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Spin-Flip Scattering Cross Section for Conduction Electrons of
Foreign Atoms in Lithium and Sodium. Pf

J. R. Asix, t M. A. BALL)$ AND C. P. SLICHTER

Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Itlinois 61801
(Received 9 December 1968)

We have measured the spin-Aip scattering cross section for conduction electrons of impurities in metallic
sodium and impurities in metallic lithium. The cross sections are deduced from the measurements of the de-
pendence on impurity concentration of the linewidth of the conduction-electron spin resonance. Since the
apparatus was an X-band superheterodyne spectrometer and the samples were small particles of about
10-p, diam, the Dyson theory must be applied to relate measured linewidth to relaxation time and thus to
cross section. A simple theoretical analysis is applied which involves the numerical solution of the non-spin-
Aip scattering by a screened Coulomb potential whose screening length is adjusted so that the s, p, and d
scattering phase shifts satisfy the Friedel sum rule. We then orthogonalize these solutions to the core states
of the impurity atom. Using these orthogonalized wave functions and assuming the spin-Qip scattering
results from a coupling of the electron spin to its orbital motion in the vicinity of the nucleus of the impurity,
we use perturbation theory to compute a spin-Qip scattering cross sections which has no adjustable parame-
ters. The result accounts well for the magnitudes and trends as one moves down and across the periodic
table for those impurities whose valence differs from that of the host by 0, 1, or 2 units. The theory does
rot account for the existence or position of a maximum as one moves across the periodic table.

I. INTRODUCTION

. 'HIS paper has two major purposes. ' The first is
to present data on the spin-Qip scattering cross

section for conduction electrons colliding with non-
magnetic impurities in metallic lithium and sodium.
The cross sections are deduced from the experimental
study of conduction-electron spin-resonance (CESR)
relaxation time T& in dilute alloys. The second purpose
is to present a simple orthogonalized-plane-wave
(OPW) theory of this relaxation time. In a second
paper we present a more extensive theory which
accounts in part for some of those aspects not included
in the OPW theory but which still leaves important
discrepancies between theory and experiment.

The first paramagnetic resonance absorption in
metals due to conduction electrons was observed in
sodium in 1952 by Griswold, Kip, and Kittel. Feher
and Kip' later (in 1954) made a systematic search for
CESR in various metals and found resonances in I.i,
K, Be, as well as Na. More recently CESR has been
observed in Cs,'Rb, ' ' Cu, Al, ' and Ag. 'The pioneering
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work of Feher and Kip showed that there are at least
two contributions to the T» of the conduction electrons:

1/Ti (1/~1)phonons+ (1/~1) impurities ~ (1)
The temperature dependence (phonon contribution) of
the CESR spin-lattice relaxation time is due to the
modulation of the spin-orbit interaction by thermal-
lattice vibrations. In this paper we are concerned only
with the impurity contribution to T&.

One determines the spin-lattice relaxation time
indirectly by using the equality between T& and T2,
the transverse relaxation time. A line-shape analysis
gives the relationship between the linewidth AII, which
can be directly measured, and T2. Vafet" has recently
discussed the question of the equality of T& and T2.
His conclusion is that T1 and T2 are equal in isotropic
(cubic) crystals but may be different in anisotropic
crystals. Physically, one expects that the high relative
speed of the conduction electrons and the screening of
the electron-electron interaction should drastically
reduce the broadening effect of the spin-spin inter-
actions. This effect is analogous to the motional
narrowing" of NMR lines.

In this paper we analyze a new type of experiment:
measurement of the effect of impurities on the spin-
orientation lifetime of conduction electrons. " The

' S. Schultz and C. Latham, Phys. Rev. Letters 15, 148 (1965).
S. Schultz, G. Dunifer, and C. Latham, Phys. Letters 23, 192
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Turnbull (Academic Press Inc. , New York, 1963), Vol. 14.
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nance (Harper tk Row Publishers, Inc. , New York, 1963), p. 153."Previous published measurements are EaHg: N. S.Garif'ianov
and M. A. Starikov, Zh. Eksperim. i Teor. Fiz. 35, 798 (1958)
[English transl. : Soviet Phys. —JETP 8, 553 (1959)g; liMg:
G. D. Wignall, J.E. Enderby, C. E. W. Hahn, and J.M. Titman,
Phil. Mag. 12, 433 (1965); LiMg, IiZn, and IiAg: C. E. W.
Hahn and J. E. Enderby, Proc. Phys. Soc. (London) 92, 418
(1967).
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FIG. 1. Hypothetical spin polar-
ization in the absence of an applied
magnetic 6eld. The number den-
sity of spin-up (-down) electrons
is E+ (E ) and the Fermi level is
E+ (E ). The equilibrium Fermi
level is E~.

Q

spin-Rip scattering cross sections for Fermi electrons
of 14 impurities in lithium metal and 7 impurities in
sodium metal have been measured directly. The
existence of a nonvanishing spin-Rip cross section
implies that there is an impurity contribution to the
spin-lattice relaxation rate. This contribution can be
determined by measuring the effect of various con-
centrations of added impurity on the linewidth of the
CESR." In several cases we have observed solubility
limits for very dilute ((10 ' at.

%%u~)alloys . Inother
cases, no effect was observed, which we attribute to
the impossibility of even dilute solubility. The large
spin-orbit interaction characteristic of the high-Z
elements, such as Au and Tl, enables them to produce
easily measurable effects for fractional concentrations
as low as 1 atom in 10~.

For monovalent impurities, such as Ag and Au, the
experimental results are well accounted for by an
OPW theory which considers the interaction of the
conduction-electron spin with its orbital motion in the
electric field of the impurity atom (spin-orbit coupling)
as a perturbation. For nonmonovalent impurities, we
represent the electrostatic effect of the impurity by a
screened Coulomb potential and again take the spin-
orbit interaction as a perturbation. The theory accounts
for our experimental results for impurities having
valence differences of &1 with respect to Li or Na.
For the high-Z elements of groups IIIA and IVA, our
simple theory deviates from the results. These devi-
ations are especially large for the group-IVA impurities
Sn and Pb.

The physical idea behind impurity-induced spin-fiip
scattering of conduction electrons can be described in
the following crude manner. In metals such as Li or
Na in which the spin-orbit interaction with the host
atoms is small, the conduction electrons are described
by Bloch functions in which the spin state is quantized
predominantly up or down. Suppose that a single
impurity with strong spin-orbit interaction is intro-
duced substitutionally into the lattice. In being scat-

"Recently a powerful indirect technique has been developed
to measure this contribution. This technique involves measuring
the temperature dependence of the Ti of dilute paramagnetic ions
dissolved in metals containing small additions of a second im-
purity, which can be transition-metal or nontransition-metal
impurities. The effect of the second impurity is to open up the
bottleneck to conduction-electron-spin relaxation. See A. C.
Gossard, A. J.Heeger, and J.H. Wernick, J. Appl. Phys. 38, 1251
(1967);also, A. C. Gossard, T. Y. Kometani, and J. H. Wernick,
ibid. 39, 849 (1968); Y. Yafet, ibid. 39, 853 (1968).

tered by the impurity, an electron of given spin acquires
a certain admixture of the opposite spin state, since
the spin and orbit are coupled while the electron is near
the impurity. This coupling therefore has induced
transitions between spin-up and spin-down Bloch
states. The transition rate is much larger than one
would calculate using plane waves or host-lattice Bloch
functions in the scattering problem, since the wave
function near the impurity more closely resembles a
mixture of the impurity-free-atom wave functions than
plane waves or host-atom atomic functions.

In Sec. II, we present the perturbation theory for
impurity-induced spin-lattice relaxation. The experi-
mental apparatus and procedure are discussed in Sec.
III. The experimental results are given and compared
with theory in Sec. IV, which, in addition, contains a
discussion of possible explanations for the observed
nonmonotonic variation of the spin-Qip cross sections.

(2)

AEp'(E) dE, (3)

where DE=E+—E, and f+ is the Fermi function for
spin-up electrons. To obtain (3) from (2), we assume
that the population difference X+—2V is small com-
pared to the total electron density Es=E++N .
Using the relation Bf/8E~=e(E Ep), where 5(x) is—

II. THEORY

A. Spin-Lattice Relaxation

We will take the band structure of the host metal
to be described by spherical energy surfaces. To calcu-
late T~, it is convenient to assume that initially the
number of electrons per unit volume with spin up E+
and the number density of electrons with spin down
S differ from their thermal-equilibrium values, but
that the kinetic energies of each spin distribution are
in thermal equilibrium with the lattice. This latter
condition results from frequent electron-phonon col-
lisions. For simplicity we assume the static field to be
zero, so that in thermal equilibrium A+=X . We
suppose that by some means the populations are made
to be unequal initially. (Conceptually this could be
achieved by applying a static fieM for a time long
compared to T&, and then suddenly switching it off.
In practice this would be dificult because of the
shortness of Ti.) Thus, since the Zeeman energy of the
spins is zero, the bottoms of the two spin distributions
coincide, but the tops do not. There are thus two Fermi
energies: E+ and E . The equilibrium Fermi energy is
E& (see Fig. 1). Let the density of states in energy be
p'(E) for each spin distribution.

The excess spin population is therefore given by
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the Dirac B function, Eq. (3) becomes

1V+ 1V —=DEp'(Ep).

The rate equation defining l'l is

d(1Vp 1V —)/dt= —(1Vp 1V )/—Tg. (5)

V=+ V;,
s=l

(13)

If the perturbing potential V is produced by a con-
centration c of impurity atoms, we can write

Noc

The total rate of change of E+ can be broken down
into two contributions:

dt + dt +

Let us introduce a microscopic transition probability
W(k+, k' —) to describe the scattering from a state
Ik+) to a state Ik' —). The second term on the right
side of (6) can be written

where V; is the potential due to the ith impurity atom
and Ep the number of host atoms per unit volume. The
usual approximation in the case of dilute alloys is to
assume incoherent scattering. We thus obtain

1/Ti= (2s'/b)1Vpc(VP) pp(Ep), (14)

where Ul is the spin-dependent perturbing potential of
a single-impurity atom. Equation (14) predicts that
the spin-lattice relaxation rate varies linearly with the
concentration of impurities.

B. Spin-Orbit Interaction

W(k+, k' —)f (k)L1 —f (k')j

dQdQ'
Xp'(E) p'(E') dEdE'

(4s-)'
(7)

We take as the perturbation Vl the spin-orbit inter-
action' of a conduction electron in the electric field of
a single-impurity atom, i.e.,

Vq= (eh/2m'c')s (EXp) =lb. (r)s.l, (15)

In (7) we use E for E~, etc. Making use of the fact that
f (k)—f (k)=(DE)Bf/BE =(AE)h(E—E ), the ex-
pression for the rate of change of 2V+ becomes

dX+ = —AE W(k+, k' —)B(E—Ep)

where e is the magnitude of the electronic charge, E is
the electric field due to the impurity, and s and I are
dimensionless operators. Since E is large only in the
atomic core, it is proper to take E to be radial and
derived from a central potential Ap..

dQdQ'
Xp'(E) p'(E') dEdE'

( )
(8)

Substituting this into Eq. (8) and making use of the
two 6 functions, one finds

We now introduce a spin-dependent scattering potential
V which is produced by substitutional impurities.
Using Fermi's "golden rule" of perturbation theory,

2'
w(k+ k' —) =—I(k+ 1

vlk' —) I'B(E—E') (9)

r dAp

r dr

Thus, the coupling function X(r) is given by

ePP 1 dAp
~(r) =-

2m'c'r dr

Let us consider the quantity

dQdQ'
(vts) p= [(kp+ I vIk, —) Is

(4')'
S& — —S&r

(17)

(18)

D eaning

2' dQdQ'
hE p"(E ) 1(k +—

I VI k—' —) I
—.(10)

A (4')s

dQdQ'
(v') p —— ((kp+ I

VIkp' —) I'
(4s-}'

dQdQ'
X (k p I &&„Ik p') (kp'

I
&&, I

k p) . (19)
(4s.)'

We can symmetrize the orbital and spin parts of Eq.
(19) and thus obtain the result

(V ') =-,' g (+ I s„s„+s„s,I+)

1/T, = (2s-/h)(V') pp(Ep) . (12)

In Eq. (12) we have introduced p(Ep), the density of
states including both spin orientations, which equals
2p'(Ep).

and using Eqs. (4), (5), (10), and (11),we arrive at an
expression for Tl. x

I (k p I xl„
I
k p') (kp'

I zl, .
I
k p)

dQdQ'
+(kp1~41kp')(k '1~41k )3

(4~)2
"R.J. Elliott, Phys. Rev. 96, 266 (1954).
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Since
Sysp~+Sy~sp=0, If pQp (»)

Thus, we have
ac= (qlc' ")=a Icaz (28)

and since the integrals involving l and l„are symmetric,
Eq. (20) reduces to

where we have written Z for Zf(r). In this notation, the
spin-orbit matrix element becomes

dQdQ'
(vI2)r ———

I (kr I x(r)l, I
kr') I'

2 (4~)'

C. OPW Perturbation Theory for
Monovalent Impurities

(22)
(k&'I X(r)l, lk&) = Q a„„'c;zc,z(q'I X(r)l, I q). (29)

Making use of the fact that c,z ——cos(q,Z), it can be
shown without difFiculty that

(V,2),„„=(1!18)a.„' g 1(q'll (r». l q) I'.
In order to evaluate Eq. (22), we need to know the

orbital wave functions lkr). Let us first consider
monovalent substituents, i.e., those that have the same
valence as Li or Na. This case is the simplest because
no complications from screening of excess ionic charge
arise. The states

I kr) are the exact one-electron states
of electrons moving in the electric field of the lattice
and the impurity, but neglecting the spin-orbit inter-
action V~. However, it is not correct to take the states
I kr) to be the Bloch states of the pure metal, since the
potential in the vicinity of the impurity atom is
diferent from that of Li or Na despite the identity of
valence.

The simplest approximation for impurity atoms
which produce large scattering compared to their hosts
is to take the

I
k)'s as plane-wave states orthogonalized

to the impurity core states. Orthogonalization guar-
antees that the Pauli exclusion principle is satisfied
and produces atomiclike oscillations in the wave func-
tion in the vicinity of the nucleus. "Thus, we write

If we take X„„to be the spin-orbit coupling constant of
the core state ep, then

~-n= I (ri,zf(r) I~(r)l- I&,yf(r)) I (»)
In Eq. (30), the only nonvanishing matrix elements are
those for which q=yf(r), q'=zf(r) and q=zf(r),
q'=yf(r) The.n the final expression for the p-state
contribution is

(Vi')r..= 9a n9-n' (32)

(VI2)r ~=5a ~'~ a'. (33)

In the Appendix it is also shown that the most general
expression for (VI2)r is

l(l+1)«I).= 2 ~n'l ~nl ~nl, n'l p

~.~', I 6(2l+1)
(34)

In the Appendix we show that the contribution from a
set of d-core orbitals to (VP)r is

I kr) =c'~r '—Q a, I q), (23)
where

X„I,„I
——l(rill X(r) IN'l) I.

where

a.= (qlc'"")

lq) =
q' X'f (r), Yf (r), Zf (r)

"'I q') (27)

~' J. M. Ziman, I'rinc~ples of the Theory of Solids (Cambridge
University Press, Cambridge, England, 1964), p. 93.

The states lq) are the core functions of the impurity
atom, and the plane wave is normalized to a volume of
1 cm'. We assume that the concentration of impurities
is small and therefore neglect the change in normal-
ization due to orthogonalization.

Let us now specialize to atomic s and p functions.
If lq) is an s state, the contribution to the spin-orbit
matrix element is zero. The three p orbital states can
be written

I q) =*f(r) yf(r);f(r). (25)

The overlap integral a „ for the rip atomic
defined as

(ri gf(r) [~skye) (26)

We label the coordinate axes of k as X, 7', and Z. If
k is parallel to Z, then

Equation (34) contains two types of contributions. The
direct contribution is given by the e'=e terms, while
the indirect (or core-core) contribution arises from the
e'Qe terms.

D. Perturbation Theory for
Nonmonovalent Impurities

When the valence of the impurity differs from the host,
the excess or deficiency of ionic charge must be screened.
Since a single impurity adds a negligible total number of
electrons to the band, the screening results from a
change in the amplitude of the wave function of band
electrons at the impurity, and not from a change in the
number of occupied states. Thus, if the impurity has two
valence electrons, there must be approximately a charge
of two electrons in the impurity atomic cell. This implies
that a typical band wave function is W2 bigger within
the impurity cell. Using Eqs. (14) and (32), this leads
to an increase in linewidth by approximately (v2) = 4.
Roughly, we expect nontransition-metal impurities in
a given periodic row to produce a V' dependence for
DB, where V is the number of valence electrons of the
impurity.
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In this paper we represent the impurity potential
Vi(r) by a screened Coulomb potential, "

Vi (r) = —(Z„e'/r) e (36)

In Kq. (36), Z„ is the valence difference between the
impurity atom and the host. The screening parameter n
in each case is adjusted so that the s, p, d, , phase
shifts gp, qj, q2, . , satisfy the Friedel sum rule, '

(37)

The radial equation satisfied by the /th radial wave
function Pi(r), is

(38)

assuming that the effective mass is 1. In Kq. (38), ao
is the Bohr radius. If Z„=O, the solution to Eq. (38)
is the familiar result rj&(k&r), where j& is the spherical
Bessel function. At large distances, r))1/n, Pi(r) has
sinusoidal variation. For Z„WO, Eq. (38) must be solved
numerically. For the potential given by Eq. (36), we
refer to pi as a screened Coulomb function.

III. EXPERIMENTAL TECHNIQUE

A. Apparatus

The CESR linewidth measurements were made on a
fairly conventional single-klystron superheterodyne
KPR spectrometer operating at X band. An afc system
was employed to frequency-lock the klystron to the
sample cavity. The magnet is a Harvey-Wells 12-in.
electromagnet homogeneous to 0.1 G across the sample
and stable to 1 part in 10'. Magnetic field modulation
at 35 Hz and lock-in detection were also used. At all
times the peak-to-peak modulation amplitude was kept
less than 5 of the CKSR linewidth, and the time neces-
sary to pass through the line was kept greater than 15
time constants of the lock-in amplifier. The first de-
rivative line shape together with proton-frequency
magnetic field markers were recorded on a strip chart
recorder.

Most of the measurements were made at 300'K,
although a few were made at 77'K and also when the
alloys were in the liquid state. The KSR samples con-
sisted of small (approximately 20 p) metallic particles
dispersed in parafhn and contained in 4-mm-diam Pyrex
tubing about 1 cm long. The ends of the tubes were
sealed from the atmosphere with pure parafFin. The
metallic filling factor was about 50%. The samples
were held in the center of a full wave TE~p2 cavity with
styrofoam. The long dimension of the sample was
positioned parallel to the microwave H~.

' N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936)."J.Friedel, Phil. Mag. 43, 153 (1952).

With the sample sizes used, sample cavity Q's of
1000 to 1500 were obtained. The sensitivity of the
spectrometer enabled resonance lines, 250 G wide for
lithium alloys and 125 G wide for sodium alloys, to be
accurately measured.

B. Samples

The ESR samples were prepared in two steps. The
first involved the preparation of the alkali-metal alloy,
and the second involved the dispersing of the metal.
All operations involving lithium or sodium were carried
out either in a recirculating drying box filled with high-
purity argon or under oil, and while the metal surface
was coated with well-degassed mineral oil.

The alloys were prepared using 99.983% lithium
metal" and 99.9% sodium metal. "When dispersed, the
lithium showed a temperature-independent linewidth of
less than 1 G, whereas the sodium showed 6 G at 300'K
and 2 6 at 77'K.

The mechanical preparation of the alloys was per-
formed in the argon-6lled dry box. This preparation
involved scrape cleaning the surface of previously de-
greased alkali metal, weighing it, and embedding a
known amount of impurity metal well into the body of
the alkali. The alloying, except for some highly con-
centrated lithium-magnesium alloys, was done in de-
gassed mineral oil in a sealed stainless-steel beaker. The
alloying was. done outside the dry box on an electric
hot plate. Alloying proceeded for at least 2 h in all cases.
After cooling, the alloy chunk was cut into small pieces
and examined by eye for homogeneity. For very dilute
alloys, the sample alloys were made using the first alloy
as a master alloy. At least two independent master
alloys were always prepared.

For the more concentrated lithium-magnesium alloys,
the alloying was done in a tantalum crucible. The
crucible sat at the bottom of a tantalum furnace tube
containing pure argon. The tube was heated to 700'C
by an electric furnace. An undoped lithium sample
treated this way showed no additional line broadening.
In the region of overlap with mineral-oil alloying, there
was excellent agreement in measured linewidths (see
Fig. 9).

The purities of the doping metals were 99.95% or
better in all cases, except for Hg, which was 99.9%pure.
Good agreement was found among magnesium-doped
alloys in which 99.95 or 99.995% Mg was used (see
Fig. 9). The purity of the aluminum was 99.999%.

The alkali-metal and alkali-alloy dispersions were
made in a specially constructed high-speed. stirring
apparatus. The apparatus consisted of a Stir-o-vac"
high-speed stirrer powered by a 10000-rpm motor.
The bearing of the stirrer had an 0-ring seal for the
center hole of a three-necked Pyrex Qa,sk and a TeQon

' Foote Mineral Co., Exton, Pa."A. D. McKay Co., N. Y."Labline Co., Melrose Park, Ill.
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seal for the stainless-steel stirring rod. The two other
holes in the Rask were used for a thermometer and for
argon Rushing.

The dispersions were made in mineral oil heated to
250'C. Predegassing of the mineral oil enabled it to
withstand the high temperature without noticeable
carburization. The heat was supplied by an electric
heating mantle on the bottom of the Rask. The dis-
persing was done under a 99.999% argon atmosphere.
The materials for a typical dispersion consisted of 100
cc of mineral oil, 10 cc of alkali metal or alloy, and
about 0.35 cc of oleic acid. The latter served the purpose
of preventing coagulation, as suggested by Schumacher
and Vehse 21

The procedure is to heat the mixture to 250'C, turn
on the stirrer for 10 min, and then cool rapidly to room
temperature by removing the mantle and directing
forced cool air on the Rask with the stirrer still oper-
ating. The dispersion is concentrated to a filling factor
of almost 100'%% by centrifuging. Molten paraffin is
then added to reduce the filling factor to about 50'Po.
The hot dispersion is allowed to solidify in a 4-mm Pyrex
tube, which is then broken off to a length of 1 cm. The
ends of the sample tube are sealed with pure paraffin.

There were two reasons for doing molten-state mea-
surements. The first was to investigate possible experi-
mental effects regarding the anomalous drop in the
spin-Rip cross sections at Sn and Pb. The second was to
study a sharp decrease in linewidth noticed in certain
samples upon remeasurement several weeks after
fabrication. The systems that showed the most deterio-
ration were LiSn and LiPb. The aged linewidths were
about 1 G, even though the initial linewidths ranged
from 20 to 86 G. LiAg, LiAu, EaCd, EaSn, and EuTl
all showed a decrease of linewidth of less than a factor
of —,'. The remainder of the alloy systems exhibited
practically no change in linewidth with aging.

To accomplish these measurements, the EPR cavity
was modified so that it could be resistance-heated to a
temperature of 250'C. The samples consisted of the
dispersed alloy particles completely sealed in glass
tubes. The samples were supported in the cavity by a
quartz tube.

Heating the samples into the molten state caused the
original linewidths to reappear, within experimental

TABLE I. Relevant physical properties of lithium and sodium
(T=300'K).

C. Molten-State Measurements

The usual procedure was to measure the CESR of a
sample within a few hours of preparation and certainly
no later than one day after. The measurements made at
77'K agreed with those made at 300'K when the
temperature-broadening eBect was taken into account.

The molten-state measurements were performed on
several ZiSn and L~Pb alloys. In these experiments
Kevin Cornell assisted. He has subsequently extended.
them to study impurities oddly soluble in the molten
host.

Lattice type
Lattice constant a (A)
Wigner-Seits radius r p (A)

(a.u.).
mb/mp'
pq(F~) (erg ' cm ')
mg/mp'
p&(Ep) (erg ' cm ')
&p (cm ')
Conductivity 0 (sec ')
Skin depth S at f=9X10' cps (p)
Spin penetration dept& &s (p)
Mean free path A (A)
Fermi velocity vs (cm/sec)

L1

bcc
3.50
1.72
0.579
1.32
1.22 X10'4
2.0
1.87X10'4
4.67X ip»

X10iz
1.55

17
iip

1.31X j.08

Na

bcc
4.28
2.10
0.482
1.00
7.55X10"
1.4
1.06X 1034
2.55X10»

ipiz
1.10

11
350

1.07X10'
"R.T. Schumacher and %. E. Vehse, J. Phyz. &bern. Solid@

24, 29/ (1963). .+ F. S. Ham, Phys. Rev. 128, 82 (1962); 128, 2524 (1962).
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error. For example, for a I.iSn alloy, the initial line-
width was 26 G, the aged AB was 3 G, the molten state
DB was 31 G, and the linewidth of the freshly cooled
sample was 29 G. Similar results were obtained for two
I.iPb samples.

We thus conclude that our method of sample prepa-
ration quenches in a nonequilibrium concentration of
impurities for the alloy systems mentioned above.
Aging of the samples allows precipitation of the im-
purities or perhaps formation of a second phase. How-
ever, since a linear AB-versus-c relation was obtained
over all the experimental range for all alloys that
deteriorated, except LiSn and EuSn, and since for these
two alloys the initial slope could be determined repro-
ducibly, we believe that the cross sections for our alloys
represent true random solid solutions.
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D. Line Shape

Dyson" has calculated the paramagnetic contribution
to the surface impedance of a metallic sample in the
neighborhood of CESR. Three simplifying assumptions
were made: (a) The conduction electrons were taken

I
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Fro. 3. Dyson line-shape parameter A/8 for the thick-slab case
as a function of (TD/T2)'~'. The solid line was obtained in the
present work, while the dashed line was obtained by Feher and
Klp.

'~ F. J. Dyson, Phys. Rev.~98,~349 (1955); see also Feher and
Kip (Ref. 3).

FIG. 4. Dyson line-shape parameter yhIIT2 for the thick-slab
case as a function of (Tn/Tm)'~'. The solid line was obtained in
the present work, while the dashed line was obtained by Feher
and Kip.

to be an isotropic gas of noninteracting electrons col-
liding with impurities and moving under the influence
of applied electric and magnetic fields; (b) the applied
magnetic field Hs was assumed normal to the surface
of the sample, taken to be a Qat metal plate; and
(c) normal skin-eGect conditions prevail.

Because our particle sizes were not in Dyson's
"thick-slab" regime (particle size))skin depth h), a
comparison between theory and experiment required
the knowledge of the exact particle distributions of the
Li-alloy and Na-alloy dispersions. We measured the
distributions for a typical pure-Li and a pure-Na dis-
persion. For both dispersions, the distributions were
approximately Gaussian and the particles appeared
spherical. Let D be the average particle diameter; cr,

the rms width of the distribution; and 8, the skin depth
of the pure metal at 300'K and 9 Gc/sec. For the Li
dispersion, D=25 p, o.=11 p, and 25=3.1 p. For the
Na dispersion, D= 7.8 p, , 0-=4.2 p, and 26= 2.2 p.

A computer program was written to evaluate Dyson's
general expression for the surface impedance LEqs.
(71) and (77) of his paper). We have taken Dyson's
parameter X (defined as fl/3, where II is the thickness of
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DYSON "THICK SLAB" g SHIFT

IO—
I

8—

no measurements of 8H."Figure 2 shows experimental
and theoretical line-shape derivatives for a LiMg alloy
having a concentration of 1.3% Mg, AH=26 6, and
A/8=9. 2. Figure 2 also illustrates the meaning of the
parameters 3,8, and yAHT2. The only adjustment is in

the amplitude normalization. The agreement is ex-

cellent, except in the tails. The parameter R is defined

as
R = (TD/Ts)'i', (39)

I.O

.8

.6
~bl

I- 4

.2—

where 1"D is the time necessary for a Fermi electron to
diffuse a distance equal to the skin depth. The formula
for T~ is

Tg) =38'/2s ph. , (4o)

where vg is the Fermi velocity and A is the mean free
path. The spin diffusion depth 8, is deined as the
distance a Fermi spin diBuses before its spin is Ripped:
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= 2.5x IO SEC
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DYSON DIST RI BUT ION

GF X's, X& I,
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I'zG. 5. Dyson line-shape parameter y8IIT2 for the thick-slab
case as a function of (To/T~)'~'. The solid line was obtained in
the present work, while the dashed line was obtained by I'cher
and Kip.

the plate) to be D/28, where D is a given particle
diameter. Only the resonant part of the surface im-

pedance was retained. The program averaged the Dyson
line shape over the measured particle distribution.
Since D is generally much larger than 8, the distribution
was weighted by D', which accounts for the fact that a
bigger particle produces a larger signal than a smaller

one. The computer program calculated the derivative
of the power absorption, which is proportional to the
real part of the surface impedance. We also calculated
the three fundamental line-shape parameters A/8,
phHT2, and pbHT2. p is the electron magnetogyric
ratio. On the first derivative line shape, A is the ampli-
tude of the low-field peak, while 8 is the amplitude of
the high-Geld peak. A/8 is called the asymmetry ratio,
while bH is the distance to the right from the low-field

3 peak of the exact resonance position. The linewidth
DH and peak shift 8H are multiplied by pT'2 to produce
a dimensionless quantity.

We measured 2/8 and DH for each sample but made

oJ

~CI

.I

0 2 4 6 8 IO

I'.

I2 l4 l6

A/e

I I I

18 20

FIG. 6. Experimental and theoretical asymmetry ratios for
lithium-base alloys. The ordinate is Dyson s parameter R, while
the abscissa is A/B. The solid curve is for the measured lithium
particle distribution, while the dashed curve is the thick-slab
theory To as given by Eq. (40).

2' Measurements of BII result in values of the impurity-induced
g shift. The erst such measuremerits have been reported by Hahn
and Enderby (Ref. j.2).
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Table I gives a summary of some useful physical
properties of lithium and sodium. In the table, mq/mo

is the band effective-mass ratio and pq(Z~) is the
density of states at Ep derived from the value of m~.

These are the quantities we have used in calculating
T~. For reference, in Table I we also give values for the
phonon-enhanced thermal effective-mass ratio (ning/mo)

and for the thermal density of states p&(Zz). In addition,
we give the number density of electrons Eo and the
Fermi wave vector kp.

As one test of our line-shape program, the three
line-shape parameters for the thick-slab limit (X))1)
were calculated as a function of E so that comparison
could be made with the Feher and Kip' graphical
evaluation of Dyson's equations. This comparison is
shown in Figs. 3—5. There is excellent agreement for
A/8, but exact quantitative agreement is lacking for
y~HT'2 and 78HT2. We believe our computer evaluation
to be more accurate than the original graphical
evaluation.

Figures 6 and 7 show the comparison between the
measured asymmetry ratios A/8 for lithium-base and
sodium-base alloys, respectively, and the predictions
of Dyson's theory. Figure 6 also shows a comparison
with the thick-slab theory. One can draw a number of
conclusions. The first is that the large scatter in the
experimental asymmetry values indicates a sensitivity

I.O
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.6 LITHIUM WEIG

LINESHAPE
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I
cv

+a .08—
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I.OO I. IO I.20

Xh, HT2

Fro. 8. R versus yhIIT2 for the lithium particle distribution.

to the details of sample preparation. For a given AH,
the scatter in A/8 is much larger than that in AH
itself. The theory is in general agreement with the data,
although the lithium-alloy asymmetries consistently
lie below the Dyson theory, and even lie below the
minimum predicted value of 2.7.

Figure 8 shows the relationship between ~H and T2
as a function of E. for the lithium particle distribution.
The behavior for the sodium particle distribution is
quite similar. From Figs. 6 and 7 we see that the values
of R ranged from 0.15 to 0.8. The relation between hH
and T2 is seen to range between y~HT~=1.000 and
yhHT2 ——1.175. For consistency and convenience, all
calculations in this paper use the conversion

yhHT2 ——1.100.

This is in error by &10% at most, which is approxi-
mately the same as the error in measuring AH.

A/B

I

Io I4

FIG. 7. Experimental and theoretical asymmetry ratios for
sodium-base alloys. The ordinate is Dyson's parameter R, while
the abscissa is A//B. The solid curve is for the measured sodium
particle distribution. For best fit T~ was chosen larger than that
given by Eq. (40) (TD=4.9&&10 " sec). This was attributed to
the presence of impurities in the sodium.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Relation between o and BcLH/Bc

In the following paragraph we relate the broadening
factor BAH/Bc to the spin-flip scattering cross section
0.. Only electrons near the Fermi surface can change
their spin state. Let us introduce the concept of spin
mean free path l„which is the length of path traveled
by a conduction electron before its spin state is reversed
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FIG. 12. Dependence of the CESR line-
width AH on concentration c for I.iSn
alloys.
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mentally the microscopic nature of this saturation.
All we can say is that in these systems one has a random
solution solubility limit, probably due to precipitation
of the impurity atoms or to formation of a second
phase. For the impurities with the highest Z, we
observe that the CESR linewidth is sensitive to con-
centrations of impurity as low as 1 atom in 10' (e.g.,
1VaT1 alloys). On the other hand, for the IiMg alloys,
concentration as large as 10%%u~ failed to produce no-
ticeable nonlinearity between AII and c.

Tables II and III summarize the experimental
results in terms of the broadening factors BB,II/Bc for
the lithium-base and sodium-base alloys, respectively.
For most alloy systems AH versus c is linear, so that
the broadening factor is simply the slope of the line.
Where saturation occurred, the broadening factor was
taken to be the initial slope of the DH-versus-c plot.
The errors are estimated from the scatter in the data.

Tables II and III also list several elements found to be
insoluble in lithium and sodium.

The broadening factors cover a range of 6ve orders
of magnitude. From Eq. (45) we And that the spin-fhp
cross sections range from approximately 10 " cm' for
Mg in Li to 10 "cm' for Hg in I i or Na. Since 10 "
cm' is roughly the same as the unitarity limit for spin-
Qip scattering (approximately 5&&10 "cm' for Li and
Na), the spin-fhp events are highly probable when a
Fermi electron collides with a Hg impurity atom, but
they only have a probability of about 10 ' when a
collision occurs with a Mg impurity atom. This large
range of magnitude is related to the large variation in
spin-orbit splitting of free atoms.

The valence dependence of the experimental cross
sections in the gold and silver rows is shown in Figs.
17—21. The cross sections have a nonmonotonic valence
dependence; they generally increase as the valence
difference increases. But there is a consistent leveling
off and then decrease for valence differences of +2
and +3. This behavior is in sharp contrast to the
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FIG. 13. Dependence of the CESR linewidth AH on
concentration c for LiPt alloys.

FIG. 14. Dependence of the CESR linewidth AH on
concentration c for I,iTl alloys.
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F&G. 17. Spin-Rip cross section in lithium: silver-row impurities.

momentum scattering cross section of nontransition-
metal impurities, which is proportional to the residual
resistivity per impurity atom. This cross section varies
by Z„' (Linde's rule), where Z, is the valence difference
between the impurity atom and the host, for impurities
with Z, as large as +4 dissolved in the noble metals. "

Linde's rule is obeyed by the spin-Qip cross sections
for small positive (+1 and +2) valence differences.
However, there are two observed departures. One is
the leveling oQ and decrease in O.,p' f$'p for Z, equal
to +2 and +3. The other departure relates to the
cross sections of Pd and Pt. I.inde's rule would predict
these cross sections to be approximately the same as
those for Cd and Hg, respectively. However, the
observed cross sections are smaller than those for Ag
and Au, respectively.

C. Comparison of Monovalent-Impurity
Results with Theory

In order to compare the experimental cross sections
with theory, the overlap integrals a„& between plane

waves and ml core states were calculated numerically
using zoRIRAx coding on an IBM 7094 computer. The
Hartree-Fock-Slater (HFS) wave functions of Herman
and Skillman" were used for the core states. The con-
tributions from all p and d core orbitals were examined
for a number of cases, and it was found that the largest
contribution (better than 95%) to (Vrs)F comes from
overlap with the p orbital immediately below the
valence state of the impurity. Simpson's rule, modi6ed
for unequal intervals, was used to compute the overlap
integrals a„„between plane waves and the HFS core
functions. The wave-function intervals used were those
in the Herman-Skillman tabulation. Table IV shows
the spin-orbit splittings h„t, for p and d states just
below the valence states. These splittings were obtained
from x-ray spectra tables.

For p and d core states, one obtains the coupling
constants X using the relations

and 'A„g ——53„g.

For a given ss, the overlap integrals with p and d
orbitals are about the same, but since the splittings

60
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TAsz.z III. Experimental values of the broadening factor for
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served. IS means initial slope; saturation observed,
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FIG. 16. Dependence of the CESR linewidth ~II on
concentration c for EaPb alloys.

"J. M. Ziman, Electrons old Phonorls (Clarendon Press,
Oxford, 1962), p. 340.

2 F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc., Englewood Cliffs, N. J., 1963).
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FIG. 19. Spin-Rip cross section in sodium: silver-row impurities.

FIG. 18. Spin-Qip cross section in lithium: gold-row impurities.

are much larger for the P states, they have the major
contribution to the matrix elements. We have, in fact,
neglected all contributions except those from the p
states in the calculations presented in this paper.

In Table V' we give the comparison between the
experimental and theoretical a's for monovalent im-
purities in lithium and sodium. The OPW cross sections
agree with experiment within a factor of 2.2 despite
the fact that the experimental r's cover a range of 20.
These data were the only data obtained on monovalent
impurities, since we found Cu to be insoluble in Li,
and Ag to be insoluble in Na. The insolubility was
established by looking for the line-broadening effect.
on the CESR of "alloys" having nominal concen-

D. Comparison of Nonmonovalent-Impurity
Results with Theory

Equation (38) was numerically integrated by com-
puter, using Milne's method. "The starting values for
the numerical integration were obtained by a power-
series solution near r=0. The screening parameter 0.

was determined in the following manner: For each
value of Z„ the s-, p-, and d-wave phase shifts t)o, gt,
and g2 were computed for several values of n. The
optimum value of n was that for which qo, q1, and g2
satisfied the Friedel sum rule'7

2
Z„=—Q (2l+1)g(. (46)

trations up to approximately 1 at.% (see Tables II
and III).

TABLE IV. Core-state spin-orbit splittings &~&.'

Element

For Z„=O, the solution to Eq. (38) is just rj~(k&r).
At large distances, r))o, ', this function varies sinus-

Mg (3s')
Al (3s'3p)

Cu (4s)
Zu (4s')
Ga (4s'4p)

Pd (Ss')
Ag (Ss)
Cd (Ss')
In (Ss'Sp)
Su (Ss'Sp')

Pt (6s')
Au (6s)
Hg (6s2)

Tl (6s'6p)
Pb (6s'6p')

0.18 (2p)
0.40 (2p)

2.8 (3p)
2.5 (3p)
4.0 (3p)

6.1 (4p)
7.0 (4p)
7.9 (4p)

(4p)
10.2 (4p)

13.6 (Sp)
(Sp)
(sp)

as.4 (sp)
24.3 (sp)

0.25 (3d)
0.34 (3d)
0.40 (3d)

0.55 (4d)
0.70 (4d)
0.70 (4d)
0.55 (4d)

1.52 (Sd)
1.86 (Sd')

2.20 (5d)
2.60 (Sd)

5.0
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Au

Pb

a I andolt-Bornstein, Zahlere erte 24nd Eunktionen (Springer-Verlag,
Berlin, 1950), Vol. I, Part 1; A, E. Sandstrom, EncycloPedia of Physics
(Springer-Verlag, Berlin, 1957), Vol. 30.
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"Because of an error, the values of 0.g„„for the impurities
. reported in the preliminary account of this work in Ref. 1 were
incorrect by a small numerical factor. The corrected values are
given in this paper.

FIG. 20. Spin-Qip cross section in sodium: gold-row impurities.

~8 K. S. Kunz, Xumencal Analysis (McGraw-Hill Book Co.,
New York, 1957), p. 202.
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l.5 TABLE VI. Optimum screening parameters and phase shifts
for a screened Coulomb potential in /ithiure.

I.O

COo
~ 05
1

o

OO

Pt
I

Au
2

Hg

I; I-
CO
O

Olz
b

Bi

4 5
Pb Bi

Valence difference Z„ 0 1 2 3

Pci
Pt

Mg Al
Zn Ga

Ag Cd In Sn
Au Hg Tl Pb

Phase shifts
gQ

—0.688 0 1.245 2.453 3.241
gl —0.198 0 0.093 0.195 0.434
'I2 —0.057 0 0.012 0.020 0,035
Optimum screening parameter (units of kI =0.579 a.u.)
n(kr) 1.22 ~ 1.90 1.99 1.95

o.TF=2.11kJ = 1.22 a.u.

FIG. 21. Resonance-theory Gt to gold-row impurities spin-Rip
cross section in lithium (left axis) and sodium (right axis). After
Ferrell and Prange (Ref. 32).

TABLE V. Experimental and theoretical spin-Qip scattering cross
sections for monovalent impurities in lithium and sodium.

Alloy

LiAg
Li Au
EaAu

trexpt (cmt)

(3.5~0,3) X10 "
(6.8~1.0) X 10-»
(2.9~0.3) X 10-»

trtteor (cm )

3.0X10 "
3.6X10-»
1.3X10 "

oidally. The phase shifts were determined by com-
paring the asymptotic solution of Eq. (38) for Z„NO
with the asymptotic form of rj &(k&r). The step lengths
in the integration were chosen sufBciently small, so
that a halving of the step length produced negligible
change in the phase shift.

Tables VI and VII summarize the results of these
calculations. The optimum screening parameters and
the phase shifts for a screened Coulomb potential in
lithium and sodium are given. Except for Z, = —1, the
values of n(kr) do not depend strongly on Z„and are
close to the values of oTF given by the Thomas-Fermi-
Mott screening approximation. The screened Coulomb
functions tt „were normalized at large distances to the
same amplitude as a plane wave, since a scattering
potential of finite range can produce only a phase shift
at large distances. The phase shifts were measured at
her) 15. The e6ect of screening, in our simple model,
is to produce larger overlap integrals with core func-
tions than a plane wave for attractive potentials
(Z,)0), and smaller overlap integrals for repulsive
potentials (Z, (0).

The experimental and theoretical spin-Aip cross
sections for nonmonovalent impurities in I.i and Na
are shown in Table VIII. For Pd and Pt (which present
repulsive potentials) and the group-IB or -IIB elements,
the simple OP% procedure gives excellent account of
the results over a range of 10' in experimental values.
This agreement demonstrates convincingly that (a) the
mechanism of spin Qip is impurity-induced spin-orbit
coupling and (b) that a valence effect of the type dis-
cussed is operative. However, the large discrepancy
with the group-IVA elements and the similar though

less marked effect for the group-IIIA elements indi-
cates a breakdown of our simple theory for large valence
differences.

Table IX shows a comparison between a portion of
our experimental results and the only data available
from other workers at this time. There is satisfactory
agreement with the Hahn-Enderby" da.ta, but a factor
of 2 discrepancy with the Garif'ianov-Starikov" result.

E. Discussion

TABLE VII. Optimum screening parameters and phase shifts
for a screened Coulomb potential in sodium.

Valence difference Z,

Impurities Cd
Au Hg

In
Tl

Sn
Pb

Phase shifts
QQ 0 1.342 2.605 3.448
gl 0 0.067 0.157 0.380
'l2 0 0.007 0.013 0.024
Optimum screening parameter (units of kg=0.482 a.u.)
0. (kp) 2.26 2.29 2.22

nTF =1.884 =0.905 a.u.

"C. R. Vassal, J. Phys. Chem. Solids 7, 90 (1958).

We have seen that the effect of nonmagnetic im-
purities on the CESR in lithium and sodium is appre-
ciable. The strength of the interaction is conveniently
discussed in terms of the spin-Qip scattering cross
section of the impurities for conduction electrons. The
magnitude of this cross section varies roughly as X',
where P is the effective spin-orbit coupling constant of
the impurity atom when dissolved in the host metal.
The preponderance of the data for low-valence im-
purities is adequately explained by an elementary
theory in which the spin-orbit interaction is taken as a
perturbation, and screening is taken into account in the
Thomas-Fermi approximation. However, for the high-
valence impurities (Z=3,4) in the silver and gold
rows, an anomalous resonantlike behavior in the cross
section is found which cannot be explained by our
theory.

Recently, VasseP' found that selenium impurities in
copper produced a small value of the residual re-
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sistivity than arsenic. Coqblin et al. studied the
resistivity and thermoelectric power of silver-base
alloys containing selenium and krypton. When com-
bined with previous data, the valence dependence of
the resistivity of copper-row (Cu-Kr) impurities in
silver has a resonant shape with a peak at arsenic. The
thermoelectric power behaves anomalously, going to
zero between arsenic and selenium. FriedeP' has inter-
preted the nonmonotonic behavior in resistance as due
to a scattering resonance with a virtual bound p state.

We have pointed out' that the spin-Qip scattering
cross section is best discussed in terms of phase shifts
in a j,/ representation, where j is the total angular
momentum (spin plus orbit of an individual electron)
and thus equal to either t+~~or t ——,'. Thus, if only

p waves are important, then

o.„„f&;,= (8n/3hy') sin'(gp/p' gg/p ), (47)

where g,' is the phase shift of the j,/ partial wave. For
0 p' -f$'p to go through a maximum, ' the sine must
either go to unity (corresponding to the unitarity limit
for o.,y' fj'p) or the argument of the sine must go
through a maximum. ' Since none of the cross sections
achieves the unitarity limit, there must be a maximum
in the argument. We have published results' of a pro-
cedure different from that described in this paper for
computing the phase shifts. We give a more detailed
account in paper II of this series. It indeed shows a
maximum in the argument of the sine, but the maxi-
mum occurs for the s'p' atomic configuration. This
corresponds, in fact, to Friedel's proposap' to account
for residual resistivity.

TABLE VIII. Experimental and theoretical spin-Rip scattering
cross sections for impurities having a valence diGerence V—1
with respect to lithium and sodium.

TABLE IX. Comparison between spin-Rip cross sections measured
in this work and those obtained by other workers.

Alloy

NaHg
LiMg
LiZn
LiAg
LiCa

This work

(9.6+1.5) X1O-»
(6.4~0.5) X10-"
(6.8~0.6) X10 's

(3.5+0.3) X10 xs

Other work

(1.7+0.2) X10 "'
(5 2&0 1)X10—2«b

(6 2+0 1)X10—iP b

(3.0+0.1)X10 "
1.2X10 "b

a Garif'ianov and Starikov (Ref. 12).
b Hahn and Enderby (Ref. 12).

It is possible to rewrite Kq. (42) in a useful manner.
For free atoms, the states j=—,', l=1 and j=» l=i
are split by the spin-orbit energy AE„. Thus, since
the phase shifts q are functions of the energy of the
electron, one can approximate the argument of the
sine by

r/p/g' r/g/,
' A—E,.(Br——/'/BE) E,. (48)

Thus, we are in essence looking for a peak in the
derivative of phase shift with energy.

Ferrell and Prange" (FP) have proposed the existence
of a p-wave resonance (similar to those observed by
Vassel and by Coqblin et at.) to explain the peak ob-
served in 0 p flip FP s explanation is semiquantitative,
since it does not attempt to calculate the resonant be-
havior from first principles. It does give a very simple
picture and provides a simple formula with only two
adjustable parameters to describe all the data in one row
of the periodic table for a given host. FP present a
simple argument based on Friedel's sum rule and on the
fact that the spin-Qip cross section is proportional to the
fourth power of the p component of the conduction
wave function near the nucleus [see Kqs. (11) and
(12)j.FP arrive at the following relation:

Alloy p;„,t (em') p gg.„(cm') 0'gpj~ fupcE sill ply(Z Zp) y (49)

LiMg
LiAl
LiZn
LiGa
LiPd
LiCd
LiIn
LiSn
LiPt
LiHg
LiTI
LiPb
Nacd
NaIn
NaSn
NaHg
NaTl
NaPb

+1
+2
+1
+2
—1

+1
+2
+3
—1
+1
+2
+3
+1
+2
+3
+1
+2
+3

(6.4&0.5) X10»
(1.6&1.0) X10 ~

(68&0.6)X10»
(1.5&0.1)X10 "
(2.0&0.3) X10 ~'

('/. 5&0.2) X10 "
(1.0+0.1)X10 "
(2 2+03)X10 xs

(2.5&0.4) X10 "
(1.1+0.1)X10 "
(8.9+0.9)X10 "
(1.6&0.3) X10 "
(6.6~0.8) X10-«8

(2.3~0.3) X10 «'

(2.8~0.6) X10-
(9.6+1.5) X10 "
(2.7+0.3) X10-«6

(2 0~0.3) X10 "

0,92X10 "
4.9 X10"
0.98X10 "
5.2 X10 «9

0.78X10-»
6.2 X10-»
1.7 X10-»
1.3 X10-«6

0.65X10»
0.85X10-«6
2.2 X10-«6

098X10 «~

2.5 X10 «8

075X10 «~

0.82X10 '6

X10 «v

0.97X10 "
7.1 X10 "

where

Zp ——2gp/x+ (10/n-) gp+1. (50)

Using Kq. (49), it is possible to obtain a remarkably
good two-parameter 6t to the data, as shown in Fig.
21. Using Kq. (47) together with the relation"

tangyyy/p =I'/2(E —Eg)

which holds under the assumption that both p waves
are in resonance, FP arrive at an estimate of the width
I' of the resonance,

F=3.6~0.6 eV.

If the scattering were rot described by a simple reso-
nance, the peak might correspond simply to a point
of rapid change of the p-wave phase shifts Lsee Kq.
(48)j without their having a large value.

'0$. Coqblin, J. Delaplace, V. Levy, A. A. Gomes, and J.
Hillairet, J. Phys. (Paris) 28, 75 (1967)."J.Friedel, Trans. AIME 230, 616 (1964).

"R.A. Ferrell and R. E. Prange, Phys. Rev. Letters 17, 163
(1966).

O' A. Messiah, Quantum Mechanics (John Wiley 8z Sons, Inc.,
New York, 1966), p. 398.
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In the work of Vassel and of Coqblin et el. , the peak
in the resistivity occurs near a valence configuration
of s'p' (arsenic). Odle and Flynn, '4 in work on the
Knight shifts in liquid alloys of copper with copper-row
solutes, have shown that the angular decomposition
of the screening cloud (as deduced from the Friedel
sum rule) for an impurity atom dissolved in a metal
should be approximately the same as the screening in
the free impurity atom (atomic screening hypothesis).
In the metal, the quantity of screening by angular
momentum l is given by

Zi ——(2/pr) (2t+1)r)i. (52)

This hypothesis is reasonable because the screening
charge lies+primarily within the atomic cell of the
impurity atom. In this hypothesis, both go and g~ will

be small for Z=1, and po will increase steadily with Z
until it reaches —,'x and then remain fairly constant
(see Paper II). Similarly, r)& is small for small Z, but
increases rapidly when qo becomes constant, passing
through 2x when Z=5. Both here and in Paper II,
models incorporating atomiclike screening give results
that agree well with experiment for small Z. On the
basis of this and other results, '4" we conclude that
for impurities with small Z in monovalent metals the
atomic screening hypothesis is substantially correct.

There are several difhculties with the FP resonance
hypothesis. For example, when Au-row impurities are
placed in Li (see Fig. 21):

Zp= —1, r)p+Sr)s= —m, pi=-s'(Z+1)s . (53)

But the fact that the go and q2 must remain constant
as Z varies is in disagreement with the atomic screening
hypothesis. Another difIiculty occurs because FP's
hypothesis requires p&= —,'x for valence differences as
small as +1 (configuration s') or +2 (configuration
s'p). According to the atomic screening hypothesis, a
p-wave phase shift of ss implies screening by approxi-
mately 3 p electrons. Our calculations presented in
Paper II con6rm these views. If one accepts the FP
description, the burden of understanding is then shifted
to answering the question of where this extra p-type
screening arises.

There appear to be two possible mechanisms that
might give rise to p screening of the required magnitude.
The erst involves a repopulation effect in which the
p-wave density is increased at the expense of the s
wave and perhaps d wave. In this mechanism the core
and s states Goat up to the Fermi surface, and thus one
obtains a nonatomic configuration of screening for the
core and s states. An example of this effect for Cu-row
impurities in Al has recently been discussed by Rigney
and Flynn. " From Knight-shift data, these authors
estimate that 0.45 electron is missing from the d shell
of Ga and Ge when dissolved in aluminum. Rigney and
Flynn also interpret Knight-shift data for Hg, Tl, and

"R.L. Odle and C. P. Flynn, Phil. Mag. 13, 699 (1966).» D. A. Rigney and C. P. Flynn, Phil. Mag. 15, 1213 (1967).

Pb in liquid Na. "They find 2.5 to 3 p electrons neces-
sary, whereas FP's hypothesis of a p-wave resonance
requires 3.8 p electrons. The two numbers are reason-
ably close. However, as indicated above, the case of
Pb in Li requires screening by 5 p electrons, which
seems unlikely but not impossible, since Li and Pb
come from different regions of the periodic table and
have vastly different core structures.

The second mechanism leading to increased p-wave
screening is the charging effect discussed theoretically
by Stern. " He shows that the constituents of alloys
in general have a different number of tight-binding
approximation (TBA) electrons than the pure metals.
The charging effect depends on the composition of the
alloy and the ratio e»'/A, where e»' is the magnitude
of the difference of the atomic energies of the two
constituents of the alloy and 6 is the half-width of
the band. For alkali-metal solvents and heavy normal-
metal solutes, e»' can be quite large, so that we expect
a large charging effect. Such charging means that the
electronic density on neighboring sites is decreased,
which is equivalent to making the phase shifts with
l& 2 negative. Since the resulting electronic distribution
due to the charging effect must conform to Friedel's
sum rule, any charge transfer can only involve re-
population of the s, p, d, , partial waves. That such
charge transfer occurs is manifested in the large number
of ordered intermetallic compounds formed by lithium
and sodium with heavy metals such as Hg and Pb.
Experimental evidence for the charging effect in Au-Ag
alloys (the Au becomes negatively charged) has become
available from an NMR study by Narath. ' He finds
that the strength of the s-wave density at the Ag
nucleus decreases by 30% from pure Ag to 5% Ag in
Au.

It is possible that both of the two mechanisms dis-
cussed above are operative and can account for the
anomalous nonmonotonic behavior of 0;„ fi;„. In
Paper II the possibility of a "size effect" is discussed
and found to be of no importance. Further experimental
data and calculations are needed before a complete
understanding of the data is obtained.
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APPENDIX: GENERAL OPW CALCULATION

Let us consider the 6ve d-orbital states, which can
be written

~ q) =sy, s:s) ys, s' —y', 3s' —r'. (A1)

For a plane wave traveling along the s axis, the only
3' M. Hanabusa and N. Bloembergen, J. Phys. Chem. Solids

27, 363 (1966).
'r E. A. Stern, Physics 1, 255 (1965).
s' A. Narath, Phys. Rev. 163, 232 (1967).
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nonvanishing orthogonalization integral is

a„g——(yz (3zs —rs) f(r) le' &~)

The generalization of Eq. (A3) becomes

(A2) (VP)& ——a„~'-', P I (lml X(r)l, llm') I'1/(2l+1)' (A9)

The average of the square of the matrix element is

(V ') ..=-.a-" 2 (v'I l (r)l. l v)
q q/ qfr qfrr

If we quantize m along the x axis, all matrix elements
vanish except for m=nz':

=P [(lmly(r)l, llm) I'm'=X„P gm'. (A10)

Since the expectation value of X(r) is independent of m,

l(lmlX(r)llm) I= l(ill'A(r)lll) l=X &. (A11)(A4)

dQdQ'

(q I
g(r)l

I ~ ) ~ 4~ ~ s~ (A3) 2 (lml ~(r)l, l
lm') (lm'

I a(r)l, l ™)
(4 )'

where c,z is the coefficient relating the d function
I q) m

with the function 3Z' —R'. We can write the rotated
function as

(A5)

where R is the rotation operator, and n, P, y are the
Euler angles. We can, without loss of generality, take
y =0, since we are concerned with the rotated functions
pro (e.g. , Z for a p state and 3Z' —R' for a nr, state). Let
the axes X, Y, and Z (where k is taken along Z) make
Euler angles n, P, 0 with x, y, and z. Thus

Eg~s ——P D„.s'(e, P,O)P~„.

Z m'=2'. (l.') =sl(l+1)(2l+1). (A12)

The 6nal result is
l(l+1)

(Vg') r„,= ~nl ~nl ~

6(2l+1)
(A13)

X„~ is the spin-orbit coupling constant of the et orbital.
Also,

Consider the quantity

(lmlX(r)l, llm') (lm" IX(r)l, llm"')
For p states, l = 1 and

(VP) r„„——rsa„„9,„„', (A14)

X D o'*(n,P,O)D o'(o.',P',0)D ",'*(n',P',0)

dQdQ'
XD -s'(o.,P,O) —. (A6)

(4w)'
Now from Rose" we have

D„o'(a,PO) =LE/(2l+1)$'~'Y& *(P,n). (A7)
Thus,

dQ
D o'* (~,P,O)D " s'(~,P,O)—

4m.

Yi (P,n)Yi *(P,rr)dQ

(v,'),„„=-;„.'z„.'.
In general, we have

l(l+1)
(Vrs), =p a„,'~.p

, & 6(2l+1)

(A15)

(A16)

The appropriate generalization of Eq. (A16) which
takes into account the possibility of configuration
interactions is

which agrees with our previous result I Eq. (32)$. For
d states, 1=2 and

m fn'"
(A8)

2l+1
39 M. E. Rose, Elementary Theory of Angular 3IIoesentum (John

Wiley R Sons, Inc. , New York, 1957), p. 60.

where

X„,,„.,= I (~l
I
l (r)

I
~'l) I. (A18)

l(l+1)
(VP)r = P a„.Pa„PX„(,„P, (A17)

n, n', ) 6(2l+1)


