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Spin-Flip Scattering Cross Section for Conduction Electrons of
Foreign Atoms in Lithium and Sodium. IP
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We calculate spin-flip scattering cross sections for conduction electrons of a number of impurities in
metallic lithium and sodium, in order to improve on the results reported in our earlier paper. The method
uses the numerical integration of a potential which is derived from the Herman-Skillman atomic potential
near the impurity, and is flat beyond a suitably chosen radius. Screening is included by requiring that the
I'riedel sum rule be satisfied. No parameters of the theory are adjusted to fit experimental data. The agree-
ment for resistivity, Knight shift, and spin-flip scattering cross section is good for valence differences between
impurity and host of 1 or 2. The theory gives a maximum in the cross section as the valence increases, but
places the maximum at a valence difference of 4 instead of the experimentally observed value of more
nearly 2.

I. INTRODUCTION states of the impurity. If, however, there is a valence
difference, the conduction electrons are strongly affected
and move to screen out the different charge of the im-

purity core, so that, at large distances from the impurity,
a conduction electron will not feel the charge difference.
In I we tried to take this effect into account by assuming
a Fermi-Thomas potential' for the impurity and nu-

merically integrating to get the smooth part of the orbi-
tal state of the electrons. By orthogonalizing this smooth

part to the core states of the impurity, an approximation
to the actual state of the electrons was obtained.

The spin-Qip cross section is related to the spin-orbit
coupling matrix element which is calculable once the
state of the electron and the experimentally measured
core spin-orbit splittings of the impurities are known.
As the valence difference is increased from —1 to +2,
both the experimental (in all cases except thallium in

lithium) and the theoretical results increased together;

'N the previous paper, ' hereafter known as I, we dc-
' ~ scribed the results of experiments on the relaxation
time of KSR in the metals lithium and sodium, which
contained known amounts of impurities. The relaxation
rates varied linearly with the concentration of impuri-
ties, so that the results could be given (see Table I) in
the form of a spin-Rip scattering cross section per im-

purity. The relaxation processes due to the pure metal
are very small, ' ' so that any effects of the impurity on
these relaxation processes can be neglected. Thus, the
relaxation comes mainly from the interaction of the
conduction-electron spin with its orbital motion in the
electric field of the impurity (spin-orbit coupling). In I
it was shown that only the conduction electrons in the
vicinity of the Fermi surface contribute to the relaxa-
tion, and therefore, since the spin-orbit interaction oc-
curs well inside the ion core of the impurity, these
measurements provide information about how the con-
duction electrons at the Fermi energy behave in the
vicinity of the impurity nucleus.

To explain the results in I, we formulated a simple
theory in which the spin-orbit coupling was considered
as a perturbation on the orbital and spin motion of the
electron. Outside the range of the impurity, the conduc-
tion electrons were considered as free. ' If there is no
valence difference between the solute and the solvent,
one might hope that in the first approximation the effect
of the impurity on the motion of the electron is negli-
gible. %e therefore assumed that the wave function of
the electron is a plane wave orthogonalized to the core

TABLE I. Perturbation phase shifts, and cross sections
and experimental cross sections.
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0.005
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0.004

0,305
0.65
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—0.01
0.049
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—0.082
0.059
0.333
0.673
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0.238
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0.035
0.271
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0.054
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In the region outside the impurity, the wave func-
tion, classified by Ep, j, and /, is

(2j+1)Lcos5,' jt(kyar) —sin5,' ttt(krr) j, (2)
' J. R. Asik. , M. A. Ball, and C. P. Slichter, Phys. Rev. Letters

16, 740 (1966).
~ J. Friedel, Advan. Phys. 3, 446 (1954).' J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).' F. Hatn, Phys. Rev. 128, 2524 (1962}.

but when the valence difference became +3, the experi-
mental results decreased while the theoretical ones in-
creased. It was to justify the method used in I and to
try to explain this discrepancy that the present calcula-
tions were undertaken.

Two sets of calculations are presented here. The first
set, as in I, treats the spin-orbit coupling as a perturba-
tion, whereas the second set treats it directly and
exactly. This was done to test the possibility' that the
conduction-electron spin has precessed through more
than half a revolution while in the vicinity of the im-

purity. It can be argued from the experimental results,
and also shown by the theoretical results, that this does
not happen.

The aim of the paper is to present a better physical
model of an impurity in a metal by trying to find, in the
region around the impurity, the actual potential ex-
perienced by an electron with the Fermi energy. No
local potential can do this exactly, but the potentials
used here should improve on the Fermi-Thomas and
square-well approximations. In particular, the poten-
tials should include much of the true "chemical" nature
of the impurity, the sort of effects that give rise to the
positions in energy of the states of various electron angu-
lar momentum, so important in determining valence.
The Fermi-Thomas potential, for instance, is well
known to be a bad approximation when large valence
differences are involved, and approximates the impurity
by a point charge, thus neglecting the core of the im-

purity. This may be important in the screening effect,
since the screening must take place mainly outside this
core region, because the conduction electrons do not
penetrate the core.

Far from the impurity, the conduction electrons are
treated as free, ~ i.e., their wave functions can be taken
to be plane waves. The band structure of the metal is
supposed to be perturbed rigidly, ~ ' is otherwise un-
affected by the impurities, and is assumed to be spheri-
cal. The results of Ham' are used (see Table II). The
potential due to the impurity is assumed to be spheri-
cally symmetric, and thus the Hamiltonian for a conduc-
tion electron has full spherical symmetry. The state of
such an electron can thus be classified by its energy and
by its total angular momentum (J' and J,) about the
impurity. The total-angular-momentum quantum num-
ber j can be written in terms of the orbital angular
momentum /,

TABLE II. Parameters used in the calculations.

Bottom of band'
Fermi energy~

kp
me

Lithium

—0.683 Ry—0.422 Ry
0.5754
1.32

Sodium

—0.604 Ry—0.367 Ry
0.4868

Relative to the zero of the atomic potential.

where jt(r) and rtt(r) are spherical Bessel functions. 's

The wave function (2) is properly normalized. 8 is the
phase shift for the total angular momentum j and orbital
angular momentum 1, and is found by making the wave
functions and their first derivatives continuous at the
boundary of the two regions. It is usual for all but the
s-, p-, and d-wave phase shifts to be so small that they
can be neglected. Ke calculated the f-wave phase shift
in three cases and found it to be negligible in all three.

By integrating numerically outwards from the origin
at the Fermi energy E~, the shape of the wave function
for a particular value of j and l can be determined. Its
amplitude and the phase shifts are found by joining the
wave function to (2).Thus, the matrix elements and the
spin-Aip scattering cross sections can be computed.

It is of interest to see how the phase shifts vary as the
valence, difference between the solute and the solvent
varies, so that we have calculated phase shifts in the
gold row of the periodic table up to valence differences
of 6. The phase shift is essentially a measure of how
much extra electronic charge of that momentum is
present in the vicinity of the impurity. Odle and Flynn"
have argued that the unit cell around the impurity re-
sembles that around the free atom, and that an impurity
is unlikely to attract more than a total of two s-like
electronic charges around it before there is a significant
amount of p-like and possibly d-like electronic charge.
They have used this argument to explain their own
Knight-shift measurements. These ideas disagree with
the results of Kohn and Vosko" in their explanation of
the experimental results of Rowland" on nuclear reso-
nance intensity of copper with impurities. They only
considered s- and p-wave phase shifts and calculated
them using the Friedel sum rule and experimental values
of the resistivity. They found that the s-wave phase
shift increased rapidly with valence difference to values
about z for valence differences of 3 and 4. This would

suggest that there was a total s-like electronic charge of
3 around the impurity. We hope that our calculations
will shed some light on the controversy, and this is dis-
cussed in Sec. VII.

Ferrell and Prange'4 have recently attempted to ex-
plain the experimental results by postulating that it is

t01,. I. Schiff, Quantum 3Iechuut'cs (McGraw-Hill Book Co.,
New York, 1949).

» F. L. Odle and C. P. Flynn, Phil. Mag. D, 699 (1966).
"W. Kohn and H. Vosko, Phys. Rev. 119, 912 (1960).
~' T. J. Rowland, Phys. Rev. 119, 900 (1960)."R.A. Ferrell and R. K. Prange, Phys. Rev. Letters 17, 163

(1966}.
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Fio. i. Radial electric field versus radius for an impurity atom
(a) as a free atom, (b) when imbedded in a metal, and (c) as ap-
proximated in the model of this paper.

only the p electrons that are involved in the screening,
and that a drop in the spin-Rip cross section will occur
when the p resonance passes through the Fermi energy.
This latter is bound to occur, but if the Odle-Flynn
model is correct, it is not likely to occur until the valence
difference is 4, if the solvent is monovalent. This result
is confirmed in our calculations. Va,ssel's experiments"
on the resistance due to impurities in copper also con-
firm the conjecture: When the impurities require s- and
p-like electronic screening, the maximum resistance
occurs at a valence difference of 4. We shall discuss this
further in Sec. VII.

As reported earlier, ' these calculations have been
unable to explain the position of the drop in the experi-
mental results as a function of valence. The agreement
at small valence differences (with no adjustable param-
eters) suggests that the potentials used are not too inac-
curate; it would seem that the discrepancy arises from
the assumptions of the model, which may be untenable
for large valence differences. We shall discuss this
further in Sec. VII.

The plan of the paper is as follows: In Sec. II we con-
sider the potential due to the impurity and in Sec. III
the method of computation. Both of these are essentially
the same in the two sets of calculations. In Secs. IV and
V the theory and results for the perturbation procedure
and the strong-coupling procedure, respectively, are
presented. In Sec. VI these phase shifts are used to
compute resistivities for various alloys where experi-
mental results are available; these provide a further test
for the phase shifts and potentials. Section VII sum-
marizes the results, and Sec. VIII gives the conclusions.

II. POTENTIAL

If the exchange effect between electrons is neglected,
the potential that an electron experiences can be derived
from the electric field. Near the core of the atom, the

"C. R. Vassel, J. Phys. Chem. Solids 7, 90 (1958).

electric field must be closely similar to that in the free
atom. Far away from the atom the electric field vanishes
as a result of screening. In the metal the screening will
cause the electric 6eld to drop to zero more rapidly than
the 1/r' of a Coulomb field. These facts are illustrated
in Fig. 1.It may even be that the electric 6eld is essen-
tially zero at the radius r, of the Wigner-Seitz sphere.

For sodium we have approximated the screening by
a,n electric field shown in Fig. 1. (A slight modification
was made for Li as described in Sec. III.) The properties
are that the electric field is identical to the free atom out
to a radius r& and is zero beyond. We 6x the value of r&

uniquely by numerically calculating the scattering phase
shifts for electrons at the Fermi energy for various trial
values of r& and choosing that value for which the phase
shifts satisfy the Friedel sum rule.

To carry out the phase-shift calculations we must
first integrate the electric field to find the potential. For
the model, the potential is identical to that of the atom
inside r, (apart from a constant A which shifts the zero
of potential) and is fiat beyond. It is continuous across
the boundary but has a discontinuous slope. Beyond r~

the potential corresponds to the bottom of the conduc-
tion band. We calculate the phase shifts by numerical
integration of the Schrodinger equation at an energy
equal to the Fermi energy Ep above the bottom of the
conduction band.

For an atom of valence Z, the Friedel sum rule states
that to gain electrical neutrality the phase shifts of elec-
trons with orbital angular momentum / and total angu-
lar momentum j must obey the equation

(3)

which reduces, in the perturbation procedure, to the
well-known Friedel sum rule. (in Appendix A, (3) is
proved in the strong-coupling case.7') The constant A
is then varied until the phase shifts satisfy (3).

Since the potential must be continuous, r& must vary
with the impurity. With sodium as a solvent, this can be
easily accomplished because the effective mass of the
conduction electrons is almost 1.' In lithium, however,
the effective mass is 1.32,' which comes from the be-
havior of the electrons in the pure metal being different
from free-electron behavior. To make the calculations
consistent with the free-electron calculation of Ham, "
the position of r~ should be fixed. These difficulties will
be discussed in Sec. III.

The atomic potentials used were those of Herman
and Skillman. ' These are potentials that one electron
would have if it were an electron of the free nonionized
atom. Thus, we are assuming that the electronic correla-
tion near the impurity in the metal is the same as that
for the free atom. . This is definitely not true, although

"F.Hsm, Solid State Phys. 1, 12'I (1955).
'7F. Herman and S. Skillman, Atomic Structure Calculations

(Prentice-Hall, Inc. , Englewood Cliffs, N. J., 1963).



181 SCATTERI NG FROM FOREI GN ATOMS IN Li AND Na. I I 665

the screening density for an ion in a pure metal is similar
to that in the atom. "The Herman-Skillman potentials
take some account of screening by using Slater's ap-
proximation" for exchange.

None of the approximations made is easily justifiable.
They have the advantage of simplicity and of containing
no parameters which are adjusted to fit the data. Never-
theless, we believe that we have taken account of the
gross features due to screening by insisting on the satis-
faction of the Friedel sum rule. We presume that the
other factors are not important, and, as we shall see, the
phase shifts and scattering cross sections are not very
sensitive to the actual shape of the potential.

III. METHOD OF COMPUTATION

The shape of the wave function for an electron with a
given angular momentum and at the Fermi energy is
derived by numerically integrating Schrodinger s equa-
tion outwards from the origin. The first two values come
from a series approximation and the rest by using the
Noumerov method of numerical integration. "Accuracy
was tested by halving the various intervals involved.

The magnitude of the wave function and the phase
shifts are obtained by matching the wave function and
its derivative to the free-electron wave function'; this
was done at both r& and r, . It was found, however, that
the two sets of phase shifts differed and that the Friedel
sum could differ by as much as —,

' rad. Since the potential
between r& and r, is Rat, there should be no difference
between the phase shifts at r& and r,.

The reason for the difference is that there is a discon-
tinuity in the derivative of the potential at r&. Thus,
from Schrodinger's equation there should be a discon-
tinuity in the third derivative of the wave function. The
Noumerov method, since it used a Taylor expansion,
assumes that the wave function is continuous in all
derivatives up to the sixth. Using the Noumerov
method around a discontinuity in the potential is
equivalent to solving an equation different from the
Schrodinger equation and is thus incorrect; the phase
shifts at r& must thus be used.

There is another problem associated with the effective
mass of lithium. The nonunit effective mass means that
the integration inside the impurity potential is done at
an energy E above the bottom of the conduction band,
but the integration outside the impurity potential is
done at an energy E/m*, where rN* is the effective mass.
The location of the impurity boundary affects the mea-
surement of the phase shifts quite considerably. Thus,
we took the boundary as ftxed at the same place (r = 2.9
a.u.) as Ham took the boundary of the lithium atom. If
the potential of an impurity was still deeper than the
bottom of the lithium band, this is equivalent to impos-

' W. A. Harrison, in Phonons in Perfect Lattices and in Lattices
edith Point Imperfections, edited by R. W. H. Stevenson (Oliver and
Boyd, Edinburgh, 1966), p. 108."J.C. Slater, Phys. Rev. 81, 385 (1951).

'P G. W. Pratt, Jr., Phys. Rev. 88, 1217 (1952l.

ing a finite discontinuity at 2.9 a.u. However, such dis-
continuities were small. If the potential of an impurity
were such that ~~(2.9 a.u. , the difficulties of the
Noumerov method were ignored, and the phase shifts
were again measured at r= 2.9 a.u. This difficulty over
the effective mass will always arise when we work with
a free-electron theory. Such problems do not arise for
sodium, since the sodium effective mass is unity. Then
we can take r, to be value of r when V(r) = —0.604 Ry.

IV. PERTURBATION METHOD

o-= 1/JV pVFcTt,

where Vp is the velocity of an electron at Ep. Thus

o= (2/~) L(~*)'/a] I (P I
V..IP')

I
..s, (6)

where m* is the effective mass of the solvent material.
If we write the spin-orbit coupling as

where 1 and s are now measured in units of A, then o can
be written in a form free of A,

2 m* 1 )' l(l+1) 1dV
0 =

I Z pE- pi', (g)
rr nz 2nsc') & 3(21+1) r dr

where
I p~) is the wave function with angular momentum

I p&) is found by matching the numerically integrated
wave function to the wave function (2) at r~ The matrix.
element in (8) is determined by differentiating the po-

21 C. P. Slichter, Principles of Magnetic Resonance (Harper R
Row, Publishers, Inc. , New York, 1963).

If the spin-orbit coupling is small, it can be considered
as a perturbation on the spin and orbital motion of the
conduction electrons, and the spin and orbital angular
momentum l can then be used as good quantum num-
bers. We can then write 6'for 6,'. In I it was shown, using
the Golden rule, that the relaxation time T& is given by

1/T = (2~/&9'ooI(PI V-IP') I-'c(& ) (4)

The states
I p) are the one-electron states moving in. the

electric field of the lattice, and the symbol "av" means
that the square of the matrix element is averaged over
all IP) and IP') at the Fermi surface. Ãpis thenumber of
host atoms per cc, c is the fractional concentration of
impurities, and p(E&) is the density of states for both
spins at the Fermi surface. Note that the above expres-
sion is twice the usual expression obtained using the
Born approximation"; this is because spins in both
quantum states can Rip."

The relaxation time T~ is related to the spin-Qip
scattering cross section per impurity, this being a more
convenient way of expressing the results:
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tential, multiplying by the square of the wave function,
and integrating numerically using Simpson's rule. The
results are shown, together with the phase shifts, in
Table I. The contributions to the spin-Qip cross section
from the d part of the electron are negligible except
where indicated.

In any column the agreement of the results with ex-
periment is about the same, showing that the suggestion
that the spin-Qip relaxation is due to the spin-orbit
coupling of the impurity is correct. The disagreement of
theory with experiment occurs when the valence of the
impurity varies. There are three points to notice:

(i) The theoretical values for the cross section due to
the p character of the electron increase more rapidly
than the experimental values as the valence difference
increases from —1 to +3.

(ii) The theoretical values continue to increase when

the valence diGerence changes from +1 to +2 to +3,
while the experimental values always decrease when the
valence difference goes from +2 to +3.

(iii) In iiPd and I iPt the theoretical d contribution
is much larger tha, n the p contribution and the experi-
mental results. In the experiment, this large d contribu-
tion does not occur, and the reason for this may be the
same as the reason for (ii).

We shall comment on the reasons for (i) and (ii) later.

pp PO Po

(A

CI
z

V. STRONG-COUPLING METHOD

The applicability of Fermi's "Golden rule" is limited
to those cases where the probability of a transition is
small; this required that the product of the strength of
the perturbation and the time that the perturbation
acts be small. The strength of the spin-orbit coupling
increases as the impurity becomes heavier, and the time
that the spin-orbit interaction acts will depend on the
amplitude of the p part of the wave function at the im-

purity cell. This is likely to increase as the valence dif-
ference increases. Thus, it is possible that perturbation
theory may be invalid for heavy impurities with large
valence differences.

The physical model presented here Axes the direction
of the spin of the electron outside the unit cell of the im-

purity; but when the electron enters the impurity cell,
the spin precesses because of its spin-orbit interaction
due to the impurity. If the precession becomes large, the
Born approximation is no longer valid. The cross section
depends on the square of the sine of the angle of preces-
sion, so that the cross section wi11 increase until this
angle beomes —', x, and then it wi11 decrease if the angle
becomes larger than ~x. It is possible that the down
turn in the experimental cross section is due to this
effect, so that we have done calculations in which the
spin-orbit coupling is taken into effect directly. These
calculations give a down turn at valence difference be-
tween 3 and 4, larger than the experimental values. %e
shall argue from the experimental results that any fall-
off in this way is not due to such an effect.

In the strong-coupling scheme, the total angular mo-
mentum j is a constant of the motion, whereas the or-
bital angular momentum 1 and the spin angular mo-
mentum are not. j can have the two values LEq. (1)$,
so that there are two phase shifts 8 for each value of l.

Before the electron feels the impurity, it is supposed
free, with its spin perfectly polarized, in the up-spin
state, say,

P-exp(ikr. r)n.

C3
Z'.

CL
LLI
I—
I—

V
I/2

3/2

After scattering by the impurity, the wave function of
the electron has both a scattered element with the same
spin n and one with the opposite spin P, 22

{Iexp(ikr r)+(1/r) f(8,$) exp(ikrr)gn

+(1/r)g(8, y) exp(ikrr)P) . (1O)

For a spherically symmetric potential it can be
shown" "that

2

VALENCE DIFFERENCE

I I I

4 5 6
FRIEDEL SUM

I I

7 8 9

f(8,$) = (1 2/i k)rg ((k+1)/exp(2i8g+r~2I) 1j—
+l I exp(2i8I r~~I) —1)}P~(cos8) (11)

FIG. 2. Scattering phase shifts given by the model potential
versus valence difference (or Friedel sum) using Herman-Skillman
free-atom potentials of di6'erent free atoms in the gold row of the
periodic table.

2' N. F. Mott and H. S. Massey, The Theory of Atomic Colli-
siorIs (Oxford-University Press, New York, 1949), 2nd ed.

"C. G. Darwin, Proc. Roy. Soc. (London'I A118, 654 (1928).
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TABLE III. Strong-coupling phase shifts and cross sections.

Phase shifts
Cross sections

(10 "cm')
p

LiMg
LiAl
L$Zn
LiGa
LiPd
LiAg
LiCd
LiIn
LiSn
LiPt
Li Au
LiHg
LiTl
LiPb
NuCd
NuIn
NuSn
NuAu
NuHg
NuTl
NuPb

0.569
1.098
0.621
1.254—0.106
0.074
0.704
1.068
1.284—0.368
0.138
0.723
1.081
1.24
0.920
1.298
1.504
0.179
0.925
1.264
1.44

0.302
0.654
0.251
0.603—0.017
0.035
0.284
0.636
1.048—0.107
0.013
0.245
0.567
0.969
0.217
0.572
0.981
0.002
0.192
0.499
0.892

0.306
0.662
0.271
0.653—0.001
0.067
0.356
0.778
1.256—0.049
0.113
0.461
0.999
1 474
0.268
0.717
1.232
0.071
0.349
0.894
1.485

0.018
0.02—0.004
0.006—0.353—0.042—0.012
0.004
0.015—0.232—0.062—0.024—0.015
0.01—0.008—0.0005
0.005—0.056—0.017—0.006
0.004

0.018
0.02—0.004
0.007—0.165—0.038—0.01
0.006
0.016—0.115—0.046—0.017—0.009
0.00—0.007
0.005
0.006—0.04—0.011—0.002
0.007

2.9 X10 '
1.65X10 '

0.108
0.69
0.17
0.293
1.43
5.57

11.85
0.938
2.75

12.71
48.61
64.81
0.51
40

12.1
1.97

29.2
61.4

~ ~ ~

17.2
0.004

6.84
0.13

0.19

~ ~ ~

The total spin-Rip cross section is

47r 2l(l+ 1)
sin'l ~, (13)

kp' & 3(21+1)
where

C/ el+1/2 ~l—i/2

and the —', factor in (13) comes from averaging over all
possible initial and 6nal vectors. Since the d contribu-
tions to the spin-Rip cross section are usually small,

1i can be considered as the angle of precession of the
electron spin.

To get the cross section defined in (5), Eq. (13) must
be multiplied by (m*/m)'. Comparing (13) and (8), it
can be seen that, when'/ is small,

k p I (Nil (1/r)~l'/«lP/') I

271 2mC
(15)

From (13) it can be seen that if f~ becomes greater
than —',x, there is a decrease in the cross section, as we
argued before. Suppose that this is the mechanism which
causes the decrease in the experimental results; then it
can be seen, assuming that only the i= 1 term in (13) is
important, that the maximum cross section is

(8'/k p') (m*/m) 'X 2/9 y

which gives, for I.i, o. , = 8.0)&10 "cm', and for Na,
o. ,~=6.3)&10 " cm'. This maximum would occur in
both the Ag and Au rows of the periodic table. The ex-

and

g(8,y) = (1/2ikp) Q Lexp(2zB& i/2') —exp(2i8i+i/2. )]
X g Pi~(cosg)e' & (12)
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FIG. 3. f& versus valence difference for impurities in the
gold row of the periodic table.

perirnental results show, however, that the peak cross
sections in the Ag and Au rows differ by a factor of 10.
We must thus conclude that the mechanism that causes
the turn down in the experimental results is not a break-
down of perturbation theory.

This can also be seen quantitatively from the pertur-
bation-theory results. If the spin-orbit coupling is small,
8~ can be found from these; even for Pb, the angles ob-
tained would not invalidate perturbation theory.

Nevertheless, we have considered it worthwhile to do
the calculations using the strong-coupling scheme. The
method is not only more accurate but also easier: Only
phase shifts have to be measured, and there is no match-
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TABLE IV. Resistivities (in pQ cm) per at. /o of impurity. when the spin-orbit coupling is neglected and

Calculations using
phase shifts

From From
Table I Table III

Experimental
results Ref.

4xkc ~ l+3/2 l+I /2

L Z Z (i+s)(i'+s)
t=o (2l+ 1)(2)+3) j l+=1 i2 j' l =112-

LiMg

LiA1
LiIn
LiSn
NGAu
NGCd
NGT1
NaSn
NGPb

1.06 1.04

4.08
4.31 4.42
7.54 8.66
0.21 0.23
2.84 2.94
6.06 7.5

10.02 10.21
10.00 11.8

0.83
1.43

4al
8.6
1.0
5
5

11
10.2
11.6

a,b
C

a
a
b
C

C

d
C

C

a D. &. C. MacDonald, W. B.Pearson, and I. M. Templeton, Phil. Mag.
6, 1431 (1961).

b P. W. Bridgman, Proc. Am. Acad. Arts Sci. 83, 149 (1954).
& T. E. Faber, Phil. Mag. IS, 1 (1967).
d J. F. Freeman and W. D. Robertson, J. Chem. Phys. 34, 769 (1961).

Xsin'(8, '+' —8, ')+2l sin'i ~
—2l(l+2) sini ~ sini q+~

X cos(&&+~~s'+ && &qs' —8~+~~s'+' —&&+'+')]. (19)

LEquation (19) is derived in Appendix B.) The results
are shown in Table IV. The agreement between theory
and experiment is exceedingly bad in I.iSn and EaAu.
Including the spin-orbit interaction in the other cases
does improve agreement, but not spectacularly. It does,
however, distinguish between the resistivities of XaSn
and XaPb, and in doing so, gives very good agreement
with experiment.

ing of wave functions at r&. f& is given directly, and we

are able to see how it varies with valence difference (see
Figs. 2 and 3).

The methods used were as described in Secs. II and
III, although in this case the spin-orbit coupling must
be added to or subtracted from the atomic potential,
depending on the vasue of j.The spin-orbit coupling had
to be taken now as'4

1dV
a,&- $2+n, ' V(r)j

r dr

to avoid having an attractive potential stronger than
the centrifugal potential close to the impurity nucleus.
n, is Sornmerfeld's fine-structure constant. No other
relativistic terms have been added to the potential,
since their importance when using a nonrelativistic po-
tential is uncertain. '4 "

The results, shown in Table III, agree well with the
perturbation-theory results, except in the case of the
heaviest elements, thallium and lead, where l ~ is large
enough for there to be a significant difference between

i ( and sing(.

VI. RESISTIVITY CALCULATIONS

We have used the calculated phase shifts to calculate
the resistivity per percentage of impurity for various
impurities in lithium and sodium, where experimental
measurements have been made. The formula for the
resistivity is "

4xkc ~

g l sin'(B~ q
—8q),

8 kp ~=&

'4 M. A. Ball (to be published).
"M. Rotenberg, Phys. Rev. Letters 16, 969 (1966).
' J. M. Ziman, PrincipLes of the Theory of SoLHs (Cambridge

University Press, New York, 1964), 1st ed.

VII. VARIATION OF PHASE SHIFTS
WITH VALENCE DIFFERENCE

In Fig. 2 we have plotted 80, ~I/2', and b3/2 against the
Friedel sum. The potentials used were the Herman-
Skillman potentials for the gold row of the periodic
table with phase shifts evaluated at the Fermi energy of
sodium. There are several interesting points to be
noticed:

(i) By varying the constant A, different potentials
could be used to derive the same Friedel sum. When this
was done, the phase shifts obtained did not vary much
from potential to potential. In part, this shows that the
phase shifts are fairly insensitive to the shape of the
potential in any particular row of the periodic table. In
part, it results from the fact that adding one nuclear
charge does not change the potential by a large percen-
tage near the core of the atoms. The same effect is also
seen in other periodic rows and in lithium, but the phase
shifts do vary quite considerably between different rows
of the periodic table and in different host metals.

(ii) Although the d-wave phase shifts are small, they
have a large weighting factor (2j+1) in the Friedel
sum, which means that they should not be ignored when
the sum rule is applied. This is particularly necessary
when the impurity has the same valence as the host and
a just-6lled d shell, as can be seen from the behavior of
gold in sodium. There the contribution of the d phase
shift to the Friedel sum is greater in magnitude than
that of either the s or p pha, se shifts.

(iii) As the Friedel sum increases, the s-wave phase
shift 60 increases rapidly at fLrst and then flattens out to
a value about —,~. The p-wave phase shifts B&~&' and 8s/2'
increase slowly when the Friedel sum is small, but soon
increase rapidly, until they are both greater than bo when
the Friedel sum corresponds to a valence difference of
about 5.

(iv) When the Friedel sum is small, 1 is small, but it
increases monotonically until it reaches a maximum
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when the Friedel sum corresponds to a valence differ-
ence of about 4. Then it decreases monotonically.

q
Z —i—5V/0, (20)

» K. S. Viswanathan and A. K. Rajagopal (to be published).

The behavior expressed in (iii) agrees with the atomic
screening hypothesis of Odle and Flynn. "The s-wave
phase shift only reaches —,'m, suggesting that only one
s electron can be added to the s electron already present
in the conduction band. Extra screening has then to be
done by the p electrons, and it is noticeable that the
b&~2' phase shift is also beginning to flatten out by the
time the equivalent valence difference is 5, suggesting
that the maximum p-wave phase shifts are s..

The idea of a resonance in the p-like electrons sug-

gested by Ferrell and Prange" and more recently by
Viswanathan and Rajagopal" is very similar to the idea
of a virtual bound state~ that has been postulated for
d-like electrons within a conduction band. %e showed in
I how it convicted with the atomic screening hypothesis.
Result (iv) shows that the maximum amount of p-like
electron density occurs at a valence difference of 4. From
(15) we see that fi is proportional to the amount of p-like
electron density at the Fermi surface, so that we expect
0. to be a maximum at a valence difference of 4, in
disagreement with the resonance hypothesis and
experiment.

Figure 3 shows pi as a function of valence Z and as a
function of the total amount of p-like screening. It has
a resonancelike shape with a peak at Z=S, and is so
broad that f'i is still significant when the valence differ-

ence is 1 or 7. This is in agreement with the measure-

ments of Vassel on the residual resistivities due to im-

purities in copper and aluminum. In his paper, the re-
sults for impurities are p-like and, where d-like screening

occurs, show the above kind of behavior with valence
difference, although in copper the d resonance is split
either by spin-orbit coupling or by the crystal 6eld.

The curve of f'i against total P-electron screening is

important because it is likely, from general considera-

tions, to be independent of any screening mechanism
discussed. Assuming this, the experimental results for
Z=4 can only be explained in a free one-electron theory

by requiring the total p-electron density to be mech

greater or welch less than predicted by the atomic screen-

ing hypothesis.
Figure 2 is also of use in discussing the effects of dila-

tation of the lattice, which is caused by the core of the

impurity being a different size than that of the host
metal. The displacement of atoms radially outward falls

off inversely with the square of the distance, so that for
a sphere of large radius R centered on the impurity,
there is a net volume displacement outwards through

the surface of the sphere, which is independent of E.
This means that there is a decrease in the total electronic

charge contained within the sphere. Theoretically, this

can thus be accounted for by making the Friedel sum

e ual to

TAsl.v. V. ERects of dilation. Two sets of phase shifts are given:
BAS refers to this paper; TK refers to Titman and Kellington
(Ref. 28).

LiAg —0.5j.3

LiMg —0.050

LiCd —0.393

TK
BAS
TK
BAS
TK
BAS

Bp

0.3&4 0.&64
o.375 0.187
0.542 0.367
0.597 0.32I
0.632 0.518
0.830 0.464

—0.027

0.018

—0.011

To summarize, we have used a modified potential
containing parameters which are adjusted to fit the data
to calculate the scattering phase shifts. For valence
differences of 1 or 2, these give a good account both of
the magnitudes and the trends of three kinds of experi-
mental data: spin-Qip scattering cross section, Knight-
shift data, and resistivity.

For larger valence differences (3 or 4) the resistivity
calculations are good in Na-based alloys, but not very
good in Li-based alloys. The spin-Sip cross sections peak
at the wrong valence difference.

Our model is tantamount to having the screening done

by a surface charge at a suitably chosen radius, an as-
sumption which is clearly nonphysical since charge
"J.M. Titman and S.H. Kellington, Proc. Phys. Soc. (London)

90, 499 (1967).

where 6V/0 is the fractional change in the size of the
cell occupied by the impurity. " If we knew 8V/0, in-
stead of recalculating our phase shifts to accommodate
(20), we could rely on the result (i) and construct graphs
like Fig. 2 for each host metal and for each row of the
periodic table. Ke could then read off the phase shifts
for the relevant values of (20).

Unfortunately, the values of 8V/0 are not obtain-
able experimentally in most of our samples, since the
impurity concentrations are very small, but Titman
and Kellington' have obtained volume corrections for
Mg, Cd, and Ag in Lj. The corrected phase shifts are
given in Table V, along with the phase shifts obtained
by Titman and Kellington, by using the Friedel sum
rule and the experimentas results for the change in the
solvent Knight shift; however, they only considered s
and p phase shifts.

Suppose we attempt to explain the down turn, at
large valence differences, in the experimental cross sec-
tions by the dilatation of the lattice; then from Fig. 2,
it can be seen that such a down turn could not happen
unless (20) were of the order of 0 or 6.This would require
an absurdly large volume change, showing that such an
explanation is untenable. In LiPb, for instance, there is
probably very little volume change; the intermetallic
compound L,iPb has the same lattice structure as lithium
and an almost equal lattice constant, suggesting that a
lead atom does not displace a metallic lithium lattice by
very much.

VIII. CONCLUSION
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densities should not change drastically over distances
much shorter than the wavelength of electrons at the
Fermi energy. Moreover, the well-known oscillatory
nature of the charge density plus the possibility of
charging effects make it likely that the potential is not
Bat even at the nearest-neighbor positions.

What is desirable is to And a practical theoretical ap-
proach which would include these effects. If that, were
possible, a test of a more realistic one-electron potential
would be possible.

On the other hand, it is conceivable that correlation
effects among the electrons are important. In free atoms
these effects give rise to Russell-Saunders couplings and
Hund's rules. To some extent these effects are included
in the Herman-Skillman potential, but if they are the
principal cause of the early turn down, we would not
expect them to be found in a treatment such as we have
given.

APPENDIX A: PROOF OF THE FRIEDEL SUM
RULE (3) IN THE STRONG-COUPLING CASE

The proof will only be sketched here, since it follows
the proofs given in Refs. 8'and 4.

Consider an electron with energy E,
E= k'/2nz. (A1)

Its wave function will be a sum of wave functions classi-
fied by j and /. The ra, dial part r@,' will satisfy

d'y, ' ( l(t+ 1)q
+2l E U, — iQ,

'—=0, (A2)
dr'

Having the impurity at the center of the sphere will
change the electronic density at energy E within the
sphere. Let this change be Ap(k). Then

dip(k) 1=-Z (2j+1)
dk xi&

fd8,' 1
X~ —Hin8 cosi2kR+V —i )) . (AS)

Edk k

If we neglect the small oscillating term, then (3) is
obtained.

For metals like lithium, whose equivalent mass is not
unity, Eq. (A1) should probably be modified. This
would lead to the Friedel sum being multiplied by m*.
In our calculations this has not been done, which might
account for the fact that the theoretical results for
lithium are larger relative to the experimental results
than the results for sodium.

Note that the oscillating term in (A5) is different
from the oscillating term when spin-orbit coupling is
neglected. This should, however, only slightly affect
the theoretical calculations on the nuclear resonance
intensities in dilute alloys because these depend on an
average of all the phase shifts. "

APPENDIX B: PROOF OF THE RESISTIVITY
FORMULA (19) IN THE STRONG-

COUPLING CASE

If o.(0) is the differential cross section, the resistivity
is26

where U, is the impurity potential plus the relevant part
of the spin-orbit coupling. If we normalize in a large
sphere of radius E, then

Q,'~ (1/2mR)'~' sinLkr+8'(k) —2hr] (A3)

as R becomes large. Then it can easily be shown that
R 1

a.(0)(1—cos8)d Q.
g2

Taking both spin-Rip and non-spin-Rip cross sections,
we can writedr (y,')'~

(B2)
4xR

d5' 1 -(0)= ij(0,~)l'+ la(~, ~)l
&&i R+ ——sin2(kR+8' —-'f ) . (A4)

dk 2k After much manipulation, Eq. (19) is derived.


