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I) 1nEg'l '" (3V),
ellnV i V

= —(0.013&0.002) rnm/sec,

which leaves a residual value of —(0.028&0.005)
mm/sec to be accounted for in the isomer-shift dis-

continuity at T ~.

the Debye temperature, we can show from Eqs. (9) and
(10) that the relativistic shift term in Eq. (8) is at least
two orders of magnitude smaller than the isomer-shift
term at these two transitions. So we have for the
expected discontinuity of the shift (in velocity units)

(C/EA) (3EA) = C(z) 1nEA/I) lnV)T'- (3V/V) . (11)

Straight-line-segment fits were made to the data in
Fig. 9 for temperatures 816'C and above. At the n-y
transition, (hE&)„~ was evaluated by subtracting the
values for the n-phase fit at 930'C from the value of the
y-phase Gt at 930'C, giving

(C/EA) (oE~) T
= —(0.041+0.004) rnm/sec.

But if (I) lnEA/I) 1nV)T'" is obtained from Eq. (9) and
llV/V is taken from the volume expansion data of
Basinski et a/. ,

"we obtain

Similarly, for the p-zz transition, (C/Ez) (IlE&)»
= —(0.07&0.02) mIn/sec but

/f) 1nEA) (3V),s
C~

—
~

=+ (0.007&0.001) mm/sec,
(I) lnVI V

which leaves a jump of —(0.08+0.02) mm/sec unex-
plained in (C/Eg) (izEA) Ts, four times as large and of the
same sign as the unexplained part of (C/E~) (SEA)~T.

It is worth noting that the discontinuity in the energy
shift is not only too large but also in the wrong direction
to be explained by Eq. (9) at T». At the n-hcp phase
transition in iron under high pressures, Pipkorn et al."
observe a similar discontinuity in the isomer shift
which is several times too large to be explained by
Eq. (9).They say that the large shift must be related to
a difference in the band structure of the two phases and
cite several mechanisms without attempting to make
any calculations.

It has not been possible in the present experiment to
construct a quantitative theoretical explanation of the
large size of these discontinuities in the isomer shift in
iron at phase changes, nor were any attempts to do this
found in the literature.
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Semiclassical Theory of a High-Intensity Laser*
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This paper extends the calculations of the semiclassical Lamb theory of a Doppler-broadened gas laser
(optical maser) to arbitrary intensities for the case of single-mode operation. The coupled equations of the
classical electromagnetic field and an ensemble of two-level atoms are set up, and a solution is obtained in
the form of a continued fraction. This is used to compute intensity-detuning curves and atomic population
inversion densities as functions of both the velocity and the position in the laser. When the laser is tuned
to resonance, the velocity dependence of the inversion density shows a previously unknown fine structure
consisting of a "bump" in the bottom of the hole. The calculations are compared to results obtained from a
perturbation expansion in powers of the 6eld and exact results known for atoms with zero velocity. The
response of the laser output to a slow modulation and the buildup of oscillations are also discussed.

1. INTRODUCTION

HE semiclassical theory of gas lasers given by
Lamb' ' is capable of explaining, at least qualita-

tively, most observed features of the operation. These
include the detuning dip' and mode competition
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e6ects. ' Extensions of the theory to the cases of Zeeman
lasers' and ring lasers' have been given and pressure
e6ects on the laser performance have been considered. ~

Only laser characteristics which intrinsically depend on
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the quantum-mechanical nature of light, such as
threshold behavior, oscillator linewidth, and photon
statistics, cannot be discussed within the framework of
the semiclassical theory; a quantum-mechanical version'
of the theory is, however, capable of treating these
problems.

One limitation of the treatment in Ref. 1 is that the
calculations are carried out only to third order in the
electromagnetic field. This approximation is sufhcient
to bring in the important phenomenon of saturation but
cannot be expected to have a very large region of
validity. Indeed, it has been found experimentally that
small deviations occur even at rather moderate ampli-
tudes of the laser field. ' lt is then dificult to see whether
the difference between observation and calculation is
due to the truncation of the solution or is inherent in
the formulation of the problem. Consequently, more
general solutions of the semiclassical model of the laser
are needed. Calculations including the fif th-order
terms' become very cumbersome since the complexity
of the expressions increases enormously and it is dif-
Gcult to pursue this path to terms of very high order.

It is the purpose of this paper to consider a method of
calculation which can easily be carried through for
electromagnetic fields of any magnitude and which
converges considerably better than a straightforward
perturbation expansion in powers of the Geld. The result
of the calculation is expressed as a continued fraction. A
strong signal theory for stationary atoms was indicated
in Ref. 1, but it is essential for the treatment of a gas
laser to include atomic motion because some of the most
important characteristics of the laser are related to the
velocity distribution of the atoms. In order to treat
these effects, we employ a Fourier expansion method
similar to one also proposed by Lax."He, however, re-
stricted his discussion to the lowest approximation,
which is equivalent to a solution obtained earlier in
Ref. 1. Our method leads to successive approximations
in a form suitable for numerical computations in spite
of the fact that for moving atoms the ensuing Fourier
series only converge asymptotically.

The Doppler shifts due to atomic motion cause the
laser oscillations to be sustained only by atoms of
velocity in two narrow ranges. This results in an effect
termed "hole burning" by Bennett" and leads to a
qualitative interpretation of the detuning dip. The

' M. Scully, W. E.Lamb, Jr., and M. J. Stephen, in Proceedings
of the Physics of Quantnrn E/ectronics Conference, San Xnan,
Puerto Rico, 1965, edited by P. Kelley, B. Lax, and P. Tan-
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Phys. Rev. 159, 208 (1967); 166, 246 (1968);and (to be published).
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published); I. Appl. Phys. 37, 4487 (1966); P. T. Bolwijn and C.
Th.J. Alkemade, Phys. Letters 2SA, 632 (1967)."K. Uehara and K. Shimoda, Japan J. Appl. Phys. 4, 921
(1965); W. Culshaw, Phys. Rev. 164, 329 (1967)."M. Lax, 1966 Brandeis University Summer Institute in
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holes are given a clear interpretation in the theory of
Ref. 1 and they can be seen distinctly in the computa-
tions of the present paper. An unexpected Gne structure
of the hole is discovered, which cannot be explained in
the approximations of Ref. 1 or by qualitative considera-
tions such as those of Ref. 12.

Our theory can be used to calculate the response of a
laser subjected to a slow modulation' and transients can
also be considered. The recent work by Born" does, in
fact, correspond to the use of our lowest approximation
and the generalization to higher approximations is
straightforward.

The calculations of this paper are restricted to the
single-mode case. Sections 2 and 3 derive the basic
equations of the semiclassical theory in the form used in
the rest of the paper. The method of solution is pre-
sented in Sec. 4 and the lowest approximation is dis-
cussed in Sec. 5. Section 6 outlines the computer
calculations which in the following sections are used to
obtain various quantities of interest in a working laser.
Section 7 discusses the intensity-detuning curves and
their calculation. The Fourier series are discussed in
Sec. 8, where we show that they are only asymptotically
convergent but can be summed numerically to give the
spatial distribution of the atomic population inversion.
Section 9 calculates the Fourier coefficients occurring
in our theory in the form of a perturbation expansion in
powers of the electromagnetic Geld. The atomic in-
version as a function of velocity is discussed in Sec. 10
and the results are compared to the results calculated
from the perturbation expansion. The fine structure of
the hole is also discussed in Sec. 10. Section 11 discusses
adiabatic modulation and transients in the laser. Section
12 contains the conclusions of the present paper regard-
ing the relation between the laser intensity and the
excitation relative to threshold excitation. Appendices
A and B show that the present work contains the known
results for stationary atoms and those obtained by
third-order perturbation theory.

2. ELECTROMAGNETIC FIELD

U (s) =sinE s. (2)

We consider only the situation where one single mode
is undergoing laser oscillations and omit the subscript m.

~' G. K. Born (private communication) (to be published); cf.
also G. K. Born, Appl. Phys. Letters 12, 46 (1968).

According to the theory of Ref. 1, the laser is re-
garded as a one-dimensional resonant cavity of length
L (in the s direction). The electromagnetic field in the
cavity is described classically by Maxwell's equations.
We now summarize the basic results to be used later in
the present paper.

The eigenfrequency for the mth cavity mode is

0 =cE =(cn/L)rt

and the corresponding (unnormalized) eigenfunction is
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The electromagnetic field equations for the case
considered are

with

(rl/rls) E(s,t) = —(cl/pit) 8(s,t),
—(rl/cis)H(s, t) =J(s,i)+(cl/pit)D(s, i),

B(s,t) =IJ,pFX(s, t),
D(s, t) = epE(s, t)+P(s, i),
J(s,t) =~E(s,i),

and the conductivity 0- is introduced phenomenologi-
cally to represent all losses in the system.

We look for solutions of the 6eld equations with the
spatial dependence of the cavity mode

E(s,t) =A(t) sinÃz

and find for A(t) the equation

(d'/dip) A (i)+(o/ep) (d/Ck) A (i)+O'A (/)

(4)

where P(t) is the projection of the polarization P(s, i)
on the oscillating cavity mode:

(6)

The frequency of the laser oscillator is denoted by v

and all terms with a frequency deviating appreciably
from it will be neglected (the "rotating wave approxi-
mation"). The electromagnetic field is assumed to have
the form

3. POLARIZATION OP ATOMS

The model for the active medium is an ensemble of
independent atoms with an upper state u and a lower
state b (see Fig. 1).These are introduced into the cavity
at random times and random positions with a pre-
scribed distribution of velocities. This is presumably a
good description of the complicated pumping mecha-
nism in a gas laser. Collisions are neglected so that the
atom introduced at the position so at the time to with
velocity ~ in the s direction is at a later time t situated
at the position

s=sp+s(t —tp) .

The velocity e may be large enough to take the atom
through several wavelengths of the electromagnetic
field before it decays to lower states with decay rates

and yq for levels a and b, respectively. The atomic
frequency pp=(W, Wb)/—A is close to the cavity fre-
quency 0 and the interaction with the electromagnetic
field induces transitions between the two levels. When
more atoms are found in the upper state u than in the
lower state b (population inversion), the electromagnetic
6eld shows a tendency to increase by absorbing energy
from the atoms. The atomic polarization induced by the
field appears as the driving term in Maxwell's equations
and sustains the oscillations. When the Geld obtained
as a solution of these equations is equal to the GeM

assumed in the calculation of the polarization, the solu-
tion is self-consistent.

The atomic transitions a~b are caused by the
perturbation

A(i) =E(i) cosLv&+p(t)), ~ri V(s, t) = —eE(s,&)

= —s'E(i) sin(E(sp+s(i —tp))j cosvi, (13)where E(t) and y(t) vary only slowly compared
cosvt and sinvt.

The polarization P(i) is split up into a part in phase where s' is the electric dipole matrix element

with the field (7) and a part with a phase difference
of 90' I=ca xb.

P(i) =C(i) cosPvi+&p(t) j+S(i) sinLvt+rp(t)]. (8)

The expressions (7) and (8) are substituted in (5), and
small terms proportional to C, C, S, S, E, j, jE, oE,
and 0-jE are neglected. The last two are small because
we assume the cavity to have small losses, i.e., a large Q
value,

Q = (epv/o)))1.

The working frequency of the laser is always very close
to the cavity frequency 0, so that

LIn a steady state p(t) is a constant which may be set
equal to zero in the rest of the paper without loss of
generality. J

The time development of the elements of the density
matrix p for one atom introduced as described above is

+a

v+0+j (t)=2v. (10)

We equate the coefficients of the sine and cosine terms
separately and 6nd

L +~(i)—fljE(t) = —( /2 o)C(i),

E(&)+( /2Q)E(&) = —( /2 )S(&).

FIG. 1. The two states c and b involved in the laser transition
have the energies W and W&, respectively. The atomic transition
a ~ b is at resonance at the frequency &a= (W —W&)/A and both
levels are allowed to decay to lower states with the rates y, and
p p, respectively.
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(8/Bi) C(s,v, t,t)

dto dso A (so, to)I5(z —zo —v(t —to))

portant quantities S, C, N, and M (all functions of s, v,

f, and t, and also depending on laser parameters such
as E, or —v, y., yb, A, A.b, bi, and 8):

n=a, b

(rt/Bi)S = (oi —v) C—7b—S (z o—E/5)
Xsin[E(s —v(t —t))]N, (36)

(BrBt)C = y—.bC+ (oi v)—S, (37)

(8/Bt)N =A. Ab —PbN— ', (y.——yb)M—+(E/A)
Xsin[E(z —v(t —t))]S, (38)

(8/ 8 t)M =A, +Ab yb—M io (p—yb) —1V (39)

X(&/&t)[pi*(~,so, v, to, t)+pi(~ zo, v, to, t)], (28)

(8/Bi)N(s, v, t,t)

dto dzo A. (so, to)

Xb(s zo v—(t —to))(8—/Bt)[p..(n, z, ovt to)

(oj/Bt) M (s,v, t,i)

dto dso &.(so, to)

The slowly varying excitation rates A and Ab still de-
Pbb(~)zoP) "o~tt)] ~ (29) pend On S V(t t)—and —t but may be eValuated at S and t

Equations (37) and (39) can be integrated immediately
to express C(z,v, t, t) and M(s, v, t, t) in terms of S(z,v, t, t)
and 1V(s,v, t, t), respectively:

a=a, b

X8(z—zo v(t —to))—(oj/oIi)[p (n, so, v, to, i)
C(s,v, t, t) = (oo —v) S(s,v, t, t') exp[ —y.b(t —t')]dt'

+pbb(n, so, v to, t)] . (30)

The terms involving A and Ab come from the initial
conditions (18) and (19) when the derivative with re-
spect to the upper limit of the fo integration is carried
out. The t dependence of the expressions in square
brackets can be found from Eqs. (17) when t is sub-
stituted everywhere for t.

Combining these equations, we obtain

(drdt)("*-")
=~(~ v)(pi+Pi ) 7 b(Pi Pi)+&("~/tt)

Xsin[A(so+ v(t —to))](paa p bb) (31)

M(s, v, t, i) = ——,'(y. —yb) 1V(z,v, t, t')

Xexp[ —y. (t—t')]dt'+(A. ,+Ab)/p

= —-', (y.—yb) N(s, v, t, i—r) exp( —y.br)dr

+(A,+h.b)/y, b. (41)

=(cv —v) S(s, v, t, i r) exp(——y.br)dr, (40)
0

(drdt) (p- —p»)
= —~ (P-—P ) —l(V —7)(p-+P )+ (&&/@)

Xsin[1~(zo+v(t —to))](pi*—») ~ (33)
(8/Bt)S(s, v, t, t)

'rubS(z)vit, t) —(M v) S(z, 'v, t) t —r)

(drdt)(. +.*) These expressions may then be inserted into Eqs. (36)
= —p, b(pi+pi*)+i(o~ —i)(p&*—pi), (32) and (38) to yield a pair of integrodiGerential equations"

which couple only N(s, v, t, t) and S(s,v, t, t) to each other:

(d/dt) (P-+P bb)

"tab(paa+pbb) z'(Va Vb)(pea pbb) q (34) Xexp (—y, br) dr —(Z"8/A) sin[E(s —v(t —t))]
where the arguments (n, zo, v, to, t) of the elements of the
density matrix p have been omitted. When Eqs. (31)—
(34) are inserted into the equations for S, C, N, and M
[(27)—(30)], we find in all integrals containing the sine
function the combination

(8/Bt)N(s, v, t, t)

~..N( . .t,t)+.&.. ~.)-XN(z, v, t,t), (42)

N(s, v, t, i—r)

sin[E(so+v(t —to))]8(z—zo —v(t —to))
=sin[E(s —v(t —«))]&(s—zo —v(t —to)), (35)

so that the sine function may be replaced by

sin[E'(z —v(t —t))]
and taken outside the so and to integrations. The result
is a set of differential equations for the physically im-

Xexp( —y, br)dr+(E/t'b) sin[E'(s —v(t —t))]
XS(z,v, t, t)+(yb/y. b)A. —(y./y. b)Ab. (43)

The variables (z,v, t) are introduced as parameters into
the solution via their occurrence in the sine function.

~4 If co= v and 7 =p&, the equations become ordinary di6eren-
tial equations and an analytical solution is possible. Details of this
calculation will be published later.
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L

S(t t) =—— ds sinKs
L

de W(e)S(s,v, t,t), (44)

Since the time variables here occur only as the differ-
ence t t,—the solution 1V(s,v, t, t) and S(s,n, t, t) of (42)
and (43) will depend only on (s, n, t —t). The functions
C(s,e, t, t) and M(s, w, t, t) are obtained from Eqs. (40) and
(41) and thus also depend on (s, e, t —t). The derivation
of Eqs. (42) and (43) given here makes use of the t
concept introduced by Sargent, Lamb, and Fork."

The projection onto the cavity mode (6) and the
velocity average (21) introduces two new functions:

the average excitation density

X= (h../y. )—(A b/y b),

and the dimensionless Lorentzian

z(te —v) =y, b [(te—v) +y b ]

(55)

(56)

4. SOLUTION WITH ATOMIC MOTION

have been introduced. The average excitation density
E is the value that 1V(s) would have if the electro-
magnetic field were equal to zero. The solution given
by Eqs. (52) and (53) is also obtained in Ref. 1, Sec. 16.

L

C(t —t) =— ds sinKs
L

ds W(e) C(s, e, t,t), (45)

Equations (42) and (43) are simple to solve when
atomic motion is neglected, as we saw in Sec. 3. For
moving atoms the solution is much more complicated.
The presence of the t-dependent factor

which, as explicitly indicated, depend on the time
interval t t. Co—mbining Eqs. (6) and (22) with (44)
and (45), we obtain

E(t) =C(0) cosvt+S(0) sinvt. (46)

Using Eq. (40), we 6nd that the functions (44) and (45)
obey the relation

C(t —t) = (te —v) S(t—t+r) exP( —yabr)dr. (47)

Equations (11) and (12) lead to conditions for steady-
state operation when we set E=O, j =0 and C(0) is
expressed in terms of S(t) using (47):

z= —(g/. p)s(0), (48)

(v —II)/(~ —v) = —2[v/(«p)] S(r)

&&eXp( —pa br)dr. (49)

X(s) =E7[1y21Z(~ —v) sin2Ks] —'

S(s) = —(e'A/7. bk) sinKs Z(te —v)X(s) .

where the dimensionless intensity parameter

(52)

(53)

For nonmoving atoms v =0, and it is possible to 6nd
simple steady-state solutions of (42) and (43) by re-
quiring that (8/Bt)5=0 and (8/Bt)%=0 Then X and .S
still depend on s and satisfy the linear equations

V.bS(s) = —[(~—v)'/V-b]S(2)
—(p L~/A) sin(Ks) 1V($), (50)

y.bW(s) =-,'[(y.—yb) 2/y b]iV(s)+(E/t2) sin(Ks) S(s)
+b /v. )~.-(v.!v.)~, (»)

with solutions

S(s,v, t, t) = 2@X p s„(—w)

)&exp{'inK[s —e(t —t)]}, (58)

X(s',v, t, t) =N g d„(v) expfinK[s —v(t —t)]}. (59)

(The e dependence of s and d is not written out in the
following. ) When the electromagnetic coupling is weak,
we have X(s,e, t, t) =X. Inserting this into Eq. (42), we
see that S(s,v, t, t) has components with the variations
exp(+iK[s —v(t —t)]}.When these are put back into
Eq. (43), they cause temporal oscillations in E(s,e, t, t).
The process is iterated and we find that only even fre-
quencies in the expansion of Ã are coupled to odd fre-
quencies in the expansion of 5, and consequently it is
possible to limit the summations in (58) and (59) to odd
and even values of e, respectively. The Fourier series
are inserted into (42) and (43), and the coe%cients of
equal powers of exp(iK[s —e(t —t)]}are equated on the
two sides of the equations. This leads to the coupled
difference equations

[inKe+y, b+ (pe v) '/(y. b+i n—Ke)]s

(6o)
= 2(&E/&) (d-+t —d=i),

[inKe+y. b ', (7. yb)—2/-(y. b—+inK2i)]d„
=

2 (&&/@)(Sa~i Sn—2)+(7aV b/'r a b) & nP q

which can be written

sinK[s —v(t —t)]= 'i —ex-p(iK[s —v(t —t)]}+c.c. (57)

in (42) and (43) introduces rapid temporal variations in
the functions S(s,e, t, t) and Ã(s, e, t, t). These are elimin-
ated in the final expressions (48) and (49) for E and v,
but their presence considerably modifies the solution.

To treat the problem with moving atoms we expand
~V and 5 in Fourier series whose frequencies are mul-
tiples of those in (57):

f—r P2+2(~ ryb$2) 1

"See Sargent et al. (Ref. 5), Sec. III.

(54) s =ADi(n)(d„~t —d i),
d„=AD2(n)(s~t —s 2)+b„p,

(61a)

(61b)
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where the amplitude

A= Ii"—= PE(2y,vbh') '"
and

(54')

x„=d, D(n) =Do(n), if n is even

x =s„, D(n) =Di(n), if n is odd.
(63)

Equations (61) then correspond to the infinite system

x.=AD(n)(x. +, x. ,)+—b., (64)

Equation (64) is homogeneous for n/0 and can be
written

1 =AD(n) [(x„+i/x„)—(x i/x„)), n&0. (65)

For e&0 we introduce the new unknown

and (65) gives

b = —(x.+i/x ), (66)

b„ i=AD(n)[1+AD(n)b J '. (6'7)

The linear difference equation (64) of second order has
been transformed into a nonlinear 6rst-order equation.
Setting n =1 and iterating Eq. (67), we obtain an ex-
pression for bp in the form of a continued fraction:

bo ——AD(1)/[1+ID(1)D(2)/
[1+ID(2)D(3)/[1+ . (68)

For e& —1 we set

c.= (x„/x.+i)

and find from (65) that

c„=A D(n) [1+AD(n) c„ i$
—'.

(69)

(70)

For e = —1 we And by iteration

c i =AD( —1)/[1+ID(—1)D(—2)/
[1+ID(—2)D(—3)/[1+ . (71)

It follows from (62) that

and consequently

D(- )=[D()J*,

c g=bp*.

(72)

(73)

We use the definitions (66) and (69) of bo and c i to
obtain

x] — bQxp ~

x g=t,. exp ——bp*xp.
(74)

Di(n) =
p (-',y yb)'I'([inEv —i(cu —v)+y, b) '

+[inEv+i(pi —v)+y. bi '}, (62)

D, (n) =-', (-',y.yb)'i'([inEv+p. )-'+[inKv+yb) —'}.
Since d is diferent from zero only for even values

of e and s only for odd values, we can introduce a
vector with components x and a function D(n) such
that

xo=[1+2AD(0) Rebpj '. (76)

We introduce the real quantity

2=27.b(2y,yb) '"A 'Rebo
=2m. b(2V.V b)

'"
XRe(D(1)/[1+ID(1)D(2)/[1+ }. (77)

The dependence of Z and bp on v, ~—v, and I will be
indicated in the following only when necessary for
clarity. The function Z is even in ~ because v and i
always occur in the combination iv [see (62)$ and the
part of bp that is odd in e is thus proportional to i and
eliminated in (77). Taking into account the fact that
D(0) =y b(27 yb) 'i', wefindfor theneeded coefficients
$1 s i and dp of (58) and (59), using (63), (76), (77),
and (74),

and also

dp=xp=(1+IX) ',
si ——xi= —bp(1+IX) ',

s i =x i =ho*(1+IX) ',

(78)

(79)

(80)

si —s i= —(2y yb)'~'y b 'AZ(1+IX) ' (81)

The rate of convergence of the continued fraction in
(77) depends on the smallness of the factors:

f„=ID(n)D(n+1),

which for large values of e are

(82)

i f~i =e'E'(2AEvn) —'=-', I[y,yb/(Ev)']n —'. (83)

For small intensities or large velocities only small values
of n are needed to make (82) small. For high inten-
sities or small velocities many terms in the continued
fraction have to be included. For detunings

i
op —v i)&y, b

and. nonresonant values of v such that nEv((iM —vi,
we Gnd that

i f [
=I iDp(n) i Py.yb(y. b'+n'K'v')]'I'(pi v) ' (—84)

which in many cases is small enough to justify a trunca-
tion of the continued fraction before the limit (83) for
large n is reached. This fact, of course, increases the use-
fulness of the continued-fraction expression. The ad-
vantages of the continued fraction over a power-series
expansion is demonstrated in Sec. 10.

Knowing the

coefficients

s, s i, and do from (78)-(80),
we can obtain all the others s and d from (64). We
may then calculate S(s,v, t, t) from (58). Once this is

The expressions above give a different solution to
Eqs. (65) for n)0 and n(0. This is possible because
Eq. (64) with n =0 is inhomogeneous and enables one
to connect the two solutions (compare the situation
when v=0, discussed in Appendix A). Using Eqs. (74)
in Eq. (64) with n =0, we find

xo=AD(0)(xi —x i)+1=—AD(0)(bo+bo*)xo+1 (75)

and
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done, C(»,v, t, t) is given by (40 as
A

C(», v, t,t)

y.—or)dv) S(» v, t, t —r) exp( —y.or 7~r

= —i(or —v)SN Q s„
n, odd

exp( —pa or7 iSE

X[» v(t —t+r—)])dv
= —i(or —v)p& ~ s„

Xexp iNK» —v t t—
e roj ection

(6). The sums in S(»,v, t, t an . . .
" '

lve t e
expressions

os.ok)/(Qt 'Ev) =2 W(v)Z(v, 0,0)dv—=2Zo, 2=2Z, (92)

e uation (90) becomesand the intensity equation

d in v has been usedh the evenness of the mtegrands in v

d 91) determine I2. The two equatio
t in practice s mayl' 't

the90) whic'hth dtr s
d I may then bee ob-r values for an

i ht-h d idd b calculating the rig - ataine y c
'

e ri a

excitation
( )

oes to zero oThe intensity go
density g with or=v an we a

p

L

d» (sinK»)g s„exp(ilE») =r s,—s i, ITr p/Irr =Zo '
(86)

W(v)Z(v, or —v, I)

'dv =BT',(93a)X[1+IX(v, or v, I)] —v =

L p

irrEv) —' exp(irrK»)d» (sinK»)P s„(y,o+nr,

K) '] (87)=i[sr(y, o+iKv)-' s,(y.—o vv—
xcitation X dered byof the relative excitationwritten in terms o

(93b)K =I'/Ev .

ST CONTINUED-FRAC TIONS. LOW S C

all consider the lowest approxima-Int ish section we sh D

erne. If we setlon iIl eth present scheme.
Q.nd

—1/2

with the distribu-e velocity average with
l h l function W(v) and col ect

d P7), we find(58), (86), (81), an

S(0)= —p'Eg(ky, o)

(45), (85), (87), and (d 78-(80)Similarly, from. . . d

C(0) = (or v) tg——W(v)[bo(v)do(v)(v. o+i v 'iKv) '

v = . o
-'I' Reo(1) =y.o(2y.yo)X[1+I~(.IZ v)] 'dv (88)

—v —Kv)+Z(or —v+Kv)],—.L (

where (62) andw e (56) have been use . q
then gives

bo*(v)do(v) (y.o
—iKv)-']dv S(0)= —v 'XE(2y, oA

2(or v) s&IrT —Re—W( )b v( )o(yv, +ioE )'v

X[1+IX(v)] 'dv. (89

IZ v, or —v, I)] 'dv, (90W(v)Z(v, or —v, I)[1+IX(v,or —v,
' v 90

(v —0)/(or —v)

=2 PÃv6p
—1 W v) Re(bo(v, or —v, I)(y, o i viKv)-'

X[1+IX(v,or —v, I)] ') v,

ence on v is written out88) and (89) all dependence on v is
ty

The introduction of
c " conditionsiv " ' de" and "frequencyglvives "amplitu e an

(oo&V.o)/(Q&'&)

——Kv)+Z(or —v+Kv)]W(v[g (or —v—X
—00

Z or —v —Kv)]) 'dv. (95)X( o +or v1+-'I[2(or—v+Kv)+Z or —v — v

hermb in Ref. 1, Sec. 18, w et sobt ained by Lam in e .

h Hence weq
i "rate equation aill call it t ewi

axwellian:
ln g

The velocity di'stribution is a

v =u 'rr '~'exp( —v'/I'),

ressed in terms ocan be exp d

in par
'

opp ler limit, i.e.,
ents anell achieve in ma1' it is rather we

is easy to treat.
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Even if the result (95) does not include the terms of
third order in the electric fMld, coming from the I
dependence of Z in (88), it does include the third-order
terms of most importance in the Doppler limit. This is
shown in Appendix B.

We look at two limiting cases: (a) ~cu
—v ~(&y, b and.

(b) ~&—v~)&y, b. In case (a) only small velocities will

contribute to the integral in (95) and we set co =v in the
I.orentzian. It then follows that the integral can be
written

2 y.b2[E2v2+y. b2(1+I)]-'W(v) dv

=2yab(Ku) '(1/I) '"2l '"

XexpL —x2/(En) 2)Ch. (97)

The integral is equal to x in the asymptotic limit
Ku)&y =q.b(1+I) 'i2 and Eq. (95) becomes for case (a)

S= v'NE(AK—u) 'm'"(1+I) "'. (98)

In case (b) we get a contribution to the integral of (95)
only when ~Kv)= )&v

—
v~ and one Lorentzian in the

denominator is of order $y, b/(bi —v))2 and can be
neglected. The integral can then be written

V, b2L(bi —v —Ev) 2+y, b2(1+2'I)] 'W(v)dv

(~ /KN)~1/2(1+1I) —1/2

Xexp( —(&o —v)'/(KN)'j, (99)
in which case

5= —b'NE(2AKN) 'm'"(1+-'2I) '"
Xexpt —

(&u
—v) '/(Ku) 'j . (100)

The relations (98) and (100) were given in Ref. 1,
Sec. 19, for the case ~~ —v~(&Ku. They are valid ap-
proximations to (95) as long as

Iq.b2«(KN)', (101)

a condition which is rather mild in the Doppler limit.
For the case without detuning, ~ =v, the approximation
(94) breaks down for much smaller values of I than those
violating (101).When ~co —v~&&y b, a good approxima-
tion is obtained from (94) and consequently from (100)
for a larger range of intensities (see Secs. 4 and 7).

calculation with respect to y b and we take

P,/P, b=0.6, yb/y, b= i 4., Ku/y, b =40. (102)

Most experiments are performed under conditions cor-
responding to the Doppler limit, although not always
to the extent indicated by (102).

A computer program was written in order to calculate
the continued. fraction X of (77) to a preassigned ac-
curacy for varying detunings ~bi —v~ and intensities I.
The calculations were performed on the Vale IBM
7090/7094 system using voRxRAN rv. The intensity-
detuning curves, the atomic population diHerence S
as a function of velocity, and the Fourier coefhcients x„
can all be obtained as soon as Z is known. Also, the
spatial distribution of the atomic population inversion
and the dipole moment density can be calculated. These
quantities will be discussed to some extent in the
following sections.

The computer program truncates the continued
fraction (77) and calculates its value. Then it repeats
the calculation including two more stages in the frac-
tion and compares the real parts. If the difference is less
than the desired accuracy of 0.1%%uo the calculation is
terminated. Otherwise it is continued.

The velocity average in (93) is calcula, ted from a
simple three-point Simpson rule. Since important
values of the integral occur in an interval of order

Vab/E a«und v =
~
~—v

~
/K but the integration region

is of order N»y, b/K, it is advantageous to start the
integration at v = (~—

v~ /K and go in both directions.
For large values of e, the integration is stopped when the
last value of the function to be averaged over velocity
multipli. ed by the integral over the velocity distribution
W(v) from that point to infinity is less than 0.3%%uo of the
total integral. This presumably gives an upper limit to
the error introduced by the cutoff. The integral over the
range 0&v& ~~ —v~/E is stopped either at v =0 or at
the mirror image with respect to

~
bi —v ~/K of the high-

velocity cutoR, whichever occurs first. The program
then reduces the step length of the integration and re-
evaluates the integral until the result agrees with the
previous one to 0.3%. The step has to be much less
than y, b/K to give accurate results. Once the continued
fraction is calculated, all other quantities can be ob-
tained in a straightforward manner. The over-all
accuracy of the computed results is estimated to be
about 1%.

6. NUMERICAL CALCULATIONS

The performance of a gas laser is most easily under-
stood theoretically in the Doppler limit EN)&p b and in
this limit we do not expect the general results to be
very sensitive to the exact choice of decay parameters
p, pb, and p b as long as they are all small compared to
EN. To illustrate the use of our equations we approxi-
mate the values used in Ref. 7: y =8.3 MHz, yb ——18.6
MHz, and EN =470 MHz. It is convenient to scale the

'7. DETUNING CURVES

After calculating the function Z of (77), we introduce
it into (93) to find the relative excitation K as a function
of ~~ —v

~
and I. It proves to be convenient to plot K

as a function of I for various Axed values of the detun-
ing parameter ~bi —v ~. The resulting curves are shown
in Fig. 2. A given excitation corresponds to a horizontal
line which crosses the family of curves with detunings
at which the laser oscillates. The excitation necessary
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)at-v[=40rsb
2.0

l.5

!.0

t 0 IO
I

20

FIG. 2. Relative excitation X needed to achieve a given in-
tensity I plotted with the detuning ~ca —v~ as a parameter. The
curves give a graphical representation of Eq. (93) in the text. The
parameters of the laser are given in Eq. (102), in particular,
Eu-40', g.

to reach oscillation threshold for a given detuning is
shown in Pig. 3. The intersection between the constant
excitation line and the curves of Pig. 2 give the intensity-
detuning curves; the construction of these is illustrated
in Pig. 4. The resulting intensity-detuning curves are
shown in Pig. 5, and in Pig. 6 for larger relative excita-
tions. It is clear that the present calculations show a
pronounced tuning dip for ~ =v. Prom Pig. 2 it is seen
that when

~

&a —v
~

=-', EN, the intensity has returned to
approximately the same level as at co=v. For the in-
tensity range under consideration the maximum in the
curves occurs close to ~o&

—
v~ =sEN, moving slightly

outwards for larger intensities. The curves for ~ =v and
~to —p

~
=~~EN, have been calculated out to an intensity

I&200 and the depth of the tuning dip still seems to in-
crease monotonically. The results of this calculation can
be seen in Pig. 16, which is used to discuss the intensity-
excitation relations in the laser. It should be pointed

O

Fn. 4. A fixed relative excitation X corresponds to a horizontal
line in Fig. 2. Its intersections with the curves of varying detuning
~ru

—v
~

determine the corresponding intensities I, which then can
be plotted as a function of ~ca

—v
~

to give the intensity-detuning
curves. The construction of the curve for X=1.5 is shown in this
figure.

out that these very large intensities are unrealistic, be-
cause single-mode operation would presumably be im-
possible to maintain at such high relative excitations.
The details of our conclusions depend on the choice of
EN/y. s.

QY =2.5

lO 20 50
i(u-vi

&ab

40
0

to 20

FIG. 3. Increase in relative excitation X needed to reach oscilla-
tion threshold for increasing detuning of the laser ~~—v~. The
curve is obtained from the intersections between the X axis and
the curves in Fig. 2.

&ab

FIG. 5. Intensity curves plotted against detuning for various values
of X&2.5 obtained as illustrated in Fig. 4.
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FIG. 6. Same as Fig. 5 but with 2&%&5. The tuning
dip is distinctly seen in all cases.

8. FOURIER EXPANSION

Once s~, s ~, and do are known, it is possible to cal-
culate all Fourier coe%cients from Eq. (64) in the form

x„+i——x i+LAD(e)] 'x„. (103)

We set x~ ——s~ ———bodo and Gnd

press the rapidly oscillating s- and v-dependent higher-
order terms. In Fig. 7 we show the relative magnitude of
the Fourier coefficients for several values of ~ as corn-
puted from Eq. (103).The calculation is carried out for
an intensity I=3.2 and resonant tuning ~=v. The
coefficients go down to 10 do before they start to grow.
For small values of v, the atoms interact more strongly
with the electromagnetic Geld and several terms in the
expansion are important. For E~&&p, b only the first,
xo, is of importance. Then the increase of coefBcients
appears earlier than for small values of e but there
clearly remains a range of values of m with very small
coe5cients. We are thus encouraged to sum the series
for the atomic population inversion density

N(s, ~)/N = P s„exp(ittKs)
e,even

(108)

up to the point where the next term gives an extremely
small contribution. In this way we expect to obtain an
asymptotically correct series. This summation has been
performed in the interval 0&Ps&m for several values
of the velocity. The result is shown in Fig. 8. If the
laser were not oscillating, the population inversion
density would be spatially constant, normalized to unity
in the Ggure. For this case of resonant tuning we can
clearly see the saturation holes in the spatial distribu-

d, =d,{1—b,LAD(1)]-i),
so do( —ho+LA——D(2)] ' —bo[A'D(1)D(2)] '},
d4=do{1—boLAD(1)] i boLAD(3)] ' (104)

+ jA'D(2)D(3)] ' —bot A'D(1)D(2)D(3)] ')

Xq
Xp

2.0—

l.0

Kv=0

etc. It is seen that the higher Fourier coeKcients bring
in terms of higher inverse powers of A (the powers of
A are to be counted taking into account the fact that
bo is of first order in A).

It is possible to calculate the Fourier coeKcients for
very large tt directly. From Eq. (62) it then follows that

AD(tt) eE(2iAKm) ' (105)

2.0—

0o~

0

lKv= g, 7ab

t

l0

l 5 lo
I

15 20 25 50

provided that v/0. When this limiting form is inserted
into (103), we 6nd

x pi x i+2iViK——c(sE) 'ttx .

It is easy to see that the asymptotic solution of this
equation is

Kv=y
b

l .On—

0
l 5

l.0—

lo l 5

Kv=5yab

x„=const L(2iAKe)/(ioE)]" '(I—1)!, (107)

which shows that the Fourier series (58) and (59) can at
most be asymptotically convergent. We thus have a
case where for v=0 a convergent Fourier expansion
can be obtained (see Appendix A), but as soon as tt/0,
the Pourier expansion diverges. Physically, however,
only the Grst few terms in the expansion are important,
since the mode projection and the velocity average sup-

l 5 l0
I

l5

FIG. 7. Plots of Fourier coefficients. When the two coeKcients
x0 and x1 have been calculated, the following ones can be evaluated
with the use of Eq. (j.03).The even ones occur in the expansion of
E and the odd ones in S.They are complex but the absolute value
of their ratio to xo is plotted here as a function of the position of the
coeiiicient in the sequence (xp, xg, ' '.,x, ~ .). The intensity in
this picture is I=3.2 and the laser is tuned to resonance co = y. The
values of the velocity are indicated in the Ggure.
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I.O

K = Ky/y&b the time-dependent equations (42) and. (43) (as in
Ref. 1) or from the Fourier-transformed equation (64),
which gives power-series expansions in A for the Fourier
coeKcients. The latter procedure is chosen here as the
subsequent mode projection is then reduced to a
triviality. The velocity average still remains to be
performed.

The lowest-order approximation to a solution of (64)
is clearly x„& )=5„O. Writing the general solution in
the form

0- K/2 we find the recursion relation

Fzc. 8. Degree of saturation along the laser axis for various
values of the velocity and at resonance au=v. The unsaturated
level is here normalized to unity for all velocities. Since the laser
oscillation cavity mode number is very high, this pattern is re-
peated many times along the laser axis. The electromagnetic field,
proportional to sinEs, causes the saturation to be large near
Es=-,'m. In this picture the intensity is I=3.2. The points are
exact results known for v=0 from Appendix A. The small dis-
agreement between the points and the curve for v=0 is pre-
sumably due to truncation errors in the calculations of the
Fourier series.

tion X(s,v), especially for low values of v. As e increases,
the holes tend to 611 in, and for v=6', t/E we have
already reached an almost uniform unsaturated
distribution.

As v increases, the location of the maximum popula-
tion difference is shifted along the laser axis. For ex-
ample, in the case v =y, t,/E, Eq. (108) becomes

E(s,e)/g =0.32)1+0.93 sin(2Es+0. 31)
—0.11 sin(4Es+0. 96)+ ) (109)

We also note that the 12% correction to the basic
variation expL+2iEsf can be seen only as a slight
asymmetry in the curve Ee =&,& of Fig. 8. The atomic
populations with ~&N are further suppressed by the
velocity distribution factor W(e), but this is not shown
in Fig. 8.

For v =0 the exact solution, known from (52),

$(s,n)/E = (1+2Isin'Es) ' (110)

is indicated by points in Fig. 8. The agreement with the
numerical approximation is reasonably good and sug-
gests that the other results for Ev/0 represent an ac-
ceptable approximation to the atomic distribution.
However, we have shown in Appendix A that for @=0
the Fourier series converge, whereas they diverge for
e/0.

9. SERIES EXPANSION IN A

For small intensities I it is presumably possible to
expand all quantities of the laser theory in a power
series in A =I'I, the 6rst terms of which were calculated
in Ref. 1. This expansion can be obtained either from

x &"+'&=D(e)(x.+g'"' —x. &'"&). (112)

In the kth order all terms x ~"~ with ( m
~
)k are zero.

The 6rst few nonvanishing terms are

k =1: xx~" = —Lx y"'g*= —D(1);
=5~-, ~ ~)*=D(1)D(2),

co&"= —D(0)LD(1)+D(—1)g,

(113)

L

E(~)= E(s,v)d—z =avdp(v),I. p

where (59) has been used. Using (111),we And

(114)

E(e) =X+ A'do~'&.
k=0

(115)

At v =0 we know from Appendix A that

X(0)=S(1+2I)—'I', (116)

when &o=v. Thus the series expansion (115) can be
convergent for all values of ~ only if I(0.5. In the
numerical calculations to be discussed in Sec. 10 it is
found that for the particular values of I used the series
did not converge in the range 0&Xv&7 g. For large
values of e the convergence is good, since the terms
then decrease because D(e) contains a factor (m) '.
The series expansion is used in Sec. 10 to check the
results of the continued-fraction expansion developed
earlier in this paper.

10. ATOMIC POPULATION AND HOLE BURNING

For a given detuning ~co —v ~, somewhat greater than
the standing-wave electromagnetic 6eld is in

resonance with two st;ts of @toms traveling witb

etc. Summing the series (111) on the computer allows
us to calculate all the coeS.cients s and d to desired
accuracy by going to high enough powers of 3, assuming
the series is convergent.

Let us, for example, look at the mean population in-
version density over the length of the laser for a fixed
velocity:
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0 lQ 20 50 40 Kv/yqb

Fro. 9. Curve of the population inversion density E(pl W(v) as a
function of p for the detuning ~&o

—
v~ = ,'Ee show-ing the hole-

burning effect. The parameters in this and the two following
figures are %0=40' y, %=2.0. This implies that the three figures
correspond to different intensities, given by the curve %=2.0 of
Fig. 6. In this figure I=2.87.

velocities around tt =+
~
tp —v

~
/E such that the'Doppler

shift compensates the detuning. The populations of the
two active atomic levels are partially saturated for
these velocities and X(e) decreases. This phenomenon
is called "hole burning" (see Ref. 12) and is seen as two
dips of width approximately p, b in the velocity dis-
tribution. They can be seen when the computed values
of Z are used to plot the velocity dependence of the
mean atomic population inversion (114) and (78)
multiplied by the velocity distribution W(e) from (96).
The quantity X(e)W(e) is plotted in Figs. 9—11 for
different values of

~

pp —v
~

and the holes are clearly seen.
When ~tp —v~))En, the compensation of the detuning
requires atoms with such a large velocity that'="the
factor W(v) makes their density very low and laser
oscillations cannot be maintained for these detunings,
unless X is made very large.

'rab /'ra'rb
y (119)

and take the real part of (117).In order to see whether
it is possible for the population inversion density X(e)
to decrease when e increases from zero, we expand (77)
to second order in ~ and obtain after some straight-
forward algebra

Z(.,I)= (1+-,'-I)-'{1y.s(1+-'I)-s
&&[(I'—1)Is+2(4I'—I' —1)I—1j) . (120)

When ~=0, we get Z(O,I)=(1+sI) ', which is the
lowest approximation to Eq. (A2) at pp=v. Since the

For ~=v the two holes at ~e merge at the position
~ =0 and use the same atoms to resonate with both the
traveling waves of the electromagnetic field. These
atoms are then more completely saturated than the
resonant atoms would be if the two holes were a few
p b's apart. This phenomenon, which occurs already for
rather small intensities, causes the dip in the intensity-
detuning curves. In Figs. 9—11 we can see how the two
holes merge into one at v=0, but another interesting
effect can also be seen. When co =v, the population hole
takes the form of a double well. When the intensity
increases, the dips move slightly outwards, while for
smaller intensities they move inwards and become
611ed in. Only a small effect on the laser output comes
from the broadening of the hole, because the two dips
at the bottom are very small compared to the size of
the hole.

To test the reality of the structure of the population
inversion we look at the second approximation to the
continued fraction (68):

bp =AD(1)/[1+ID(1)D(2)j (11'7)

where the functions D are given in Eq. (62) and we
take co= v. We introduce the two parameters

K =Km/y. b,

fol-vf & toy b

IO 20 30 40 Kv/y b
I

lO RO 50 40 Kv/ypb

FIG. 10. Same as Fig. 9 but with ~ra —v~ =-,'Xe. This case cor-
responds approximately to maximum intensity, for fixed X,
leading to a deep and broad hole in the population inversion; hereI=4.73.

FIG. 11. Same as Figs. 9 and 10 but with ~=a. The two holes
coincide at v=0 and saturate these atoms strongly, leading to the
occurrence of the tuning dip. A small "bump" in the bottom of the
hole is clearly seen. The results of the REA of Sec. 5 are indicated
as a broken line. The hole with the bump is clearly broader. In
this figure I=3.20.
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dc Response X'---- ac Response AX/AA~

g =2.0r
/

I
I
I
I

/

values of X is given in Figs. 13 and 14, where the
"superiority" of the ac method at %=1.5 and its
"inferiority" at %=3 are clearly seen.

A qualitatively correct picture of the ac response is
obtained also from the REA of Sec. 5. We have from

Zp/X = W(,)q(,)L1+IZ(&)]- d&, (124)
~ 4

O
where Z is given by (94) and thus independent of I.
Taking the derivative dK/dI, we 6nd

(AI/aX)-'(Zp/X')

W(e) $Z(v)]'$1+IX(v)]-'dr . (125)

'0 IO 20
i~-vl

&ab

FiG. 13. Comparison between the ac and dc response of the
laser intensity as a function of the detuning. For X=1.5 the ac
curves show a clearly deeper dip.

20—
dc Response--- —ac Response

0Y =3.0

- IO

0
0 lO 20 30

i(u-vi

~ab

l

40 50

FIG. 14. Same as Fig. I3 but with larger relative excitations K. For
%=3.0 the dc dip is clearly deeper than the ac one.

the slope of the curves of Fig. 2 for any chosen value of
K. Keeping X constant and varying the detuning, we
can directly plot the ac response curves, Looking at
e.g., %=1.5, we find that the curve with or=v starts
below the curve with ~p~

—
v~ =~EN but has to reach

higher values of K for larger intensities I, and conse-
quently it has a larger slope dK/dI. The ac response
AI/hX is thus larger at

~

pi —v~ =~iEu than it is at
resonance. When we reach the detuning

t
p~
—v( =—,'EN,

we have a slope nearly the same as the one at or = v and
the shouMers start to develop. For still larger detunings
(for which oscillation occurs only for larger values of K)
the ac response becomes even smaller. As the difference
between the curves at p~=v and ~co

—
v~ =~EN grows

for increasing intensity the slopes become more alike;
the dc dip now develops more fully and the ac dip de-
creases. For X= 2 the two dips are approximately equal
and for larger excitations the dc dip is more marked.
A comparison between the ac and dc dips for various

When the detuning is varied with fixed X, the two
equations (124) and (125) have to be solved simul-
taneously for I and EI//AK. This procedure can easily
be performed numerically and does, indeed, show the
shoulders in the ac response as a function of the de-
tuning ~cv

—v~.
The present theory can also be used to investigate

other time-dependent phenomena like transients in the
laser, assuming that they are slow enough. Equation
(12) gives

dE(t)/dt = —(v/2Q)E(t) —(v/2pp)S(t), (126)

and using (88), we find the integrodifferential equation
for the inten. sity I(t)

dI t'v
+2vtv'N(App—y, p)

'
&g

&& W(v)Z(v, I)L1+IZ(m, I)] 'dv ~I. (127)
0

Neglecting the I dependence of Z corresponds to the
REA, and calculations by Born" have shown that this
approximation su%ces to 6t the experimental transients
of a laser building up its oscillations from low intensity
in the region 1.5&%&4, where the steady-state in-
tensity for co=v is in the range 1.3&I&15.The REA
is expected to be a reasonably good approximation in
this region, but if single-mode operation is achieved at
larger intensities, the general expression (127) can be
used for numerical calculations of the transients. At
detunings much larger than y ~ the REA is still ex-
pected to be valid even at very large intensities (see
Sec. 12).

A more exact description of the modulated laser than
the adiabatic one given here could be obtained by
recognizing the time dependence of X in the differen-
tial equation (127). This could then be integrated
numerically but the complexity is so great that we do
not pursue these considerations here.
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12. RELATION BETWEEN RELATIVE EXCITATION
AND INTENSITY

In this section we want to summarize our results
concerning the relation between intensity and relative
excitation and compare the different methods of cal-
culating them. Some conclusions regarding their range
of validity will be drawn and a result suggested by the
present calculations, but so far not proved, will be
given.

For resonance tuning co=a and in the Doppler limit
the result of the third-order theory of Ref. 1 is

]00

I=2(1—K ') (128)

2.0—

l.0—

I.O
I.

2.0

t'see Appendix B, Eq. (B15)j. A plot of I versus K
starts at K=1 with the slope dI/dX=2 and has a
horizontal asymptote at I=2. For %=1 the third-
order theory is expected to be valid and a comparison
between it and the exact results calculated in this paper
is shown in Fig. 15.%e can see that already at K=1.10
the error in the output intensity is about 10%. Figure
15 also contains some points calculated from the REA
to show the close agreement between the REA and the
exact calculations for %&1.5. For larger values of K
the deviations between the RKA and the exact results
are shown in Fig. 16, where it is seen that, for resonance
tuning ~=v, the output intensity obtained from the
REA is about 10% below the exact result at an
intensity I=10. Even for larger intensities the qualita-
tive behavior of the REA is correct, in contradistinc-
tion to the third-order theory, which cannot give in-
tensities above I=2. For the detuning ~tp —v~ =sXN
it is seen that the RKA gives adequate accuracy for all

0
l IO l5

intensities considered and it becomes still better for
larger detunings.

%hen I»1, but the RKA is still a good approxima-
tion, it follows from Eqs. (98) and (100) that Ice%'.
This rel.ation is asymptotically valid in the Doppler
limit but only as long as the RKA is valid. Figure 16
indicates that a region where I is a quadratic function of
X is present. For really large values of I the number 1

in the denominator of Eq. (95) can be neglected and we

And I~ K. For these values of I the REA is, however,
not valid. A formal argument applied to Eq. (93) would

suggest that, when IZ»1, the asymptotic result

I=K/Zp (129)

FIG. 16. Laser output intensity I at resonance co=v and for
~ar

—
v~ =-', Xm, as a function of relative excitation X for large

values of K. The results of the REA are shown (broken line) and
for the tuned laser cv =v they deviate appreciably from the e~act
results only for intensities larger than I=10 (with K larger than
3.5), whereas for the detuned laser the REA gives a good approxi-
mation even for the largest intensities considered. The result of
the third-order theory would have an asymptote at I=2.0 when
K goes to infinity. Since for a given K the maximum intensity
occurs for detunings )&u

—
v~ =r'Zm, the horizontal distance be-

tween the two solid curves of this Ggure gives an indication of the
difference between the maximum and minimum intensities of the
intensity-detuning curves. The real diGerence cannot be smaller.

0.5—
X

can be obtained.
However, since the behavior of Z for large values of I

is not known, the result (129) cannot be considered
proved. Also, the numerical results of Fig. 16 leave the
question of the existence of a linear region in the
curves unsettled. The exact solution for nonmoving
atoms, given in Appendix A, does, however, imply the
relation (129).

Fxo. 15. Laser output intensity I at resonance ou=v as a func-
tion of relative excitation X near threshold. The 6gure compares
the exact calculations of this paper (solid line) to the results of the
third-order theory of Ref. f (broken line); some points (crosses)
calculated from the REA of Sec. 5 are indicated. The RKA is seen
to follow the exact results closely, whereas the third-order theory
deviates from it appreciably already at X=1.1.

APPENDIX A: CONNECTION WITH
ZERO-VELOCITY THEORY

In Sec. 3 we saw that, in the case of stationary atoms,
the laser problem can be easily solved exactly. In this
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Appendix we show how the method developed in the
main part of this paper works for nonmoving atoms.
When we set v =0, the functions D(zz) of (62) take only
two real values:

The coeflicients d are now known and can be used
in Eq. (58) to obtain the spatial distribution of the
population inversion

Dz (——-', y.yb)'"y. b
'Z—

(pp v—), zz odd.

Do =V.b(2V.V b) '", e even.

The continued fraction (77) can then be written

(A1)
N(s) =N Q do„e""x'

n=oo

=Ndo[1+ P (r'e"x*)"+c.c.]
n=1

Z =g(pp —v)/f 1+{-',Ig(pp —v)/(1+-', IZ) }], (A2)

which leads to a quadratic equation for Z with the
solution

~Ndp(1 r') (—1+r' 2r' —cos2Ez) ' (A14)

From (A9) it follows that
&=I {[1+2'(u—v)]'I —1}. (A3) 1+r'= 2[IX(op—v)] '[1+IX(~—v)]r', (A15)

The other solution is rejected because it is negative and
Z must clearly be positive. Introduction of (A3) into
(88) with the velocity average removed gives

1—r4=2r'[IZ(po —v)] '[1+(1—r')IZ(cu —v)], (A16)

and using (A15) in (A14), we have

S= —O'NE(Ay. bI) '{1—[1+2'(co—v)] '"} (A4) N(s) =NdoIZ(po v) (1 r4—)—
&&{2r'[1+2'(zo—v) sin'Ks]} ' (A17)which is the result given in Ref. 1, Sec. 16.

We also want to look at the difference equation (64)
in the case of nonmoving atoms. We take an even value
of e and find

(A5)d„=ADo(s„+,z sz)+8 o-,

and&he two equations for s ~1 are

s„+z ADz(d~z d——„), —
s~ z

——ADz(d„—d„o).

Substituting these into (A5), we obtain

s„=A Dz(dn+z —dp-z) =3Dzdo(r I ~+& I r I ~—& I) (A18)

Setting m=+1, we obtain
(Ag

(A19)s+1 — s—1 +Dl(r' —1)do,

Introducing dp from (A13) and using the relation (A16),
we obtain the correct expression for N(s) as given by
(52).

When all d„are known, the coeKcients s can be
obtained from

d„=A 'DzDz(d„+o 2d„+d„—z)+&~p.

This diRerence equation has a solution

d„=dpr ~ "~,

(A7)

(A8)

which, together with (74) and (77), may be used to
determine Z in agreement with (A3). Once all coei5cients
s are known, Eq. (59) can be used to obtain S(s) as
given in (53) using the same algebraic steps as in (A14).

where ~ is a root of the characteristic equation

1=IDzDo(r' —2+r ') . (A9)

APPENDIX 3: CONNECTION WITH
THIRD-ORDER THEORY

We note that
ID&Dz =

o IZ (po —v) . (A10)

If we want the quantity (A8) to go to zero for large
values of

~
zz ~, only the real root of (A9) which is smaller

than one,

r'=[Is((o —v)] '{1+Ix(po—v)
—[1+2'(co—v)]z~'} (A11)

can be used. For zz=0, Eq. (A7) gives

In this Appendix we are going to show that the RKA
of Sec. 5 contains the result of the third-order theory of
Ref. 1 in the Doppler limit EN))y q.

Introducing a notation for the velocity average

W(v) f(v)dv

we can write Eq. (88)

or

dp[1+(1—r')IZ(pp —v)] '

where Eq. (A11) has been used.

d p ——do[-', IZ(po —v) ][r'—2+r']+1
S= v'EN(Ay b) '(Z(1+I—Z) ')

(A12) = —PojVN(@y b)
—z[(g)—I(gz)] (I12)

where Z is given by the REA expression (94) of Sec. 5.
In the general case the integrals in (82) lead to plasma
dispersion functions but in the Doppler limit all

velocity averages can be performed analytically. Thus
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we have varying over the peak of the other. Ke obtain

W(v)Z((v v+—Kv) dv

=v'"(y. b/Ku) exp[ —(co —v)'/(Eu)'] (83)

Z(g+~ —v)Z(g —a+v) exp[ —x'/(Eu)']dg

whereas the term (Z') contains several averages:

~ ') =-'(([ ( ——K )1')+([ ( —+E )]')
+2(Z((o v K—v)Z—((v v+E—v))}. (84)

The first two terms give the same contribution: +Z(2v —2(v) a (a+a —)da)

)(i Z(2&v —2v) Z(g —a&+v)dg

(Z') =v.—'"(Eu)—' v.b'[(~ —v —g)'+v. b'] '

&&exp[ —x'/(Eu)']dx
—v=&&2(y b2/Eu) exp[ —((g.—v)2/(Eu)2]

y b2(g'+y b')-'dx

=~'"(2Eu)—'y. b exp[ —(co—v)'/(Eu)'],

since the square of the Lorentzian has a sharp peak,
much narrower than the Gaussian.

Ke introduce the function

=-',v.y. b exp[ (a)— )v'—/(Eu)']4m(2~ 2v—) (89)

Inserting (89) into (86), we obtain

O(cv —v) =exp[ —(a&
—v) '/(Eu) ']42 (2(o —2v),

for ~co —v ~)&y b (810)

Collecting the results (83)—(86) into (82), we get

5= —V'EE(Ay. b)
' exp[ —(~—v)'/(Eu)']v-'"h, b/Eu)

&&(1—~~I[1+exp((~—v)'/(Eu)') O(&o —v)]}, (811)
which, inserted into (12), gives

(AEV O)a/b('QP +) 7l (rab/Eu) eXp[ (~ V) /(E'u)']
&((1—~~I[1+exp((v —v)'/(Eu)') 0'(~ —v)]}. (812)

%hen I and cv —v are equal to zero, we find the thresh-
old excitation

O((o —v) =2(vry, b) Z (a) —v+x) Z((o —v —x)

)&exp[ —x'/(Eu)']dg. (86)
(Abby. b)/(Q V 'Xr) =~"'(y.b/Ku), (813)

We consider the two limiting cases (a)
~

ru —v (((Eu and
(b) ~~ —v ~&)gab. In the Doppler limit, Ku&)gab, these
two cases cover all possible situations. In case (a) the
peaks of the two Lorentzians both fall in the region
where the exponential is almost a constant and can be
approximated by one. Ke have

Z(x+~ —v)Z(g —~+v)dg =,'~p. bZ(~ —.), (8&)

giving for (86)

O(a& —v) =Z((o —v), for
i

or —v i((Ku.

In case (b) the two peaks of the I.orentzians are far
apart and one Lorentzian can be regarded as slowly

glvlng

X=X/Xg ——exp[((o —v) '/(Eu) ']
)&(1——,'I[1+exp((~—v)'/(Eu)') O~(~ —v)]}—' (814)

or, equivalently,

I=4(1—K ' exp[(&v —v)'/(Eu)']}
&&(1+ PL( —)'/(E )']O( —)} ' (»5)

In case (a) it follows that exp[(a& —v)'/(Ku)']=1 and
in case (b) that 42(2' —2v)=[y, b/(~ —v)]'=Z(~ —v).
As either case (a) or case (b) is realized, a good approxi-
mation to (88) and (810) is given by

o( —) = PL —( —)'/(K )']~( —), (816)

which, inserted into (815), leads to the denominator
1+2(cv —v) as given in Ref. 1. The exponential in the
numerator agrees with the form found in Ref. 5.


