoids
eventually force their way past the pinning barriers into
the material. Inside the material, the Quxoids relax into
an arrangement such that F just equals F„everywhere.
When this balance of forces is reached, the material is
said to be in the critical state, and the circulating per-
sistent currents are uniquely determined if F„(B) is
known.

' R. Labusch (unpublished)."J.Fridel, P.-G. DeGennes, and J. Matricon, Appl. Phys.
Letters 2, 119 (1963).

"In this expression and throughout this paper, the symbol 8
signifies the magnitude of the field in the z direction and is not a
vector quantity unless explicitly shown in bold type (e.g., 8).
Also, all vector operators operate only in the zy plane.

II. THEORETICAL ANALYSIS OF FLUX CREEP

A. Flux-Creey Equation

According to the critical-state model, at T=O the
Quxoids in the bulk of a hard superconductor can move
only if the driving-force density F acting on them ex-
ceeds the maximum local pinning-force density F„.In
magnetization experiments, the driving force arises from
a density gradient in the distribution of mutually inter-
acting Quxoids and, as shown by Friedel, DeGennes, and
Matricon, "is given by the Lorentz-like relation"

1 ciH(B)
F=—JXB
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U= Uo—
~
F(&X, (2.3)

which is the simplest functional form with the correct
physical features. In this relation, Uo was presumed to
be the effective height of the energy barrier for ther-
mally activated motion of a Qux bundle and the term
(Ft VX represents the decrease in the height of the
barrier due to applied forces. V is the activation (or
flux bundle) volume. We call X the pinning length; it
is the effective geometrical width of the energy barrier.
Nonlinearities in U as a function of

~

V'B
~

require amore
careful interpretation of Uo and X to be given later,
but the above picture is essentially correct and will
suKce for now. One of our objectives is to deduce from
Qux-creep experiments the values of Uo, V, and X.

In order to analyze Qux-creep experiments, it is
necessary to develop solutions for the Qux-transport
problem in macroscopic specimen geometries, a problem

However, as Grst pointed out by Anderson, ' at non-
zero temperature, fluxoid motion (or Aux creep) is
possible with the help of thermal activation even if
F&Ii~. Thus, after an applied Geld change, Quxoids
continue to move, relaxing the driving force, even as F
approaches and falls below Il„. The rate of thermally
activated motion is strongly enhanced by the driving
force Ii, and as Ii falls below Ii„, the rate of Quxoid
motion decreases extremely rapidly. VVhen this rate
becomes small enough to be negligible in a conven-
tional magnetization measurement, the superconductor
is again said to be in the critical state. Therefore, the
critical state exists for T&0 only as a somewhat in-
distinct condition, but it turns out that the amount of
Qux motion involved in Qux creep over any reasonable
time scale is so small that F still essentially equals F„,
and the uncertainty in the critical state is quite small.
Of course, the "persistent" currents associated with the
Qux gradients in the critical state will continuously
decay, even if very slowly, and it is just these decays
which were studied in this investigation. We now pro-
ceed to an analysis of the characteristics of these decays
based on Anderson's theory of Qux creep.

According to the Anderson theory of Qux creep, the
rate at which "Qux bundles" jump over the pinning
barriers is given by the usual Arrhenius expression

(2.2)

where uo is an attempt frequency and U is an effective
activation energy. The term "Qux bundle" describes
the cluster of neighboring Quxoids, coupled by their
mutual interactions, that is supposed to act collectively
in each thermally activated event. Thermally activated
motion will be strongly assisted by the driving force F,
and therefore U should be a decreasing function of

~
VB ~, and for all practical purposes the fluxoids should

move only down the Geld gradient. To account for the
fact that U is a decreasing function of j F(, Anderson
and Kim used the linear relation

analogous to solving a nonlinear diffusion equation for
mass transport, where the diffusion constant is a strong
function of the potential gradient. We proceed here with
this problem.

The Qux-Qow density 9, i.e., the amount of Aux that
crosses a line perpendicular to 8 and V8 per unit length
and time, is conveniently written

D= (VB/( VB()B~pog &(&,lv&—l)l&~ (2 4)

where m is the average distance by which a Qux bundle
moves in a thermally activated jump, and where in
writing U=U(B, IVB~) we have taken B as always
positive but VB may have either sign. Since no detailed
theory of the depinning process is available, we assume
that m is some unknown function of B and VB. How-
ever, it turns out that the results of the analysis for the
rate of Qux creep are virtually independent of m and
vo, so that the actual values and functional form of these
quantities are unimportant. Conservation of Qux re-
quires BB/Bt= —V D and gives the flux-creep equation

BB/81= V ~ L(VB/
~

VB
~
)Bwvoe U ~ ~v+~ ~"rg. (2.5)

88 1 8
(rD), —

Bt r Br
(2.6)

where D is the radial component of D.
It turns out to be convenient to calculate the Qux-

Qow density D rather than B. Once D is known as a
function of r and t (D is an explicit function of B and
V'B, and is therefore an implicit function of r and 3),
BB/Bt can be obtained from Eq. (2.6). The total flux
which enters or leaves the specimen, the experimentally

Using Eq. (2.3) for U, Anderson and Kim solved the
Qux-creep equation for the geometry of a thin hollow
cylinder. The calculated result is a logarithmic decay in
time of the persistent current circulating around the
cylinder in the critical state. This logarithmic decay
was observed experimentally by Rim, Hempstead, and
Strnad who, as we mentioned before, also studied Qux
Qow in a steady-state situation, where the Qux-Qow rate
was held constant with an applied transport current.
These experiments have demonstrated the exponential
dependence of the flux-flow rate on U/kT and the linear
dependence of U on P, in the limited Geld range of the
reported experiments.

The solution of Eq. (2.5) required for a thin hollow
cylinder is simplihed by the assumption that the Qux-

Qow density D is constant throughout the specimen and
therefore only a function of time. Unfortunately, this
assumption is certainly not valid in the more general
case of a thick sample, and a better solution is required.
The experiments reported in this paper were performed
on solid cylinders, and thus we shall restrict our calcu-
lations to cylindrical symmetry but will not assume D
independent of r In this case. , Eq. (2.5) becomes
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observable quantity, is simply obtained from the changes in U—k T(ln) Bw v p are of order k T/U«1. Thus,
relation to a good approximation the total derivative of

8$/8 t= 2n—.pD (p, t), U—kT 1nBmvo with respect to r is equal to zero. This
leads to the relation

where p is the total flux in the specimen and p is the
specimen radius. Since 8(U kT—lnBwvp) 8 ln

I
VB

I 8(U kT—lnBwvo)

BD 8(VB)BD BD BB

at BB 8$ afvBJ N

we obtain, using Eqs. (2.5) and (2.6),

BD D 8 U 8 (lnBw vs)—kT-—
88 kT 88 BB

BD BD 1 8(rD) BD 8 1 8(rD))

ai BB r ar 8 I vBJ ar r ar
where

a! v'BJ

(2.7b) at

D ( BU ) -8 (18(rD)

kT(a[vs/l„ar&r ar )

which relates the two partial derivatives needed to
evaluate BD/BB and BD/8 I VB J. Again, the & signs
refer to positive and negative VB= BB/ar, respectively.
Substituting this last relation into the Qux-creep equa-
tion and keeping only the time dependence of D, we 6nd

and
BD D — BU 8(lnBwvp)

-- —kT- (2.7c)
afvBJ kT aJVBJ afvBJ

a (rD) ('8 ln
I
VB

I )
(2.8)

rar & ar

The & signs refer to positive and negative VB= BB/ar,
respectively.

B. Solution to Flux-Creep Equation in the Critical State

Equation (2.7) can be solved fairly simply when the
sample is in the critical state, where we expect the con-
dition U))kT to hold. The solution obtained is the
lowest-order solution in an expansion in powers of
k T/U, and will be suKciently accurate for our purposes.
In this section we obtain the first-order solution. It
can be shown that the corrections to this solution are of
higher order in kT/U.

From the definition of D, Eq. (2.4), we obtain the
relation that b(kT lnBwvp —U) =kTB(lnD) =kTBD/D,
where b represents changes with respect to either time
or space. From this relation we can deduce two useful
simplifications of Eqs. (2.7). First, we see that relative
changes of U —kT lnBmvo in time are roughly a factor
of kT/U smaller than relative changes in D and there-
fore negligible compared to changes in D itself. Thus,
in calculating BD/BB and BD/8

I
VBJ, we can neglect

the time dependence of the quantities in the brackets of
Eqs. (2.7b) and (2.7c) compared to that of D and evalu-
ate them at some time tj after the critical state is es-
tablished. Since the time dependence of all these quanti-
ties is extremely small, the exact value of t~ is not im-
portant, and any value of the quantity representative
of the critical state is acceptable. Second, we find that,
since D is not expected to vary rapidly in either space or
time, "B(lnD) is of order unity, and therefore relative

"Our solution to the creep equation will show that D~1/t and
has the fastest spatial variation near the origin, where D~1/r.
Therefore, 5 ln D is of order unity for any reasonable time scale,
except for a very small region near the origin which is not physi-
cally significant, being on a scale finer than the dimension of a
Quxoid.

where the subscript t& indicates that the quantities are
to be evaluated at time t& and are functions of r only,
and where in this last step we have made the additional
minor approximation that there is no strong dependence
of lnBwvp on VB and therefore 8(U kTlnBwv—p)/
8

f
VB

I
=8U/8 f

VB
I .

A particular integral of the differential equation is
easily found: With D(r, t)=h(t)f(r), the equation is
separated into a purely time-dependent part

=ma'(r), (2.9a)

and a purely position-dependent part

1 ( BU 8 18(rip))

(8 ln
I
VB

I y (1 8 (np)-

ar ) „kr ar

The solution of Eq. (2.9a) is

6 (t) = W1/t (2.10)

~=kT xfvBJ„

(a U/a
I
vB I), I

vB
dX, (2.11)

which is easily verified by inserting riP into Eq. (2.9b).

(The integration constant can be eliminated by an
appropriate choice of the time zero. )

The general solution of Eq. (2.9b) is
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U -'-

B = const

Uo-

~U 'I II IIII IIIIIII II M
/ / / / / / / / / / / / / / / / / / ~T

—J4m
C C

)ve[,„ /va)

assume that the Aux Row through the surface is not
obstructed by a surface barrier. Then the Aux density at
the surface has to be in equilibrium with the applied
magnetic field, and therefore r)B/N=O at the surface
for a constant applied field. This requires (8(rD)/c)r)„,
=0 and therefore re= p in Eq. (2.11).The second bound-
ary condition, which is not actually needed for cal-
culating R, is obtained from the requirement that BB/r)t
be finite everywhere. In a solid cylinder this requires
that D(r) ~ r as r goes to zero and therefore ri ——0. Sub-
stituting Eq. (2.11) with the boundary conditions
found above into the expression for E, we obtain the
final result. This final result can be written in a closed
form if we expand the functions ~VB~„and (BU/
8~7'B~),, in the powers of (p —r) around their values
at the specimen surface. Keeping only first powers of

(p —r), we obtain

R= W ,'rrkTp'(r)-U/8
~
VB ~) '(1mb), (2.14a)

The total Aux in the specimen at the time t is given by

4()=4( ) 8( ) (/o), (2.12)

where p is the specimen radius and to is an arbitrary
reference time. From this last equation we find that the
logarithmic derivative of the total Aux in the specimen
should be a constant, which we define as the logarithmic
creep-rate constant

R=drIi/d 1nt=&2wpg(p). (2.13)

More generally we could define a logarithmic creep rate
as a function of position R(r) =2wnP(r), but since it is
the total Qux change in the specimen which is measured
experimentally, it is sufficient to consider only R=—R(p).

To complete the solution it only remains to determine
ri and r& in Eq. (2.11) from the boundary conditions
and to evaluate the resulting expression for E. The
boundary condition at the surface is determined if we

FIG. 1. Typical dependence of the activation energy U on the
field gradient ~vB

~
at fixed B.The curve illustrates the nonlinear-

ities which arise if thermal activation is strongly assisted by the
driving force, so that thermal activation depends on the top of the
energy barrier. The shaded region represents the critical-state
region. The tangent to the curve in the critical-state region inter-
sects the ordinate at Up, and its slope is y(B/47f) VX. The effect
of the nonlinearity of U on the connection between the parameters
Up and X and the height U„and width X„of the actual energy
barrier can be clarified by a model calculation. Consider a pinning
potential of the form U(X) =-', U„cos(sX/X„), where X is the
position. The activation energy U is the difference between
a minimum and the adjacent maximum of the function
—,'U„cos(sX/X„) fX, where f—=y(B/47r) ~r/B (, V is the total
force acting on the barrier. The resultant function is actually illus-
trated here. When the force on the barrier is large and the thermal
activation takes place near the top of the barrier, U is small com-
pared to U~ and the function approaches the form U= U„(-,'+8)
X (1—

[ VB [/ [vB (
)s+, where ('7B),„=4xsU„/X„VpB is the

maximum field gradient which would be possible if there were no
thermal activation (i.e., at T=O). Using this expression, it is
simple to relate the observable quantities Up and X in terms of
U„, X~, and U. With elementary algebra we obtain Up= U„(-,')
X (4V„)'~s and X=X„(gs-)(4U/U„)'". Similar results would have
been obtained with any smooth function instead of cosmx//X„ for
the pinning potential.

where
8 — 1 f c)U qS=-,'p( VB( „, ln — —

(

—
)

. (2 14b)'
aB

f
VB f„,Ea

f VB[/„,

The & signs refer to positive and negative f/B = BB/
Br, corresponding to increasing and decreasing applied
fields in the critical state. As indicated by the subscripts,
all quantities are evaluated at the surface and at a fixed
time t& in the critical state. The expansion used to obtain
this last result is good if the correction factor 8 is small
compared to unity.

C. Discussion of the Theoretical Analysis

Our analysis shows that the characteristic logarithmic
time dependence of the decays predicted by Anderson
for hollow cylinders is preserved in the more general
solution found here. In fact, in Appendix A, it is shown
that any perturbation to the solution found in the last
section produces nonlogarithmic transients that decay
rapidly in time, so that for large t the creep rate always
becomes logarithmic.

Equation (2.14a) indicates that the logarithmic creep
rate 8 is proportional to p'. This proportionality is
characteristic of Aux creep in the bulk. It arises because
we have assumed that surface barriers are not con-
trolling the rate of Aux Row through the surface. If we
assume that Rux entry and exit are controlled by a
surface barrier, we find that the logarithmic creep rate
is proportional to p . Therefore, it is possible to differ-
entiate experimentally between the two cases. A simple
discussion of creep with a surface barrier is given in
Appendix B.

Equation (2.14a) indicates that flux-creep measure-
ments may yield the interesting quantity (f)U/d

~

VB
~ ),,

However, it is necessary to eliminate the correction
factor 1&8, even though it is close to unity. This factor
takes into account the fact that in the integral solution
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of the flux-creep equation LEq. (2.11)g,
~
V'Bt, , and

(8U/8
~

r7B
~ )i„being functions of B, differ as a function

of position depending on whether the sample is in the
critical state for increasing or decreasing applied fields.
According to Eq. (2.14a), it is possible to eliminate the
weighting corrections by using E, = ,'(R—j'+Et), the
average of the creep rates for increasing and decreasing
applied fields, which should be independent of 8. This
result suggests that the experimental data can be
analyzed most simply using E, In addition, the valid-
ity of the assumed expansion in powers of (p r) can b—e
checked by computing b from the relation

ventional critical-current measurements alone only pro-
vide the ratio Ue/VX, and therefore flux-creep mea-
surements provide essential additional information
about the pinning mechanisms.

The model calculation discussed in Fig. 1 shows that
the physical properties of the barrier are not given
directly by the observable quantities but are closely
related to them in a way that depends only weakly on
its shape. Thus for all practical purposes Eq. (2.16)
gives a satisfactory measure of the pinning energy U„
and the characteristic dimensional combination VX„.

E = (1+~)/(1 —&)
E.

(2.15)
III. EXPERIMENTAL PROCEDURES

A. Magnetization-Change Measurements

and confirming that 8&1.
As we have already shown, the relative changes of the

activation energy U with respect to time are expected
to be of order k T/U«1, and therefore the linear approxi-
mation U= Uo —p(B/4s. ) ~

V'B
~
VX made by Anderson

and Kim is justi6ed. However, we have not yet dis-
cussed the consequences of the fact that when the
thermal activation takes place near the top of an energy
barrier, U becomes a nonlinear function of

~

V'B ~, and
therefore the parameters Up and VX are not trivially
related to the height U„and width X„of the actual
energy barrier. The actual situation is illustrated sche-
matically in Fig. 1. From the figure we see that (BU/
tl~ 7'Bt),, and Us are the slope and intercept, respec-
tively, of the tangent to the curve at some value of U
lying in the relatively narrow shaded region represen-
tative of the critical state. We also see that if U(&Up,
as we expect,

BU q

48/ V'B(1 g, , 4sJ,/c

Up

4x 1
R=—kTp'

3 yB Vx

4x J,
(1&5)= kTp' —(1&—8), —(2.16a)

3 cUp

where
1(4 '1 (l. BlnU BJ.

)2&el k2 aB aB
(2.16b)

To convert the equations to practical units (B in G, J
in A/cm'), it is sufhcient to change 4nr/c to 4rr/10.
Equation (2.16) are our central result and indicate that
Aux-creep measurements, combined with critical-current
measurements, allow determination of both material
sensitive parameters of the theory, Up and VX. Con-

where J, is the current density Rowing at the surface in
the critical state.

In terms of the parameters Up and VX, the expression
in Eq. (2.14) for the logarithmic creep rate can be
written

The very slow magnetization changes associated with
the Aux-creep process were measured using a specially
developed magnetometer incorporating a point-contact
superconducting quantum interference device (SQUID)
similar to that originally developed by Silver and
Zimmerman. "The detailed design and operation of this
special system have been reported elsewhere, ' but since
the use of quantum interference devices in actual ex-
periments is relatively new and unfamiliar, we give a
brief description of the system developed for these
experiments. This system provides a practical scheme
for using the extremely sensitive SQUID for measure-
ments in high magnetic fields and should prove useful
for a variety of magnetic measurements.

The experimental arrangement is shown in Fig. 2.
Basically, the system operates as follows: A specimen
is placed in a persistent-current high-field supercon-
ducting solenoid and coupled by means of a dc super-
conducting flux transformer to the SQUID. The SQUID
is located in a carefully shielded region in order to iso-
late it from the large field changes of the solenoid. When
the magnetization of the specimen in the Qux-trans-
former primary changes, a persistent current develops
in the transformer and reQects this magnetization
change at the secondary, where its fiux is detected by the
SQUID, producing periodic modulation in the SQUID
I V(current-volt-age) characteristic. Although the
niobium point contact SQUID used in these experiments
shows the characteristic modulation by Aux even when
placed directly in the high-field region, its detailed elec-
trical characteristics are excessively dependent on the
ambient field. For this reason, it is more convenient in
practice to use the transformer-coupled arrangement to
keep the SQUID in a region of constant field and thereby
stabilize its electrical characteristics.

It was also found that the electrical characteristics of
the SQUID were very sensitive to stray electromagnetic

"A. H. Silver and J. K. Zimmerman, Phys. Rev. 141, 367
(1966).

"M. R. Beasley, Ph. D. thesis, Cornell University, 1968 (un-
published); M. R. Beasley and W. W. Webb, in Proceedings of the
Virginia Conference on the Physics of SNperconducting Devices
(University of Virginia, Charlottesville, 1967), p. V-1.
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Fro. 2. Schematic of complete magnetometer system. (a)
SQUID surrounding superconducting-transformer secondary; (b)
superconducting dc transformer; (c) additional inductance in
superconducting-transformer circuit to change transfer ratio be-
tween primary and secondary; (d) superconducting Pb shield; (e)
thermal switch to open transformer circuit during large Geld
changes; (f) shoulder to seat magnetometer support assembly
firmly in top plate of magnet in order to reduce microphonics due
to the motion of the transformer primary in the high field; (g)
2500-0 persistent-current superconducting Nb solenoid; (h)
copper solenoid to make small Geld changes while superconducting
magnet is in persistent current mode; (i) magnetic specimen in
superconducting transformer primary; (j) tapped hole and stud
to secure magnetometer assembly 6rmly to bottom plate while
seating shoulder (f); (h) and (1) Mumetal magnetic shielding; (m)
liquid-nitrogen Dewar; (n) helium Dewar; (o) coil to demagnetize
Mumetal shields.

due to flux creep in the material comprising the super-
conducting transformer. These drifts are not unique to
the transformer-coupled arrangement, and. were also
present when the SQUID was placed directly in the high
magnetic field and flux entered the material comprising
the SQUID. In practice, the drifts seemed more manage-
able with the transformer, and were not a serious prob-
lem in these experiments.

The periodic modulation of the SQUID I-V charac-
teristic arising from flux changes in the specimen was
detected using the ac field-modulation scheme shown
in Fig. 3. A dc current biases the SQUID on the sensitive
part of its 1-V characteristic where the modulation is
largest, and an ac modulating field is applied to the
SQUID. The output signal of the SQUID is periodic
with period gc ——2.1X10 r Gems in thetotal Aux (both
ac and dc) that passes through the nonsuperconducting
area enclosed by the SQUID, but after phase-sensitive
detection at the modulating frequency, the resultant
signal is periodic only in the dc Aux changes. (The
signals at the various points in the detection circuit are
shown in Fig. 3.) With the transformer-coupled arrange-
ment the dc flux changes seen by the SQUID are pro-
duced by the transformer secondary, and therefore the
output voltage of the system is electively of the form
V= Vc cos 2wng/pe, where n is the flux gain of the trans-
former and g is the total Aux in the specimen.

For the flux-creep measurements reported here, the
transformer was designed to make o =0.01 in order to
ensure that the largest abrupt flux changes that occurred
in the creep process did not produce more than half a
cycle in the output signal. This arrangement sacrificed
sensitivity, but it eliminated any ambiguity in the ac-
tual amount of flux change, and as flux slowly entered
or left the specimen the output signal was a series of
discontinuous steps forming a sinusoid with a period
depending on the average rate of flux change. Figure 4
shows a tracing of a typical magnetometer output signal
during a flux-creep measurement.

The actual measuring procedure consisted of setting
a dc field with the persistent-current superconducting
solenoid, ramping a small copper coil located inside the
solenoid to the final field, and then observing the sub-
sequent flux creep with the mangetometer. The small

radiation. Therefore, to provide adequate electromag-
netic shielding the entire experiment was placed in an
rf-shielded enclosure and the D ewars mounted inside
two concentric Mumetal cans. The Mumetal cans also
shielded the SQUID against Quctuations in the local
magnetic field. When shielded in this manner, the trans-
former-coupled SQUID provided reliable operation with
stable electrical characteristics over an entire day' s
operation and achieved a field sensitivity of 10 ~ G in
a field of 2000 G for a field resolution of 1 part in 10' .

One remaining difFiculty in the operation of this
system was small drif ts in the magnetometer output

Hac

sysch signal

From Hoc

bios Squid
Feed bock Voltage
for Null Detection
Scheme.

Tp Recorder ondS EN SITIVE
~DETEC~ Elec tronic Coun'

V=Vp cps 2~f~gg
~Ac output

V= Q c os 2v P/$p
2~(Ho sin ~t+Hdc)A=Vp cps

FIG. 3. SQUID detection circuit.
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ramping field was necessary in order to ensure that the
approach to the final field was monotonic (small de-
partures in the opposite direction drastically affect the
rate of flux creep) and to provide a well-defined zero of
time. Normally a ramp of 50 G in 1 sec was used, and
it was established experimentally that the exact ramp
rate did not affect, the observed creep rate. The copper
ramping coil was designed to minimize coupling with the
persistent-current magnet and thus minimize its
cancellation.

The sinusoidal magnetometer output signal was pro-
cessed by electronically counting the number of com-
plete cycles and plotting the total number versus ln]
(the expected time dependence) on an X-Y' recorder.
Figure 5 shows a series of typical recordings for various
magnetic histories. Since each complete cycle in the
magnetometer output corresponds to a change of ap-
proximately 100 ps in the average flux passing through
the specimen, the curves are in effect a plot of average
magnetization change versus lnt. The vertical steps in
these recorder tracings reQect the incremental nature
of the counting process and are rot related to the abrupt
changes in the Qux through the specimen seen in Fig. 4
The steps in Fig. 5 are produced by the event counter,
which simply provides a voltage increment at the time
that a specified number of counts have been detected.
The physically significant steps shown in Fig. 4 will be
discussed later.

60 0o

~30 sec+ t 600 sec

FIG. 4. SQUID detector output during Aux creep. This tracing of
a typical strip chart recording illustrates the discrete nature of the
Qux changes during the Qux-creep process. The size of the steps
shown indicates the amount of Qux in each event that couples
with the superconducting transformer and represents a lower limit
to the actual amount of Qux change in a particular event.

B. Specimen Preparation

Cylindrical rods of several PbTl alloys containing
0.6%, 4.5'Po, and 10% Tl were prepared by careful
melting procedures under the supervision of Professor
J.L. Gregg in the Materials Science Center Metallurgi-
cal Facility at Cornell University. Cylindrical wire
specimens for Qux-creep measurements were prepared
by extrusion of these rods at liquid-nitrogen tempera-
ture from an initial diameter of about 0.75 cm to final
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a 80
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I
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diameters of 0.086—0.190 cm (that is, about 34-75 mil).
The extruded wires were stored in liquid nitrogen to
prevent annealing and change of surface condition sub-

sequent to extrusion.
It is expected that the severe plastic deformation

produced by single-stage extrusion with a factor-of-10
reduction of area would produce macroscopically ho-

mogeneous dislocation concentrations. To obtain vari-
ous less-severe levels of deformation, that is, lower dis-

location concentrations, some of the extruded speci-
mens were annealed for several minutes at room tern-

perature. It was found that the critical current densities

J, could be reduced by about a factor of five by a 2-min

room-temperature anneal.
The specimen wires were suSciently long to neglect

demagnetization-factor effects, having always lengths
of several centimeters, which is many times the wire
diameter and many times either the diameter or the
length of the pickup coils.

The critical current densities of the specimens studied
were deduced from measurements of the hysteretic mag-
netization curves, using essentially the procedure of
Fietz, Beasley, Silcox, and Webb. "The values of J.(H)'
"W. A. Piet@, M. R. Beasley, J. Silcox, and W. W. Webb, Phys.

Rev. 136, A333 (1964).

Time (Seconds)

FIG. 5. X-F recording of Qux change versus ln t. Typical be-
havior at high and low fields for creep on the initial magnetization
curve (indicated by V). In this record the vertical steps are due
only to the digital nature of the signal processing (each step indi-
cates the completion of a full cycle in the magnetometer output)
and are not due to discontinuous Qux changes in the sample. The
arrows indicate whether H was increasing or decreasing.
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remained unchanged by long periods of storage at
liquid-nitrogen temperature and may be regarded as
characteristic of the individual specimens. These data
are given later.

Creep experiments were also carried out on some
PbIn alloys purchased in wire form from the United
Mineral and Chemical Corporation. However, the re-
sults were similar, and are not discussed in this paper
because the conclusions appear redundant and the data
recorded on that series of alloys were taken as an ex-
ploratory venture.

IV. RESULTS

Our main results can be cataloged on the basis of the
features of Eqs. (2.16) for the logarithmic creep rate
E=dp/d lnt. First, our measurements of the time de-
pendence of the total flux subsequent to magnetic
cycling into the critical state are considered, in order to
establish whether creep in the critical state really is
characterized by a logarithmic creep-rate constant R.
On finding that logarithmic creep really is observed,
the dependence of the logarithmic creep-rate constant R
on the relevant experimental parameters, magnetic
field H, critical current J„specimen radius p, and tem-
perature T, is considered. Next the effects on the creep
rate of excursions in T or H away from the critical state
are reported, and finally some direct observations on

the "sizes" of the increments of flux crossing the speci-
men surface are given. The problem of deducing the
material-sensitive parameters Uo, VX, and b is deferred
to Sec. V.

As expected the total magnetic flux in the specimens
in the critical state or on the initial magnetization curve
was observed to decay logarithmically in time. Ex-
amples of these decays are shown in Fig. 5 where in
each case the long-term behavior is clearly proportional
to the logarithm of time. The decays at high fields were
always smooth and reproducible logarithmic functions
of time. Only for the lowest-field curve are there any
significant short-term derivations from the over-all
logarithmic behavior. Somewhat erratic behavior seems
to be characteristic of the low-applied-field region. where
the decays were frequently observed to be a little ir-
regular and sometimes irreproducible.

Because the decays always were logarithmic in time,
we need only specify the logarithmic creep rate R
=dP/d 1nt in order to describe the experimental data
on flux-creep behavior under any given condition. The
small drifts in the magnetometer due to flux creep in
the superconducting transformer winding also showed
the logarithmic time dependence and were quite re-
producible for a given magnetic history. Thus, it was
possible to correct for these drifts by simply correcting
the observed logarithmic creep rate R, and the results
given are always appropriately corrected.

Figures 6 and 7 show examples of the dependence of
the creep rate on magnetic history for two of the alloys
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FIG. '7. Creep rate for Pb-4. 5%Tl in the critical state and above
H, 2. The magnetization curve is shown for reference.
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FIG. g. (a) High-field creep rate for Pb—10%T1-1; (b) high-field creep rate for Pb—10%Tl-2;
(c) high-Geld creep rate for Pb —10%T1-3.

studied. The magnetization curve for each alloy is also
shown for reference. The cold-worked Pb-10'%%uoTl speci-
men (Fig. 6) shows most clearly the characteristic fea-
tures found in all the specimens studied. The important
features are a modest increase in the creep rate for
increasing fields in the region above H, ~ and a broad rise
at high fields as H approaches H, 2. Also, at high 6elds
the creep rate for increasing fields Rf was always found
to be substantially greater than the rate for decreasing
fields R$ while at intermediate fields they were found
to be comparable.

A lower-«specimen Pb 4.5%Tl (Fig. 7) is seen to
show essentially the same behavior except that the
field scale is compressed due to the lower value of H, 2.

The lower ~ specimens also showed the additional fea-
ture of logarithmic decays between H, 2 and H, 3. The
observation of logarithmic decays in this surface-super-
conductivity region provides strong evidence that the
nonequilibrium surface currents that exist in this region
also decay via a thermally activated process. However,
cold-worked lead and lead alloys are known" to exhibit
anomalous superconductivity above H, 2 which is not
attributable to conventional surface superconductivity,
and some connection between the observed decays and
this e8ect is possible. Creep in this region should be
interesting to study in the future.

The dependence of the creep rate on magnetic history
was studied systematically for PbT1 alloys with 0.6, 4.5,
and 10%T1 and for PbIn alloys with 2 and 8% In, and
in each case the results were in qualitative agreement
with the examples shown above. In some of these alloys
Aux creep was also brieQy investigated in the nominally
diamagnetic region of the initial magnetization curve,

'6&. F. Druyvesteyn and D. J. van Ooijen, Phys. Letters 4,
1f (j.963); W. F. Druyvesteyn, Phillips Res. Rept. Suppl. 2
(1966).
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and as expected, no Aux creep, which would be indica-
tive of Aux penetration, could be detected below H, i..
After Aux penetration the creep rate was found to rise
rapidly as the applied field was increased until it
smoothly joined the curve for the cycled magnetic
state.

The effect of cold working on the creep rate is illus-
trated in Fig. 8, where the field dependence of the creep
rate for one severely cold-worked and two partially
annealed Pb-10%%u~T1 samples is compared. The cold
working was introduced by extruding the samples at
liquid-nitrogen temperature with about 90% reduction
of area, and the annealing was achieved by warming
some of the extruded samples to room temperature for
from 30 sec to several minutes. For reference, the cur-
rent densities J.for these specimens are shown in Fig. 9.

With these data it is possible to exhibit the depen-
dence of the logarithmic creep rate on the magnitude
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Frc. 10. Dependence of the average logarithmic creep rate R,
on critical current density. Three levels of deformation are com-
pared by plotting the creep rate versus the observed critical
currents for various reduced fields.

of the critical current density J, as shown in Fig. 10,
where E, is plotted versus current density J.for various
reduced fields. R, is the average of Rf and &J, as dis-
cussed in Sec. II. The data are plotted at constant re-
duced field H/H„, since field-dependent quantities
affecting the creep rate are likely to be universal func-
tions of this reduced field. However, broadening of the
magnetic transition at B,2 made a unique determination
of H, 2 ambiguous, and the upper critical field deter-
mined from the extrapolation of J, to zero was arbi-
trarily used to choose H, 2 for normalization. Since E
and J, are rapidly varying functions of field only very
near H, 2, only the curves for k=0.90 and 0.95 in Fig.
10 are noticeably sensitive to the uncertainty of B,2.

Figure 10 shows that E, increases linearly with the
critical current J, as expected. However, it does not
quite extrapolate to zero at J.=0. We suppose that this
occurs because, in these experiments, the value of J, is
varied by the amount of annealing, which may also
affect R through parameters other than J, that may
also be sensitive to the dislocation density and arrange-
ment as altered by cold working and annealing. In par-
ticular, we suspect that Uo and VX may be directly
altered. Recall that we expect R, ~ J,/Uo, so the
behavior shown in Fig. 10 may depend on an additional
effect of annealing on Uo, which is not explicitly
accounted for in this plot. We will return to this question
later.

Specimen size, that is the wire radius p, appears cubed
in Eqs. (2.16).The dependence of the logarithmic creep

l I
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h =.9{2.7)
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-.6(w. l)

a lQQ—

IO—

l.O
l0 30 l00

Radius {mils)

I

500

Fxo. 11.Size dependence of the creep rate. The slope of each
line is indicated in parentheses.

rate E on p can be deduced from our measurements of R
on specimens with three different radii. To minimize
the effects of variations of specimen preparation in this
corn.parison, all of these specimens were cold-worked
and annealed similarly. Remaining effects due to small
differences in J,were eliminated by considering the ratio
R, /J', rather than R, itself. This normalization pro-
cedure is justi6ed both by theory and by the experi-
mental observation that E, is nearly proportional to
J,. The current densities in the samples used to plot
Fig. 11 provide a measure of the amount of deformation.
They agreed within 25%, so the normalization pro-
cedure actually introduced only a small correction.
Using the dependence of Uo on cold working, which is
deduced later in this paper, we found that the remain-
ing uncertainties are negligible in an analysis based on
Eq. (2.16).

The results are shown in Fig. 11 as a logarithmic plot
of R, /J, versus p. They substantiate an p' dependence
within the experimental uncertainty and clearly elimi-
nate the alternative p' dependence expected for a sur-
face creep barrier. From this p' dependence we conclude
that the creep process is really a bulk. phenomenon
rather than surface-limited. The behavior above H. 2

was not studied systematically enough to determine
whether the expected p' behavior would appear there.

Some preliminary experiments on the temperature
dependence of the creep rate were also made on the
Pb-10%T1 alloys. The results are incomplete because
the available experimental arrangement provided
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FIG. 12. EGect of field reversal for Pb-4. 5'p&Tl. This figure illus-
trates the reduction in creep rate for departures from the critical
state. The initial decrease is shown on an expanded scale for
clarity and the insert illustrates the magnetic history for which
the data were taken.

sufficiently precise temperature control only for tem-
peratures below the lambda point of liquid helium,
where H, 2 of the Pb-10%T1 alloys unfortunately ex-
ceeded the capacity of the magnet. Therefore, it was
not possible to get a complete set of high-field data to
compare with the 4.2'K data. However, the incomplete
results indicate that at 2.1'K the creep rate for cor-
responding reduced fields is approximately the same as
at 4.2 K, although J, was doubled by reducing the
temperature to 2.1'K.

In addition to the preceding study of flux creep in
the critical state, the effects of field and temperature
departures from the critical state on the decay of the
magnetization were also brieQy investigated. Such ex-
cursions dramatically affect the rate of decay. For
example, if 6eld departures from the cycled (critical-
state) magnetization curve were made by introducing
small field reversals after an otherwise monotonic
change, the decays were still logarithmic in time, but
the logarithmic creep rate E. was vastly reduced. For
sufFiciently large field reversals, E changed sign and
eventually approached the rate associated with the
cycled magnetization curve for field sweeps of the
opposite sense. Figure 12 shows the decrease in R as a
function of AH for a Pb-4. 5%T1 specimen. For the
particular case shown, the field reversals were made from
a field of 800 6, and the path of the magnetization curve
along which the data were taken is shown in the insert.
All specimens in which field reversals were studied
showed qualitatively similar behavior.

The magnitude of the reduction in E. following a par-
ticular amplitude of field reversal depended on the time
delay between the initial, forward field change and the
field reversal. It was found that longer delays produced
a greater reduction in E for a given AH. For the data
shown in Fig. 12, the field reversals were made after a
constant delay of a fraction of a second.
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FIG. 13. Reduction in the creep rate for temperature departures
from the critical state.

Temperature departures from the critical state also
dramatically affected the decays. If the temperature of
the specimen was lowered after a field change had been
made, the decays were still logarithmic but the creep
rate was observed to decrease exponentially with the
magnitude of the temperature change. The results are
illustrated for a typical case in Fig. 13. In these mea-
surements the temperature changes were completed in
about 5 sec, and the subsequent creep was observed to
be logarithmic for as long as 1000 sec. Following tem-
perature increases, the creep rate returned very quickly
to essentially its original value. This behavior reQects
the fact that after a temperature increase the Qux dis-
tribution could rapidly adjust itself to the appropriate
critical state, and consequently the transient response
to the actual departure from the critical state was too
fast to be measured in the present experiments.

As a byproduct of some of our measurements of the
rate of Qux creep, it was also possible to observe di-
rectly some of the details of the manner in which Qux

enters and leaves the specimen by analyzing the step
structure seen in the magnetometer output signal
(Fig. 4). This step structure indicates that much of the
total Qux change is made by increments of Quxoids
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creep applies, so that a detailed comparison with theory
is possible. Second; we discuss the dramatic effects of
departures from the critical state, where only a quali-
tative comparison with theory is possible, and finally
in a separate section we compare our results with current
models of Quxoid pinning.
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FIG. 14. Pinning energy for Pb-10%Tl. This figure illustrates
the 6eld dependence of the pinning energy for various levels of
cold working.

V. DISCUSSION OF THE CHARACTERISTICS
OF FLUX CREEP

~-":. The discussion of our experimental results proceeds
in three parts. First, we consider the results pertaining
to the critical state, where our theoretical analysis of

'7 E. Rocklin and G. I. Heiden have described more detailed
measurements of the power spectrum of flux jumps during slow
sweeps of magnetic Geld on Pb-In —alloy cylinders. Their results
appear to be similar to ours except that in the creep regime we may
have had a larger fraction of very small Aux jumps not resolvable
in their experiments. See in I'roceeCings of the Conference on Ii4tc-
tuations in Superconductors (Stanford Research Institute, 1968)
p. 227, and G. I. Heiden and K. Rocklin, Phys. Rev. Letters 21,
Wr (&968).

entering (or leaving) the specimen in discrete events.
This discrete character of the Qux changes in the Qux

creep regime has been observed before by Rim, Hemp-
stead, and Strnad' with conventional pickup coils.

The size of the steps shown on the recording does not
represent the actual amount of Qux which entered
or left the specimen in an individual event, but rather
the fraction of that actual amount which coupled with
the primary of the superconducting Qux transformer.
This coupling depends on the relative magnitudes of the
length along the sample over which the event took
place, the radius and length of the primary, and on the
location of the event along the sample. A preliminary
study of the distribution of step sizes and a crude analy-
sis of the coupling effects indicates that the increments
of Qux entering or leaving the material were at least as
large as those seen in Fig. 4 but could have been much
larger. This analysis also provides an estimate of the
volume of Qux contained in a distinguishable event and
indicates that a typical event would have a volume of

10 " cm'. However, roughly 10—20% of the flux

crossed the specimen surface in events so small as to
be unobserved as discrete events in our experiments. "

A. Flux Creep in the Critical State

In the "high-field" region H, ~((H &H.& of the critical
state the results are clearest. Here, the theoretical pre-
dictions can be expressed in a concise form LEqs. (2.16)j
and the Qux-creep process is well de6ned and amenable
to a systematic study. This regime will occupy most of
our attention, but first the behavior at low fields is
considered.

At low magnetic fields, erratic and irreproducible
decays precluded straightforward study or analysis.
However, two qualitative conclusions about the low-

field behavior are possible. First, it seems quite clear
that the erratic low-field behavior is related to the ten-
dency of hard superconductors to display instabilities
(flux jumps) and complicated surface effects at low
fields. Second, the region of enhanced creep rate ob-
served just above H, & for increasing but not decreasing
fields seems to be associated with the presence of the
penetration front, where B~0, that passes through
the specimen in this field region.

YVe now proceed with our discussion of the high-field
results. For illustration, we compare the results obtained
on the Pb-10%Tl alloy with the theoretical foundation
for Eqs. (2.16).

The p' size dependence predicted by Eq. (2.16) seems
to be satisfactorily confirmed by these experiments.
The quantitative agreement for the power of p shown
in Fig. 11 is precise except at the highest reduced
fields. Most important is the conclusion that, although
the data may be subject to small errors due to inexact
normalization of all variations of cold working, the data
are certainly good enough to rule out the p' dependence
that would be expected if a surface barrier controlled the
rate of Qux creep.

The absence of surface effects in the creep rate below

H, & is significant, since a sizeable fraction of the hystere-
sis present in low-a alloys is frequently attributed to
surface effects. This result implies that in the critical
state, where any surface current is also at its critical
level, the Qux creep in the bulk of the sample away from
(or towards) the surface is fast enough to overwhelm
the surface barrier. This interpretation is supported by
the theoretical estimates made in Appendix B. How-

ever, we will suggest later that surface barriers appear
to have a dramatic effect on the creep rate if field de-
partures are made from the critical state.

According to our theoretical results, the average
logarithmic creep rate should be directly proportional
to J„the current density at the surface of the specimen.
However, as we have already pointed out, in these
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experiments J, is determined by the amount of anneal-
ing and therefore any discussion of the observed be-
havior of E, on J, shown in Fig. 10 must include the
effects of annealing on all the material-sensitive pa-
rameters of the theory. Equation (2.16) indicates that
we should expect 8, ~ (4ir/c) J./U0=47r/yBVX. »
clarify what behavior might be expected from such a
dependence, we consider two limiting cases. First,
consider the case where the amount of annealing affects
only the number of individual pinning barriers but not
their individual pinning strengths (e.g. , independent
single-dislocation —single-fluxoid pinning). In such a case
Uo would be a constant for a given reduced field inde-
pendent of the amount of annealing and R, would be
directly proportional to J,. At the other extreme, in
the model where annealing only affects the strength of
the pinning barriers but not their density, U0 would in-
crease with the amount of cold working but VX would
remain constant and R, would be constant for a fixed
field independent of J,. Of course, if both Uo and VX
depend on the amount of cold working, the situation is
more complicated, and a priori no exact prediction can
be made. In Fig. 10, the creep rate is seen to scale with
J,but does not quite extrapolate to zero as J,—+ 0. This
behavior is intermediate between the two extreme cases,
but closest to the constant-Uo case. We conclude that
both Uo and VX must be slightly dependent on the
amount of annealing.

Thus far, we have found that the experimental re-
sults are in complete accord with the behavior expected
on the basis of the theory. In particular, the measured
decays have shown the predicted time and size depen-
dence and have shown behavior consistent with the
predicted dependence on current density. With these
assurances that the theoretical forms correctly describe
the experimental results, we can use the theory to cal-
culate the material sensitive parameters from the ex-
perimental data.

Using Eq. (2.16) and the measured creep rates and
current densities, we can calculate the field dependence
of Up and VX at 4.2'K and estimated their changes as
temperature is decreased. Figures 14 and 15 show the
dependence of Uo and VX on magnetic induction. The
appropriate value of magnetic induction for a given
applied field was determined directly from the hysteret-
ic magnetization curves using the procedure of Fietz
et a/. "Analysis of these curves shows that both Uo and
VX decrease with increasing field roughly as (Il„—8)@'
at least for H&-,'H, 2. However, VX seems to level o6
to a constant nonzero value as 8~ H, 2 instead of
extrapolating to zero. These figures also show that Uo
decreased upon annealing while VX increased. The
preliminary data taken at 2.1'K indicate that Uo(2. 1')
= Uo(4.2') and VX(2.1')=0.6 VX(4.2'). While this
estimate is admittedly very crude, it does suggest that
Uo is relatively temperature-independent at these tem-
peratures, while VX is almost certainly decreasing with
temperature.
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Fic. 15. Bundle-size parameter VX for Pb-10$0T1. This figure
illustrates the field dependence of VX for various levels of cold
working.

One of the most significant features of Fig. 15 is the
fact that the decrease in VX as H —+ H, 2 levels o6 and
extrapolates to a nonzero value at H, ,. Equation (2.16)
indicates that VX~ 1/R, and the behavior of VX near
H, 2 is related to the fact that E. peaks near H. 2 rather
than continuing to increase. In calculating Uo and VX
we have analyzed the data up to the peak but not be-
yond. By extending our analysis that far, we are im-
plicitly neglecting any extraneous smearing of the trans-
ition at H, 2. Thus the exact interpretation of the data
near B,2 and the calculated values of Uo and VX above
b=0.9 are somewhat uncertain. The experimentally
determined dependence on p also showed some dis-
crepancy in this field region. However, we note, that
there is no sign of peculiar behavior in the curve for U0
near B,2, which suggests that our analysis is reliable at
these high fields. As we shall show later, a nonzero value
of VX near H, 2 is not unexpected and is physically
quite appealing. However, the data presented here do
not demonstrate it unambiguously.

As we shall see later in comparing our results with
specific pinning mechanisms, the width of the energy
barrier is expected to be 10 "cm for all of the pinning
mechanisms which appear to be relevant in these ma-
terials. Using this as an estimate for X, we find that the
activation volume V is about 10 "cm' at intermediate
6elds dropping at least to 10 ' cm at B,&. Comparing
this estimate for V with our previous estimate for the
volumes of flux (10 '0 cm') which typically enter the
specimen in one discrete step, we see that the volume of
Qux which acts on a given pinning barrier is much
smaller than the largest total volume of Qux which
eventually is depinned in a particular thermally ac-
tivated event. This suggests that some thermally acti-
vated events actually trigger a depinning instability or
alternatively that the surface can affect the size of the
increments of Qux which pass through the surface,
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FIG. 16. Dependence of creep rate on expansion parameter b.
Solid line indicates the expected ratio (1+8)/(1—S) of creep rates
for increasing and decreasing 6elds, and points indicate the ob-
served behavior for Pb—10%T1-1, -2, and -3.

even though it does not control the net rate at which
Aux passes.

It was generally observed in these experiments that
R)&Rf, and we have used R, in discussing the results
in order to avoid this complication. To show that the
use of R, is justified, it is necessary to show that 8 in
Eqs. (2.16) is less than unity. However, it is possible
to do more than this and actually to check the depen-
dence of E. on 8. This is shown in Fig. 16, where the
experimentally measured ratio R$/EJ, for the Pb-10%T1
alloy is plotted versus 6 calculated from the measured
current densities J, and the calculated values of Up,

using Eq. (2.16b). The solid line is a plot of (1+3)/
(1—5) and indicates the theoretical prediction. Although
the data points show considerable scatter, the over-all
agreement is satisfactory. It provides some additional
verification of the theoretical predictions and justifies
the use of R, in the data analysis above.

In addition to the extraction of Up and VX from the
experimental data, it is also possible to estimate the
activation energy U and the hop rate v. From the rela-
tion E/t=27rpD and the definition of D, we find that
U= kT in(2s-tpBwvs/R). Assuming that vs might be as
large as 10" sec ' (a typical crystal-lattice frequency)
or as small as 10' sec ' (a fluxoid lattice frequency) and
m = 10 ' cm, and using the typical quantities t= 100 sec,
8=1000 G, and R=6000 Aux quanta per decade for
our experiments, we find U could be as large as 34 kT
(=0.014 eV) or as small as 7kT(=0.003 eV). Of
course, U will increase very slowly in time as the field
gradients decay, but the values calculated here are
appropriate for normal laboratory time scales. With the
extremes of vp assumed above, the actual hop rate at

each pinning barrier is somewhere between 10 ' and
10 'sec '.

With this estimate of U it is possible to compare the
three energies involved in the thermal activation pro-
cess. This comparison indicates that kT«U«Up except
very near H, 2, where Up may become comparable to U,
and justifies our neglect of higher-order terms in the
solution of the Aux-creep equation.

One possible source of error in our analysis of the
creep results arises from an uncertainty in J, due to sur-
face currents. The critical currents were determined
from the hysteretic magnetization curves using the
procedure of Fietz et 0l." and in this procedure any
hysteresis in the magnetization due to nonequilibrium
surface currents is considered as arising from bulk
currents. Thus the values of current shown in Fig. 9
and used in the analysis of the high-field results are
upper limits to the true bulk currents.

The current state of theory and experiment regarding
the magnitude of these surface currents is still quite
unsettled so it is diQicult to reliably estimate them for a
particular case. However, using the data of Hart and
Swartz" for the surface currents in films of Pb—10%T1
below H, &, we estimate that surface currents could pro-
duce hysteresis comparable to that observed for Pb-
10%T1-3.On this basis, the errors in J, for Pb—10%TI-3
could be considerable, but not more than 20% and 10%
for Pb—10%T1-2 and -1, respectively.

These possible errors in J, would have the following
effects on the results discussed so far. The log-log plot
of 8, /J, versus p (Fig. 11) would not be seriously
affected since the data were taken for large J, where
the error in J, is small and therefore does not modify
our conclusion about surface barriers. The R, versus
J'. curve (Fig. 10) would be flattened even more, since
the data taken on Pb—10%Tl-3 would be moved to the
left, and consequently the calculated values of Up for
Pb—10%Tl-3 might be somewhat smaller than indicated.
There would be no error in VX, since it can be deter-
mined independently of J,. At worst these errors
seriously affect only one specimen, and considering the
similar behavior observed for the three specimens, we
feel con6dent that these surface currents are not affect-
ing the results in any qualitative way.

B. Deyartures from the Critical State

Field and temperature departures from the critical
state (Figs. 12 and 13) were observed to reduce dra-
matically the rate of flux creep into (or out of) the
specimen. In both cases, the rapid attenuation in creep
rate can be accounted for by at least part of the ma-
terial transferring to a subcritical state.

The case of temperature departures can be explained
more completely. Since the critical current density J,
usually increases for decreasing temperature, a tempera-

rs H. R. Hart and P. S. Swarts, Phys. Rev. 156, 403 (1967).
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ture decrease 61' made after establishing the critical
state places the entire specimen in a state in which the
initial current density J,(T) is less than that current
appropriate in the critical state at the lower temperature
J.(T d, T)—. In this subcritical state, the activation
energy required for Quxoid motion is higher, and there-
fore the rate of Qux creep should be reduced. More
explicitly, from the relation By/Bt= 27rp—D(p, t) and the
de6nition of D, we see that immediately after a tem-
perature decrease AT

By(t)

8$ lz gz

By(t)
~t8 (U'/EcT)/BT] AT

7

where $B(U/kT)/BT$, is evaluated at the surface and
the derivative is taken at constant

t
V8 I. This equation

shows that immediately after the temperature decrease,
the Qux creep should exhibit a logarithmic decay with a
rate attenuated exponentially in DT. This completely
accounts for the observed behavior, and from the data
in Fig. 13 we find B(U/kT)/BT=2000 K ', a result
which is consistent with the preliminary data on the
temperature dependence of U0 and VX.

The behavior after a field departure is more compli-
cated. When a small 6eld reversal is made from the
critical state, the net effect is to decrease the surface
current to a subcritical level, thereby creating an en-
hanced surface barrier. The presence of a significant
surface barrier clearly explains the rapid attenuation
of the Qux creep through the surface for small hH. How-
ever, the creation of a surface barrier does not im-
mediately affect the rate of creep in the interior, and
the persistence, even if only momentarily, of unattenu-
ated Qux creep in the interior tends to compensate the
e6ect of a 6eld reversal by building up the surface
current back toward its critical value. This compensa-
tion eGect makes a theoretical description of the be-
havior following a 6eld reversal quite complicated, and
we have not undertaken a detailed calculation. An
additional complication arises, since the degree of com-
pensation depends on the rate of flux flow away (or
towards) the surface at the time of the field reversal
and therefore the behavior becomes a function of the
time the field reversal was made. Just such a time de-
pendence was observed experimentally.

lt is perhaps worth noting that these dramatic re-
ductions in the creep rate produced by departures from
the critical state are of practical importance in situa-
tions where it is desirable to suppress Qux creep.

VI. FLUX CREEP AN]3 PINNING MODELS

One of the ultimate purposes of our Qux-creep rnea-
surements was to learn something about the basic in-
teraction mechanisms leading to magnetic hysteresis in
superconductors. We sought to determine the physical
nature of the crystalline defects which provide the acti-
vation barriers, to test the validity of specific pinning

models, and if valid, to determine their free parameters.
For this purpose we have to outline first the relations
between pinning models and the parameters of the creep
theory. We characterize the elementary interaction
between a single defect and a Quxoid by an energy e, a
geometrical width d of the defect (for instance the
diameter of a small precipitate), and the volume con-
centration C of defects. The question is then, what infor-
mation on the parameters o, d, and. C can be gained

from a knowledge of the quantities U„and VX„which
are characteristic of the activation barriers and can be
obtained from Qux-creep measurements using only
Anderson's thermal-activation theory independently of

any specific models of pinning.
Obviously, the defect width is just the barrier width

X„if d is larger than the coherence length g but smaller
than the lattice constant of the Quxoid lattice, which
is roughly (yo/8)'I'. On the other hand, if d is larger
than (yo/8)' o, X~~(yo/8)'t because of the periodicity
of the Quxoid lattice, and if d is smaller than the co-
herence length g, X~= g because the range of the ele-

mentary interaction between Quxoid and defect I„
cannot be smaller than the coherence length P, which
is a lower limit to the range of any interaction. There-
fore, we expect X~= $ if d& g, X~=d if $(d((yo/8)'~',
and X,= (yo/8)" if d) (y /8)'".

Thus a connection between X„and d can only be
made for a rather limited range of values of d. On the
other hand, this has the advantage that the value of V
alone can always be obtained within certain limits al,-

though from the experiments only the product VX~ can
be obtained where we take X„=X.

The "activation volume" V defines the region of
transfer of the volume force y(8/4m) V'8 to an—activa-
tion barrier so that the force Vy(8/4n. )V8 is acting on
it during an activation event. For a low defect density
C we expect therefore that V= 1/C and that the barrier
height U„ is equal to the interaction energy e of a single
defect. There is, however, a lower limit V0 below which
the value of V cannot go when C is increased. The
reason is that Quxoids are strongly coupled to each
other and form a rather rigid lattice in which they can
be activated only in a collective way, involving many
Quxoids in a single activation process. If the volume of
Qux involved in such a collective process is larger than
1/C, the simple picture in which U„and V are directly
related to o and 1/C is no longer applicable. Ander-
son's concept of Qux bundles' is a qualitative expression
of this fact.

To be a little more specific about this problem, we
propose the following model, which is more detailed
though also only qualitative in its results: During an
activation process, the volume V undergoes a displace-
ment versus the surrounding Quxoid lattice. The dis-
placement at the center of the volume is about equal to
the observed activation length X. The displacement
yields the energy VXy(8/4n. )V'8 coming from the
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general volume force on all Quxoids but at the same
time a distortion energy U&= (G/2) V'isX is required.
Here, G is a combination of the elastic moduli of the
Quxoid lattice, " ' its exact form depending on the shape
of the activation volume and the distribution of the
displacement between the center of V and the outside
of V, where the displacement goes to zero. The net
energy which is available to support the thermal acti-
vation is then only VX(B/4s.)V'B —U& instead of
VXy(B/4~) V'B. If the shape of the activation volume
is taken ellipsoidal, the displacement being X at the
center and falling off to the outside like a Gaussian,
and if the axes of the ellipsoid are chosen to make U~
a minimum for a given volume, a simple calculation
shows that G= (Cr~C44Css)"', where Crr, C44, and Css are
the elastic moduli of the Quxoid lattice in Voigt s no-
tation. Thus, in order to have a net energy gain at all,
it is necessary to have VXyBV'B/47r U&) 0 an—d there-
fore V must be larger than Vs= (GX/27 (B/47r)

~
TB

~ )si'

~ (CnC44Css)tts. If Vs haPPens to be larger than 1/C,
there will be no direct relation between the activation
volume and the defect concentration. Furthermore, the
barrier height U~ as well as activation energy Up will
be given by the net effect of all the defects contained in
V rather than by the interaction energy e of a single
defect.

A quantitative theory would have to take into ac-
count the dependence of the net barrier U„on the mag-
nitude of V, combine it with the V dependence of the
energy gain VX&BV'B/47r Ut(V), and c—hoose the acti-
vation volume that yields the maximum activation rate.
Such a theory is not available at present. Qualita-
tively, the model suggests that the elastic properties
of the Quxoid lattice, in particular their dependence
on the magnetic field, will be reQected in the measured
value of the activation volume. A recent calculation"
shows that the shear modulus C6g of the Quxoid lattice
drops quadratically to zero when the applied field ap-
proaches the upper critical field H, 2. Therefore, a strong
decrease of the activation volume with increasing field
is expected. Of course, since the cross section of our
ellipsoidal model volume cannot be smaller than one
lattice cell of the Quxoid lattice, we expect V to go to a
small constant rather than zero at IJ,&.

After these preliminary remarks we can now proceed
to a comparison of our experimental results with specific
pinning models: From the specimen preparation it is
obvious that the pinning is provided by dislocations so
we try to explain the creep data on the basis of an in-
teraction between dislocations and Quxoids. Most
striking in this connection is the observation that the
measured energy Up, which is closely related to the
energy barrier U~, is of the order 1 eV. In contrast the
first- and second-order calculations of the interaction

9A. L. Fetter, P. C. Hohenberg, and P. Pincus, Phys. Rev.
147, 140 (1966).' R. Labusch, Phys. Status Solidi 19, 715 (1967)."R.Labusch, Phys Status Solid.i (to be published).

energy ep between a single Quxoid and a single disloca-
tion 3 yield only a value of the order 10 eV for 6p

in Pb-Tl alloys. There might be unknown interaction
mechanisms that have not been discussed so far, but an
interaction energy ep of the order 1 eV seems to be
clearly out of the question. We therefore conclude that
in one activation process many single dislocation ob-
stacles (at least of the order 10') are overcome simul-
taneously. Two models, ' based on our discussion at the
beginning of this paragraph, can be proposed to account
for this fact:

(1) The erst model is based on the assumption that
the points where a dislocation and a Quxoid are in con-
tact are distributed at random. To estimate the volume
density of these points, we assume a dislocation density
X of a few times 10"cm ', which as a rule of thumb is
the density after severe plastic deformation, regardless
of the material and of other deformation parameters.
Since the geometrical width of a dislocation is sup-
posedly about equal to the Burgers vector, we have
here the case mentioned before that the width of the
defect is much smaller than the coherence length (, so
that the width of the energy barrier would be $. This
is confirmed by the first- and second-order elasticity
calculations according to which the range of the inter-
action is indeed the coherence length. We thus assume
X„=$. The cross section for an intersection between a
dislocation and a Quxoid is X„times the Quxoid length,
and thus the number of contact points inside the activa-
tion volume V is n, =VX„(B/pe)1V. From the mea-
sured values of VX of the annealed specimens (ig-
noring the small difference between X and X„), we
obtain values of e, between 104 at 8=-,'B.

& and 10' at
B=H, s. (Notice that only the measurable quantity VX
enters the expression for e, so that the assumption
X„=$ is not really necessary for estimating e,.) How-
ever, the net interaction, which gives us U~ and Up, is
not simply e. times the elementary interaction energy
ep because with a random array of dislocations most of
the elementary interactions contribute only to a flat
background energy and only statistical Quctuations in
their number and position give rise to a net barrier.
Therefore, a relation U„=m, '"cp rather than U„=e,6p

is likely to apply. Kith fp= 0.01 eV, e,')"ep is just of the
order of 1 eV. Thus our model provides a reasonable
explanation of the measured pinning energy. In view

of the restricted range of X pointed out earlier, this
model requires that VX drop to a small eoesero value
as the field 8 goes to H, 2, as is also observed
experimentally.

(2) It is known that at high levels of plastic defor-

rnation the dislocations are not distributed completely
at random, but are clustered in a cellular structure with
cell walls of very high dislocation density and a lower

"E.F. Kramer and C. L. Bauer, Phil. Mag. 15, 1189 (1967).
"W. W. Webb, Phys. Rev. Letters 11, 191 (1963).
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dislocation density between the walls. The dimensions
of the cell structure are typically of the order 1 p. There
are two different mechanisms that can produce a differ-
ence between the self-energies of a Quxoid inside and
outside a cell wall and thus might be responsible for
pinning by cell walls.

(a) From the second-order elasticity interaction an
energy difference AE= ]hXeo per unit length of Ruxoid
is obtained, where AN is the difference between the dis-
location densities inside and outside the wall and eo

is the interaction energy with a single dislocation. With
$=4X10 ', AiV=10" cm ' and co= 10 ' eV, we obtain
AE= 4X 10' eV/cm.

(b) There is a difference of the mean free path inside
and outside the cell wall and consequently a difference
D~ of the Ginsburg-I. andau parameter I~: and a difference
of AE of the self-energy of a Quxoid. Willis, Schenk, and
Shaw'4 have estimated this energy difference using ~

differences inferred from the observed smearing of the
transition at FI.2. Their experiments were, like ours,
done on Pb-Tl alloys, however, with a somewhat
higher Tl concentration than used here. They find an
interaction energy hZ= 10+' eV/cm per unit length of
Qux old.

Considering now the interaction with a cell wall in-
stead of a single dislocation, we obtain an interaction
energy e=AE'/„where /, is the length over which a
Quxoid is in contact with a cell wall. Assuming that l,
is roughly equal to or somewhat smaller than the cell
diameter d=10 4 cm, we find that both the second-order
elasticity interaction and the interaction via a modula-
tion of the mean free path can be considered as possible
explanations for an interaction energy of the order 1 eV.
In this model the volume concentration of obstacles is
low and one compound obstacle alone already provides
the full energy barrier obtained from the creep experi-
ments. Therefore, the activation volume is expected to
be V=1/C, where the obstacle density C is given by
C= (8/go)'" 1/d'. Since the dimensions of the cells are
larger than the lattice constant of the Quxoid lattice,
we assume X„=(po/8)'/' Thus, VX=d'(Po/8) In-
serting d=10 4 cm and the typical value 1000 G for 8,
we obtain VX= 2&(10 ' cm, which is also comparable
with the experimental value. The two models presented
here in (1) and (2) are not mutually exclusive since
there can be pinning by random dislocation in the in-
terior of cell walls aed extra pinning at the edges of the
walls. Both models provide an explanation for the high
observed value of Uo. No quantitative prediction on the
behavior of VX with field can be given for model (1),
but qualitatively it is in agreement with the experiment.
Model (2) yields the quantitative relation VX 1/8
which is rot in agreement with the experiments. Pro-
portionality to 1/8 would only account for a ratio of

'4 J. S. Willis, J. F. Schenk, and R. W. Shaw, Appl. Phys.
Letters 10, 101 (1967).

2 between the values of VX at 8=-,'H, 2 and B=H„
while the observed ratio is larger than 10. Thus, the
experimental evidence is in favor of our first model as
describing the dominant mechanism by which Qux
creep is controlled, but we feel that more independent
experiments should be done before drawing a definite
conclusion and that alternative explanations, not dis-
cussed here, cannot now be completely ruled out. De-
tailed observations of the dislocation structures of the
actual specimens measured is particularly necessary.

VH. SUMMARY

These experiments have considerably enlarged our
experimental knowledge of the characteristics of Qux
creep in hard superconductors; they are in complete
accord with the predictions based on Anderson's theory
of Qux creep, and they have demonstrated the useful-
ness of Qux-creep measurements in providing detailed,
quantitative information about the pinning mechanisms
which underlie the properties of hard superconductors.

The observed characteristics of the Qux-creep process
are complex in detail, and therefore the general char-
acteristics in the materials studies and their interpreta-
tion are recapitulated here in a brief form:

(1) A logarithmic time dependence of the creep
process prevails in the critical state, due to exhaustion
of the excess of the driving forces over the pinning forces
as creep proceeds.

(2) The logarithmic rate of change of the total flux
in a cylindrical specimen initially cycled to the critical
state is given approximately by

dp 4~ 1 47r J,=E,v= 3+k Tp'- ——= 3z&Tp'=—
dln/, yB VX c U()

where the averaging approximation and the symbols
are de6ned in the discussion leading to Eqs. (2.16).

(3) For magnetic fields small enough to preserve the
Meissner state, creep is undeterminably small but peaks
as field penetration begins and rises again as H —+ H„.
Flux creep above H, 2 is detectable in some cases and
may indicate thermally activated decay of surface
currents in the surface sheath regime.

(4) Determination of the material-sensitive param-
eters Uo and VX from analysis of the Qux-creep results
suggests Uo 1 eV, V 10 "cm', and X 10—' cm at
intermediate fields and as H~H, 2, Uo —+0, and V
approaches a nonzero value such as 10 ' cm3.
[::.'"", (5) On departing from the critical state by decreasing
temperature the logarithmic creep rate drops exponen-
tially. On changing applied magnetic field back away
from the critical-state curve, the creep rate drops pre-
cipitously, eventually becoming zero and finally re-
versing sign as field increments are increased.

(6) Flux crosses the specimen surface in increments
containing from a very few Quxoids to, say, ].03 or Dlore.
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(7) Flux-creep experiments support a simple collec-
tive pinning model of the sort advanced by Fietz and
Webb' to account for their critical magnetization
measurements.

APPENDIX A ' NONLOGARITHMIC CREEP

It has been assumed so far that our particular solution
for D(r, t), which we now call Di„(r,t), gives an appro-
priate description of the Aux-creep phenomena. We
show now that indeed any small perturbation of this
solution decays rapidly in time, so that for large t only
Di,~(r, t) and the resultant "logarithmic creep" is left
over.

Writing D=Di„(r,t)+d(r, t) and keeping only first
orders of d, we obtain, from Eq. (2.8),

(A1)

where f(r) is the position-dependent part of Di,g(r, t)
and |to is the differential operator

~in(V'Bj~ 1 ~-
0—

kT cj(WB( i, ctr r Br Br lir itr

Equation (A1) is separated by d=8(t)P(r), and a
complete set of solutions is obtained with 8 (t) = —1/t"
from the eigenvalue equation

(~—1)y.= tt, (ry.) . (A2)

The boundary conditions for p are the same as for g.
Since fo(re) =1, a solution of Eq. (A2) is& o(r) =const
XP(r) with the eigenvalue no 2. It is easy——, though
somewhat lengthy, to show that the eigenvalues of Eq.
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(A2) are monotonically increasing with the number of
nodes of P . Therefore, since iP has no nodes at all,
no ——2 is the lowest eigenvalue of Eq. (A2), and any
perturbation d(r, t) decays at least as rapidly as 1/t',
whereas Di,g(r, t) decays like 1/t

U ((B(p)—B.j))D.=D, 0 exp! ——
)

The boundary condition for the bulk creep has to be
matched to this Aux Row. The calculation of the creep
rate is then a straightforward generalization of the
bulk-creep analysis. The result is

-(4x-/c) J, (4m/c) J„
R=3~kT p'+3— X.p'

Up,Up

Uo, = (8 U,/8 (B(p)—B,() (B(p)—B,( is defined in anal-
ogy to Uo in the bulk and J.,= (c/4~) ( j B(p) —B (/X, ),
in analogy to J, in the bulk. X, is the thickness of the
surface barrier, and is expected to be roughly equal to
the London penetration depth.

We notice that the surface contribution to the creep
rate is proportional to p', while the pure bulk creep has
a rate proportional to p'. Thus, an experimental dis-
tinction can be made by measuring the creep rate in
specimens with different diameters under otherwise
equal conditions.

It is reasonable to assume that Up and Up, are of the
same order of magnitude. A considerable contribution
from the surface term is then expected only if J„/J.
is comparable with p/X„which calls for extremely low
critical currents in the bulk or for extremely thin
specimens.

APPENDIX B. REMARKS ON SURFACE-
CONTROLLED CREEP

If there is a special barrier to Qux penetration at the
specimen surface, the magnetic field B(p) just below
the surface is not equal to 8, the held that would be
in thermodynamic equilibrium with the applied field.
To calculate the effect of a surface barrier we assume
again a thermally activated penetration of the barrier
which is supported by a driving force due to the differ-
ence (B(p)—B,j. The fiux through the surface is then


