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A simple model of a maser or laser consisting of a single-mode Geld coupled to E identical two-level
atoms is considered. The semiclassical approximation is equivalent to neglecting the statistical correlations
between the atoms and the Geld. The accuracy of this approximation is investigated by writing equations
of motion for the correlations. To obtain a complete, self-consistent set of equations, it is necessary to
include correlations of the 6eld with itself (related to the coherence of the Geld) and correlations between
different atoms. Relaxations and an energy source are introduced phenomenologically into the equations
of motion. They are then solved for the case of steady-state oscillation. It is found that the correlations
are smaller than the terms kept in the semiclassical theory by the order of 1 over the number of photons
present in the Geld, larger if thermal photons abound, but smaller if the Geld relaxation is dominant. Ex-
pressions are also found for the amplitude and phase Quctuations of the Geld. The latter yield a linewidth for
the maser oscillator in agreement with earlier calculations, but obtained by a different method.

I. INTRODUCTION

'OST successful theories' ' of masers and lasers to
~ ~ date have been semiclassical; that is, they treat

the electromagnetic field classically while retaining a
quantum-mechanical description of the radiating atoms.
Some theories' "have started with a quantized radia-
tion field and then made the approximation of neglecting
correlations" between the atoms and the field. This
brings them back to a semiclassical theory. The purpose
of the present work is to discover how big the atom-field
correlations are and thereby determine the validity of
semiclassical theories.

One's first guess might be that quantum-mechanical
corrections to the semiclassical theory would be smaller

by a factor of 1 over the number of photons present,
and this is at least partly right. However, the two
existing papers"' which attack this problem have
obtained different results. Both assume the density
matrix to consist of a term which factors into a product
of a density matrix for the field and one for the atoms
(this term gives the semiclassical theory), plus a term
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containing atom-field correlations. Willis'4 assumes an
expansion in powers of plVp, where p is essentially the
atom-field coupling parameter divided by the frequency
and E is the number of active atoms present. He claims
that the correlations are smaller by a factor (pcVf)', but
his choice of expansion parameter is not adequately
justified, nor does he include relaxations. Weidlich and
Haake" include relaxations, but assume the field
relaxation is dominant to find the correlations smaller

by a factor of 1 over the number of atoms present. Both
papers are, at best, incomplete. Other authors who have
used a quantized field have sought only statistical
properties of the field and have not looked at the correla-
tion question.

Since the calculations in the remainder of the paper
are somewhat involved, we shall describe here, in words,
what we have done. Our model of a maser is as simple
as possible, but still contains the features of interest.
It consists of a single-mode radiation field confined to
a resonant cavity. This field interacts with a large
number S of identical two-level atoms. The atoms are
so confined that they all see essentially the same
amplitude of the field, so that spatial coordinates are not
needed. We do not consider atomic motion, inhomo-

geneous broadening, multimode operation, or other such
phenomena often required for a complete description

of a real laser. 8

To minimize working with operators which may not
commute, we use expectation values of the operators as

our basic variables. We sum the expectation values

over all the atoms present to obtain macroscopic
variables which describe the average behavior of the
atoms without involving us in complexities arising from

the high degree of degeneracy' in the system. The
equations of motion are obtained by taking the expecta-
tion value of the Heisenberg equations for the operators.
The nonlinearity of the problem brings second moments

or second-order correlations into the equations for the
first moments. Neglecting the correlations gives the
semiclassical theory. To evaluate the second-order
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correlations we write equations of motion for them,
again using the Heisenberg equations. Of course, these
equations then contain third-order correlations. Since
we expect the second-order correlations to be small

corrections in the equations for the Grst moments, we

also expect that the third-order correlations will be
small corrections in the equations for the second-order
correlations. Hence we truncate our system of equations

by neglecting the third-order correlations.
We now have a system of nonlinear differential

equations for the first and second moments. To make
the model realistic, we introduce relaxation and pump-

ing into these equations phenomenologically. We then
look for a solution describing steady-state oscillation.
If we find the correlations small in this steady state,
it is likely that they are also small in a dynamic situation
approaching the steady state and our objective is

achieved.
When the procedure outlined above was carried out,

several interesting results were obtained. The equations
of motion for the atom-Geld correlations involve, also,
Geld-field correlations and correlations between diferent
atoms, To obtain a complete set, equations must be
written for these other types of correlations as well.
The field-Geld correlations, which are related to the
coherence of the Geld, are driven only by the atom-Geld

correlations. Hence semiclassical theories neglecting
the latter will not contain incoherence generated, for
example, by spontaneous emission from the atoms.
The necessity of including atom-atom correlations has
not been recognized by previous authors. Both Willis"
and Weidlich and Haake" omit them by assumption.

Once a complete set of equations was found and
solved, the correlations turned out to be smaller than
the product of the first-order moments by a factor of the
order of the square of the coupling parameter divided

by the product of two relaxation rates. If atomic
relaxation is dominant, as it is in most solid-state

devices, the factor is of the order of 1 over the number

of photons present. However, if the Geld relaxation is

dominant, as it is in the hydrogen maser, the factor is of
the order of 1 over the number of atoms present. In
either case the semiclassical approximation is extremely

good except when very close to threshold.

Among the correlation variables are those correlating
a variable with itself. These can be interpreted as a
measure of the fluctuations of that variable. Hence,
as a byproduct of our work, we have obtained expres-
sions for the fluctuations in the phase and amplitude of
the field. The phase Quctuations in turn give us inforrna-

tion about the coherence of the Geld generated by the
atoms.

IL DEVELOPMENT OF EQUATIONS OF MOTION

The Hamiltonian for our maser model is

X=AL(vata+Q z~~;*++ b(~,+u+o; at) j. (1)

)1 01 (0 1I /'0 01
0 z 0+ g

(0 —il (0 03 Ei Ol

The remainder of the Hamiltonian represents the inter-
action between the atoms and the field. We have
omitted nonresonant terms like a+at (rotating-field
approximation). The coupling parameter b is assumed
real. We have also assumed that the cavity mode for
the field is exactly tuned to the resonance frequency
of the atoms. This assumption considerably simplihes
the algebra without, we believe, losing any features of
physical interest for the present investigation.

From the Hamiltonian (1) we find the following
Heisenberg equations of motion for the operators:

za =cva+b Q 0;,
~ ~

Zo =G)0 ' —0 8 (2)

zo'=2b(o;+a o; a ). —

We now introduce the expectation values of these
operators, summed over all the atoms:

A =(a)e'"',

M =p(0; )e*'"' (3)

W=Q(, ').

We have also factored out the gross time dependence.
Physically, A can then be interpreted as the complex
amplitude of the 6eld, so scaled that A*A is the mean
photon number, M is proportional to the complex
amplitude of the magnetization or electric polarization
acquired by the atoms, and 8" is the population
difference between the two levels. We refer to A, M, and
8' as macroscopic variables. Their equations of motion
are obtained from the expectation values of the Heisen-
berg equations (2). The difhculty is that the resulting
expectation values of operator products like (a*a) can-
not in general be factored into a product of macroscopic
variables.

The first term represents the Hamiltonian for the radia-
tion field, which we treat as a single quantum-mechan-
ical harmonic oscillator of angular frequency or. The
creation and annihilation operators, ut and u, obey
t a,at)=1. The second term represents the Hamiltonian
of E identical atoms indexed by j. For each j the 0.

matrices can be represented by
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bnz=g o; e'"' M—

It is convenient at this stage to define what we shall positive or zero. G can be zero if and only if ba
~ f) is zero,

call residual operators: that is, if
~ P) is an eigenstate of the annihilation

operator or a pure coherent state in the sense of
Glauber. ' A nonzero value of 6 gives an indication of
how far the state of the field departs from pure~coher-
ence. The total number of photons present is m—= &ata)
=A*A+G. We can think of A*A as representing the
coherent part of the field, and G the incoherent part.

For the atom-atom correlations we define
'

We can now express the expectation value of operator
products by the product of the expectation values plus a
correlation or the expectation value of the product of
two of the residual operators. The equations of motion
for the macroscopic variables then become

8= —iHII,
M =i b (WA+ (bwbc)), (6)
W= —2ib (M*A+ &bmtba))+ c.c. ,

where c.c. stands for complex conjugate. Subtracting
these equations from (2), we obtain the equations of
motion for the residual operators:

bd= —ibbns,

bm =ib (8'ha+A bw+bwba &bwba)), —
bw = 2i b (M*ba+A bm—t+bmtba (bmtba))+H c— .

where H.c. stands for Hermitian conjugate.
Were it not for the correlation terms, Eqs. (6) would

be a complete set of equations for the macroscopic
variables. In semiclassical theories the correlation
terms are dropped. "Our task is to evaluate the correla-
tion terms by Gnding and solving equations for them.

For notational convenience we introduce italic capital
letters for our correlation variables. In a complete, self-

consistent set of equations, correlations corresponding
to all possible pairs of residual operators occur. For the
atom-field correlations we define

D= &bwba),

Z= (bmbat),

F= (baba).

For the Geld-field correlations we define

(Sa)

(Sb)

(Sc)

G= (batba),

R= (baba).

(Sd)

(Se)

The variable 6 gives us information about the coherence
of the radiation field. For any state of the field

~ f), G is

the normalization of the state bang), and hence is

These operators have zero expectation value, but carry
the commutation properties of the original operators,
for example,

t bm, bwj=2 P o„e'"'=2(M+bm).

C= (bmbmi) ', (E—-W) +—I,
8= &bwbm)+M+K,

H = (bnzbm)+L,

V= &bwbw) —cV+ U,

(Sf)

(Sg)

(Sh)

(Si)

It=2( *)&~ &e'"'

+&a
—)2e2ket

In the double sum over the atoms represented by
&bm&ei) there are terms representing not only the
correlation between different atoms, but also the corre-
lation of an atom with itself. We know that an atom
will always be correlated with itself, so it seemed

appropriate to exclude such terms from our basic vari-
ables. The peculiar looking definitions (Sf)—(Si) were
chosen to represent only correlations between different
atoms. Thus

where the sum is over all pairs of different atoms.
Similar expressions hold for 8, II, and V. These
definitions then lead to the appearance of the auxiliary
variables. One might think that the auxiliary variables
could be expressed in terms of the macroscopic variables,
e.g. , I=M*M/X. Sometimes this is true, but there are
cases where it is not. We have chosen to retain a
separate notation for the auxiliary variables. They are
sort of a nuisance since they are required for quantita-
tive completeness but have no effect on the qualitative
results to be obtained.

Now that we have a sufficient arsenal of notation, we

are at last ready to derive equations of motion for the
correlation variables. We shall not work out all nine,
but only one of each type to illustrate the features
encountered and the approximations made. The basic

"R.J. Glauber, Phys. Rev. 131, 2766 (1963).

where the auxiliary variables J, K, I, and U are defined

by J=2 I(
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ol
( y )=( )(y)()+&*)(b3b )+b)(b b )+& )(b b3)

&~3s)= (*)(3s)+(3)&»)+&s)(*3»—2(~)(3)(s),

where x, y, and s stand for any of our operators.
Neither Willis nor Weidlich and Haake used all the
terms on the right when they met products of three
operators.

After this basic approximation the E equation
becomes

E=ib (C+AD*+WG+-', 1V+2W J) . —

Note that if there are initially no correlations, polariza-
tion, or fields present, we still have on the right the
term 2(Ã+W) which equals the number of atoms in

the upper state. This term, which arises from the
commutation of the atomic operators, is the source of
spontaneous emission in our theory. It drives E, which
in turn drives G, thus creating incoherent radiation.
The E equation is the only one containing this source.

' H. Paul) Ann. Physik 16, 403 (1965).
'7This is the same as neglecting the third-order cumulants,

which represent that portion of an average not expressible in
terms of lower-order cumulants. Assuming a Gaussian distribution
for our variables would give similar results since a Gaussian has
no cumulants higher than second order. Cumulants in physics
have been discussed by R. Kubo, J. Phys. Soc. Japan 17, 1100
(1962).

technique is to expand the derivative of a correlation
with the aid of Eqs. (7) for the residual operators,
and then reexpress the resulting correlations in terms
of the definitions (8). For G we thus have, without
approximation,

G = &&atra)+(&atra)
= ((zbbmt) ba)+ &bat ( ibbm—))
=ib (E*—E) .

Note that changes in G are derived solely from the
imaginary part of E.Thus if the field is initially coherent.
(G=0), incoherence will develop only if there are atom-
field correlations present. This result depends only on
the linear form of the Heisenberg equation for the
field, as shown by Paul. "

For the atom-field correlation E we find

E= &bm(i bbmt))+ (zb (Wba+Abw+bwba D)bat)—
=ib(C+ 2p —W) —J]+ibW(G+1)+ibAD*

+ib&bwbabat),

where we have used the commutator of ba and 8a~.

Here we see the appearance of the atom-atom and
field-6. eld correlation variables on the right, explaining
why we must fuss with them. We also see a third-order
correlation term. If we wrote equations for third-order
correlations, we mould find fourth-order correlations,
and so on. We must truncate the equations somewhere.
We choose to neglect the third-order correlation'~

relative to the second-order correlation times a macro-
scopic variable. This is equivalent to writing

For the atom-atom correlations, let us look at the
equation for C:

C = &bmbmt)+ &bmbmz) —~iX+x2W+j.
In addition to the derivative of bm given in (7), we
need the time derivatives of X, 8', and J. In our simple
model we can assume E is constant. We get an expres-
sion for W from (6).We will neglect the correlation term
in (6), since it is expected to be small, and we do not
need an accurate value of 8' to find a lowest-order value
for C. The reader who keeps the correlation term from
(6) will find that we have in effect assumed W))1.
Similarly we can neglect correlations in the equation of
motion for J, finding from (2) and (9) that

J=ib(AE* A*X)—.

So far we then have

C=ib (W(babmt)+A (Re&mt)

+(Rvbabm') —M*A+K*A)+c.c.

To reduce (Rvbmt) to the definition (Sg) we must use
the commutation relation (5):

(Rvbmt) = (bmRz )*=(bw8m+ pm, bw j)*
= (B M I:)*+—2(ilf—+bm)*= (B+m I')*. —

The M and E terms from the definition of j3 then
cancel those from W and J.Finally we neglect the third-
order correlations to wind up with

C=ib(WE*+AB* WE—A*B). —

The next step is the introduction of relaxation terms.
Several authors have studied relaxation from a quan-
tum-mechanjca1 viewpoint. ' ' A11 we shaH do here js
adopt their conclusions, that is, add damping and
equilibrium terms to our equations of motion. We ignore
the stochastic driving terms, which simulate the
fluctuations associated with dissipation mechanisms,
since they average to zero and our equations are only
for average values. For the 6eld we introduce the damp-
ing constant P—=~/2Q, where Q is the (loaded) quality
factor of the resonant cavity. For the atoms we intro-
duce the damping constants yi and y~ for 8' and 3f,
respectively. These gammas correspond to the recip-
rocals of the T~ and T2 relaxation times in magnetic
resonance theory. "We also add to the 8' equation a
pumping term I to supply the energy lost to relaxation
mechanisms. In the absence of interaction (b=O), A
and M will relax to zero, but 8' will in general relax
to a nonzero value which we call I/pi.

"W. Weidlich and G. Haake, Z. Physik 185, 30 (t963l.
» W. H. Louisell, I'adiation and Poise in Quantum Electronics

(McGraw-Hill Book Co., New York, 1964).
» R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953)."I. R. Senitzky, Phys. Rev. 119, 670 (1960); 131, 2827 (1963).
"M. j.ax, Phys. Rev. 145, 110 (1966).
2' A. Abragam, The Princi ples of 2Vuclear 3fagnetisns (Clarendon

Press, Oxford, England, 1961).
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For the relaxation of the correlations we assume that
the field and atomic relaxation mechanisms are in-

dependent, and further that the relaxation mechanisms
for each atom are independent. We can then simply sum
the relaxation rates for the two variables to find the
relaxation rates for their correlations. Note that if we
had lef t self-correlations in the definitions of the
atom-atom correlations, they would relax differently.
In the absence of interaction, all the correlations should
relax to zero, since we assume that the relaxations do not
generate any correlations. The one exception is the
autocorrelation 6, which will relax to the value n
=Lexp(h~/kT) —1j ', where T is the temperature of
the cavity, since the cavity losses generate incoherent
thermal photons.

For the auxiliary variables we distinguish between
strong and weak atomic-relaxation mechanisms. Weak
relaxation is the end result of an extended series of
small nudges to an atom by the relaxation mechanism,

as, for example, collisions which only slightly disturb
the phase of the radiating atom. For weak relaxation
(o.;)' will relax twice as fast as (o;). Strong relaxation is

the average result of catastrophic events to individual

atoms; for example, a collision so hard that the atom
completely forgets what state it was in, or in a hydrogen
maser, ' the atom escapes from the storage bulb. If
the catastrophic events are randomly distributed in

time, we can represent strong relaxation by replacing a
sum over a large number of atoms by an integral
over the times at which the atoms appear and are
exposed to the strong relaxation mechanism:

(o.(t—t ))I e &'&' '~'dt, .

Here Io represents the rate of appearance of new atoms,
. and the exponential is the probability that the atom

survives that long without a catastrophe. When

differentiated it gives a relaxation term with the
relaxation rate po. The problem with the auxiliary
variables is that they contain a product of (o.)'s but only

one sum over the atoms. In the relaxation of the
auxiliary variables the weak. relaxation rate is doubled,

but the strong relaxation is not. Let yo be the strong
relaxation rate, presumably the same for 0-' and o-+;

and let py p2 be the weak relaxation rates. Then, for
examPle, M relaxes at the rate Ys ——Yp+Pp', whereas I
relaxes at the rate Yp+2Ys . The source terms for a-*

must also be distinguished. We let o.p=o*(0) represent
the average state of the atoms supplied by the pump
and 0-~ the average state after the weak relaxation y~'.

Then the source term I in the 8' equation is made up of

Iogo from the strong relaxation and Sy~'0-~ from the
weal relaxation. Similarly, U will have the source
Ipo ps+2W7g'a, .

This completes the development of our equations of

motion. As a reference point we now list all of these

equations. For the macroscopic variables including the
correlation corrections we have

A = —PA ibM- , (10a)

M = vp—M+ibWA+i bD, (10b)

W=I—YrW —2ib(M*A —MA*)+2ib(E —E*). (10c)

For the correlation variables we have

6= 2PFs —2PG—i b(E—E*),
R= 2PR—2ibF- ,

D= —(P+vg)D+ib( 2AE*—+2A*F
2M*R+—2MG B+M+—E), (11c)

E=—(p+Yp)E+ib(C+AD*+WG
+ .,'E+-', W-—I), (11d)

F= —(P+Yp)F+ib ( II+AD—+WR+L), (11e)

B= —(v r+p p) B+ib (2ME 2M*F-
+2A*II 2A C+ WD—+A V), (11f)

C= 2v pC+ib (—WE*+AB* WE A*B—), — (11g)

II= 2y pII+ 2i—b (WF+A B), (11h)

V= 2Y r V+4i —b (MD++A +B M+D AB—+) . —(11i)

(11a)

(11b)

For the auxiliary variables without correlation correc-
tions we have

(125)J= —(Yp+2vp') I+ib(AE*—A*E),

vl alM (vp+ Yl +72 )E
+ib( 2AI+2A*L+A—U), (12b)

I = —(yp+2v p')L+2ibAK,

U =I po p +2W71 at ('Y p+ 2&1 ) U
—4ib(AE* —A*E) .

(12 )

(12d)

Gordon" has recently attacked the laser problem by
expanding the density matrix as some operator elements
times a weight function I', which depends on c-number
variables. He then finds an equation of motion for the
weight function in a Fokker-Planck form. Moments of
the weight function correspond to expectation values of
the operators. By computing moments from Gordon's
Eq. (3.9), one can reproduce Eqs. (10) and (11) above,
except that in Gordon's model the auxiliary variables
are neglected. It was particularly gratifying to find that
the relaxation model used by Gordon (attributed to
Lax") for the density matrix gives just the source and
relaxation terms which we introduced in Eqs. (10) and
(11)

IIL SOLUTIONS OF EQUATIONS

The solution of the macroscopic equations (10) with-
out the correlations has been discussed in our previous
publication" and will not be reiterated here. We merely

P4 J. P. Gordon, Phys. Rev. 161, 367 (1967).
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note the solution for steady-state oscillation:

M=i (P/b)A,

W= F2/b'

(13a)

(13b)

&'= h'»2/4b') (&
—1) (13d)

with the threshold for oscillation at s=1.
The steady-state solution of Eqs. (12) for the

auxiliary variables is somewhat messy for the general
relaxation rates given. We here contrast two extreme
cases to illustrate the difference. If the relaxation is
entirely weak, we find a steady-state value

s E

A*A =I/4P y»—g/4b'. (13c)

The phase of A is undetermined. If we let r =
~
A

~
and

define the relative pumping parameter s = I/I~h,
where It~ ——Pyiy~/b', then (13c) becomes

(d/dt)(G+ReR) =2' 2—P(G+ReR)
+2b Im(E+F), (14g)

(d/d&) ReD= —(P+yi) ReD —2br Im(E+F)
2P—r(G+ReR)

+b Im(B 3E—E)—, (14h)

(d/dt) Im(E+F) = —(P+y, ) Im(E+F)
+ (F2/b) (G+ReR)
+2br ReD+b(C R—eH)

+b(2X+ ', W— J+-ReL—), (14i)

(d/dt) ImB = —(pi+f2) ImB
—2Pr Im(E+F) —2br (C—ReH)

+ (Py2/b) ReD+ br V, (14j)

(d/dt) (C ReH) =——2pa (C—ReH)+2 (Py2/b)
XIm(E+F)+4br ImB, (14k)

(d/dt) V= 2yiV—8Pr R—eD —8br IrnB; (141)

But if the relaxation is entirely strong, we get

P&, s(s —1)

2b' (4s —3) (4s —3) S

(14a)(d/d&) ImR= —2p ImR —2b ReF,

(d/d[) lmD= —(p+yi) ImD —2br ReE
+2br ReF 2Pr ImR —b ReB, (1—4b)

(d/dt) ReE= —(p+y2) «E+ br ImD, (14c)

(d/d() ReF = —(P+y2) ReF—br ImD
—(Pp2/b) ImR+ b ImH, (14d)

(d/dt) ReB= —(yi+y2) «B
—2Pr ReE 2Pr ReF-
—2br ImH —y~,/b) l~, (14e)

(d/dt) ImH = —2y2 ImH+2 (Pym/b) ReF
+2br ReB; (14f)

which has a quite different dependence on the pumping,
but the same order of magnitude otherwise. In the
following we shall carry the auxiliary variables as J, E,
etc., except that we will use the result ReL= —J,
which is independent of the relaxations.

We now face the equations for the correlations. If the
correlations are negligible in Eqs. (10), then we can
use the steady-state solutions (13) to evaluate A, 3f,
and W in Eqs. (11).We then have nine coupled linear
equations for the correlations. Of the nine correlation
variables, 6, C, and V are real and the rest complex.
In terms of real variables there are 15 coupled equations.
But by taking real and imaginary parts in (11) and
forming some simple linear combinations, we can
separate the 15 equations into two sets of six and one
set of three.

g= (G+ReR)/r',

d = (ReD)/Wr,

f= Im(E+F)//ImMr,

k = ImB/ImMW,

h= (C—ReH)/(M(',

e= V/W'.

(15a)

(15b)

(15c)

(15cl)

(15e)

(d/dt) (G—ReR) = 2Pn —2P (G—ReR)
+2b Im(E —F), (14m)

(d/dt) Im(E—F)= —(P+y, ) Im(E —F)+ (P~,/b)
X (G ReR)+—b(C+ReH)

+ b (-,'X+-', W—J—ReJ.), (14n)

(d/dt) (C+ReH) = —2y2(C+ReH)
+2(Py, /b) Im(E —F) . (14o)

We have chosen the arbitrary phase of A to vanish so
that A =r.

Equations (14a)—(14f) form a set completely de-
coupled from the other nine. Since they contain no
inhomogeneous terms, we can assume that they are
initially zero and then they will remain zero. This
trivial disposition of six of the variables does not occur
if the cavity is off tune.

Equations (14g)—(141) also form an independent set.
Since they do contain inhomogeneous terms, they will
have a nontrivial steady-state solution. This can be
found by setting the derivatives to zero and systemat-
ically eliminating variables among the six equations.
The algebra is simplified by working with normalized
correlation variables, or what statisticians call correla-
tion coefficients of the form {Ox')/{x){y).

We define
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Using (13a) and (13b) for M and W, we substitute
these definitions into (14g)—(141), set the derivatives to
zero, and find the steady-state equations:

(16a)

(P+vo) f v2g—2vo—d P&=—v2P, (16b)

(P+~,)d+ ,",(-1)-(f+g) Pk-= Pq-, (16 )

where

I'i =
v2PPv is+ 2Pvo (s—I)+pi(v i+v2) sf,

I'o =2»2P (&—2) —(»+»)s),
I'4 = 2P'7 i(s I)—+2Pv P (s 1)—Pv—iv2(s' «—+4)

+2pvP(s —1)+en 2(vi+v2)s',
r.=2~,y2+P„—Pv, (;—3)+~,b,+~,).j.

k —f—2k=0,

(71+'y2)k+opl(s —1)(f+k) Y2d Y2V= 01

v+ (s—1)(2+k) =0,

where the inhomogeneous terms are defined by

p= L-:(~ +1)-2(~/W) j/",
q= Pyb(ImZ)/Pr](W,

u=n r'.

(16d)

(16e)

(16f)

(17a)

(»b)

(17c)

However, in most maser systems the relaxation rates
are widely different. We have previously shown" how
this fact could be used to simplify the dynamic macro-
scopic equations (10) for two cases. We now consider
these same two cases for the solution of Eqs. (18).

In solid-state lasers we usually have po))p, pi, that
is, the polarization relaxes much faster than the field
or population difference. If the correlation coefficients
are all the same order of magnitude, we can neglect
the P term in (18a) and obtain immediately

d= o(p—+I)
We have used cV= ( Py o/'b)q s, where the factor

g = (yo+Vi')/(Vo~o+Vi'~i)

is of the order of unity.
Considering the relaxation rates to be all of the same

order of magnitude and the pumping parameter s to
be of the order of unity, we can see immediately from

Eqs. (16) that the normalized correlations are all of
the same order of n1agnitude as the inhomogeneous
terms p, q, and N. The ratio J/W is less than or of the
order of unity, so that p is of the order of 1/r', or, from

(13d), b'/y, y2. Similarly the ImE term in q is of the
order of unity so that q is of the order of 1/W or
b'/Pp& Of cours.e, 44 is just the ratio of thermal energy
to coherent energy in the cavity. As a generality we can
therefore say that the correlation coefficients are of the
order of the square of the coupling parameter divided

by the product of two relaxation rates. For typical
systems this ratio may be 10 or smaller. Small values
of the correlation coefficients mean we can neglect the
correlations in the macroscopic equations (10b) and

(10c), which is what we set out to demonstra, te.
To actually solve Eqs. (16) we use (16a), (16d), and

(16f) to remove g, k, and o from the other three equa-

tions, leaving

2y, d 2pk =pop+go—m, — (18a)

(p+.,)d+~ ( -1)f-pk=-pq--:~ ( -1) (»»
(q,+v ) ko+svi(. 1)f+vo(s 2)d= o— (»c)—

These have been solved in a straightforward manner,
but the solutions are rather lengthy and no more
enlightening than the qualitative remarks just made.
For example, if we insert the solution for f into (16a),
We fllld

g= (r,p+r, q+I og)/I 4(s—1),

Ke specialize even further by noting that, for the laser
case, J/W is the order of M'-/W' or yi/y, , i.e., small

compared to the first term in p. Also, at optical fre-
quencies 8((1, so that I is small compared to p. Hence
the dominant contributor to driving the correlations is
the first term of p, which is traceable back to the terms
in (11d), which we earlier identified as the source of
spontaneous emission. For the laser case we thus have

d= —-'(~s+1)/ ',
and similarly, from (18c),

k = 4 (ps+1) (s—2)/sr'.

The other correlation coefficients are also of the order
of 1 over the number of photons present, which for
lasers well above threshold may run from 10' to as
high as 10".

Now that we know the answer, we can try to argue
why it should be expected. For our laser case, the
polarization relaxes faster than the field, or, in other
words, the field persists after the polarization 3f or
correlation E driving it has decayed. The polarization
and correlation present is only that which is immediately
driven by the field present. Hence the correlations
should bear the same relation to the polarization as do
the amounts of incoherent and coherent field driving
them. But the ratio of spontaneous (incoherent) to
stimulated (coherent in our case) emission is well
known to be 1 over the number of photons present. "
At best this is an order-of-magnitude argument which
cannot reveal the complex dependence on the pumping
parameter s.

In the case of a hydrogen maser' we have P))yi, yo ,
'

that is, the field relaxes much faster than the atomic

"L. I. SchiB, Quuntues 3fechanics (McGraw-Hill Book Co.,
New York, 1955), p. 399.
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variables. If we neglect the y2d terms in (18a), we (21c).
immediately obtain

~=-l(~./p)(p+ ),
P= E2P(P+».) ~—"("+1)j/2(P+~.)',
Q= L2Pn —72(vs+1)3/2 (P+v~).

and, from (18b),

c= v
—:(~——/P)(s 1)N—:(~——lP)(P+n)

Since p is of the order 1/r' or b'/yiy2, then (y2/p)p is

of the order of b'/pyi or 1/W. Hence the correlation
coeKcients are of the order of 1 over the number of
active atoms present, a qualitatively different result
from the laser case, but agreeing with Weidlich and
Haake, " who also assume this case.

We can argue for this result too by noting that it is
now the atomic polarization which persists, while the
field rapidly damps to that value immediately generated
by the polarization present. Hence the correlation
coefFicients should be determined from the atomic side.
Now atom-atom correlations occur only through the
mediation of the field, since we assume the atoms are
not directly coupled. An atom is correlated with that
part of the field that it itself has generated. A second
atom will become correlated with the first atom by
interacting with the field generated by the first atom.
But only 1/X of the field seen by the second atom has
been generated by the first, where E is the number of
radiating atoms. Hence the correlation coefficients
should be of the order of 1/E.

Actually, for the hydrogen maser, the thermal
photon number n is about 4500, so that the thermal
noise term N dominates the correlations generated by
the radiation process or by stimulated emission. For
typical operating conditions the correlation coefficients
are about 10 8.

The remaining three correlation equations (14m)—
(14o) were put aside since they contain a new feature.
If we set the derivatives to zero and try to solve for
their steady state, we soon come to a contradiction. '

Equations (14m)—(14o) do not have a steady-state
solution. To find what kind of solution they do have,
we can form the following linear combinations:

P=G ReR (b/P) Im—(E—F—),

Q =G ReR —2(b/P) —Im(E —F)
+ (b/p)'(C+ReH) . (20b)

Normalizing P and Q by dividing by r', we obtain the
same kind of results that we found for the other correla-
tion coe@cients. However, when we put the steady-state
value of P into (21a), we find

G—Res= P~,'(P+~,)-'( 2n+q s+1)t. (22)

Although we have managed to confine this linear
increase with time to a single variable, it actually
permeates the entire system, making all our solutions
pseudo-steady states. From (20a), ImE will contain
this increase and hence will eventually become signif-
icant in Eq. (10c), upsetting our solutions (13) for
the macroscopic variables and invalidating the main
thesis of this paper —that the correlations are negligible.
To find what happens then, Eqs. (10)—(12) must all
be solved simultaneously. We leave this problem for a
future paper.

A physical understanding of Eq. (22) appears in
Sec. IU. In the meantime, if we divide it by r, we
obtain the rate at which G—ReE. grows to a significant
level, namely, a relaxation rate times ( 2n+q s+1) /r'.

For the cases of negligible correlation considered in this
paper, we have r'))fs, qs. Thus G—ReR grows much
more slowly than the rate at which our other variables
approach their pseudo-steady states. We have a con-
siderable regime in time after achievement of the
pseudo-steady state and before it is appreciably changed
by the growth of 6—ReR. For lasers it may take any-
where from 1 to 10' sec for the correlations to become
signi6cant. For the hydrogen maser it takes about a
week.

IV. CLASSICAL INTERPRETATION
OF CORRELATIONS

In our previous study" of the macroscopic equations
we introduced separate variables for the phases and
amplitudes of the field and polarization:

A =re" )

The physical significance of these variables will be
~ d. S I . f y - K 14 ~ Here r, p, 8, and ~ are real and have the steady-stateelucidated in Sec. IU. In terms of E and g, Kqs. j14mj—

(d/Ct) (G—ReR) = 2PP+ 2Pn, — (21a)

(d/Ct)P = (P+q, )P PQ+2Pn- —
—-', y2(rts+1), (21b)

r'= (pic,/4b') (s—1),
t =(Plb)r,
p=0,
0 arbitrary.

(d/dt)Q = —2 (P+y2)Q+2Pn —y2 (rts+1). (21c)
If we choose zero for the arbitrary value of 8 and then

We can now find steady-state solutions of (21b) and consider small fluctuations of 2 and M, we would
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relate them to fluctuations in r, p, p, and 8 by

ba= br+irb8,

bm =i' ti—b8+tiby .

(23a)

(23b)

All other commutators vanish.
Using Eqs. (23) in the definitions (8), we can express

our correlation variables in terms of these Hermitian
residual operators. Solving for the expectation value of
product pairs of the new operators, we then obtain the
following list; for noncommuting pairs we have written
the symmetrized form (curly brackets denote the
antic ommutator):

(brbr) = —', (G+ReR+-', ),
(brbti) =-', Im(E+F),

(brbw) =ReD,

(bpbti) = ,'(C ReH)+4i-N —,'J+', ReI-, ———
—',(fbp, bw})= ImB —ImE,

(bwbw) = V+N —U,

-,'((br, b8})= (2r) ' ImR,

(bpb8) = (2r) ' Re(E—F),
(bwb8)=r ' ImD,

(24a)

(24b)

(24c)

(24d)

(24e)

(24f)

(24g)

(24h)

(24i)

='((br by})= (2p) ' Re(E+F)+ (2r) ' ImR, (24j)

-'(fbti by})= (2ti) ' ImH+(2r) ' Re(E—F)
—(2p) ' ImL, (24k)

-'((bw by)) =ti—' ReB+r ' ImD —ti ' ReE )

(b8b8) = (2r') '(G —ReR+-', ),
6 L. Snssirind and J. Glogower, Physics 1, 49 (1964).

(241)

(24m)

Instead, however, we shall use Eqs. (23) to define new
Hermitian operators br, bp, , bp, and M from the residual
operators ba and bm. Then Eqs. (23) are exact and
unambiguous since they are merely a decomposition
into Hermitian and anti-Hermitian parts plus removal
of some scalar factors. Of course, 88 cannot then be
strictly interpreted as phase, but we thereby avoid
the problem of trying to define a quantum-mechanical
phase operator. "We shall continue to think of the new
operators as classically representing Quctuations of
amplitude and phase, but we must remember that it is
meaningful to do so only if the Quctuations are small.
The four new operators together with Re obey the
commutation relations

[br,b87= [br,by7=i/2r,

[bt,by7= (i/2t ) (lf'+bw)

[bw, by7= —(2i/p, ) (ImM+bti),

[bw, bti7 = 2i ReM 2iti (—h8 by) —.

(b8by) = (2r') '(G—ReR+-', )
—(2tir) ' Im(E —F)

= (2r') '(1'+'-) (24n)

(byby)= (2r') '(G—ReR+s) —(ter) 'Im(E —F)
+ (2ti') '(C+ ReH)+ (4ti') 'N

—(2t ') '(J+ReL)
= (2r') '(Q+-')+(4t ') '

X (N —2J—2 ReL) . (24o)

We can now restate the results of Sec. III. We first
found from Eqs. (14a)—(14f) that ImR, ImD, ReE,
ReF, ReB, and ImH were all zero. Comparing with
Eqs. (24g)—(241), the classical interpretation is that the
phase fluctuations are not correlated with the amplitude
fluctuations. This is true only when the cavity is
exactly tuned to the atomic resonance frequency.
Similarly the correlations we found from Eqs. (14g)—
(14l) are interpreted as amplitude correlations (24b),
(24c), and (24e) or amplitude fluctuations (24a),
(24d), and (24f). Thus the relative amplitude Ructua-
tions of the maser field are given by [see (15a)7

(brbr)/r'= ,'g+ ,'r '. —-
For a pure coherent 6eld, g vanishes, and hence the
second term above represents the unavoidable Quctua-
tions due to the quantum-mechanical nature of the
field (vacuum fiuctuations). The correlation coeKcient
g, given in Eq. (19), contains the additional fluctuations
due to the interaction with the atoms.

The combinations F and Q defined by (20), and used
to solve (14m)—(14o) are now seen to be related to the
phase correlation and the Quctuations of the relative
phase y, respectively (24n) and (24o). They are small
like the other correlations. The culprit which grows with
time is the phase Quctuations of the field:

(b8b8) =Pcs'(P+ys) '(n+ 'rts+ ,')t/r'+ 'r--' (2-5)-
Such behavior, analogous to Brownian motion, '~ is
well known in the noise theory of self-oscillators and is
often loosely referred to as a random walk of phase.
In our earlier paper" we derived the n term due to
thermal noise of the cavity by introducing a classical
I angevin noise source into the macroscopic equation
(10a). In (25) we also have the spontaneous-emission
contribution [proportional to s (its+1)7 and the vacuum
Quctuations. The latter do not increase with time, and
so are soon swamped by the other contributions.

Equation (25) tells us that the time-increasing solu-
tion found in Eq. (22) is not as bad as we first thought.
It is just the phase that is getting muddy; the maser
still continues to oscillate with the same amplitude.
When (b8b8) becomes comparable to unity, our solutions
will be changed since (b8b8) contributes to (10c).
Also, the interpretation of M as phase will become

~~ M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323
(1945).
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questionable. Still, increasing incoherence is the correct
interpretation. Of course, if we measure the phase of a
maser, we will always find that it has one. The meaning
of Eq. (25) is that if we measure the phases of an
ensemble of independent, but identical masers now, and
then remeasure them later, they will have wandered
away from each other.

If, as others have done, we assume the phase Quctua-
tions have a Gaussian distribution, then the autocorrela-
tion function for the field becomes (e's') = exp (—s (&08&))
and the maser output has a Lorentzian line shape with
a half-width at half-power of

g~ = (8080)//g&=Pyss(P+y ) (I+iris+ rs)/2rs. (26)

This linewidth agrees with that calculated by Haken"
and by Lax,"both of whom used quantum-mechanical
Langevin noise sources in the Heisenberg equations of
motion. For the laser case of large y2, the linewidth has
also been calculated by Sauermann" and by Scully and
Lamb. "However, there seems to be some disagreement
on the interpretation of the individual terms in the
linewidth. Lax and Sauermann call -', gs the spontaneous-
emission term. The -„which in their work came with
the n, was considered due to the vacuum Quctuations of
the field. We interpret -', ris+ —', together as the sponta-
neous-emission part, since it is proportional to the
steady-state number of atoms in the upper state. Our
vacuum fluctuations would be the extra term in (25)
which does not contribute to the linewidth. In any
event, we have a derivation for the phase Quctuations
which is independent of the assumptions used in the
Langevin technique.

V. SUMMARY AND DISCUSSION

We have shown that the semiclassical approximation
in the theory of a simple model for masers or lasers is
very good whenever the photon Incumber generated by

's H. Haken, Z. Physik 190, 327 (1966).
~9 M. Lax, in Physics of Quantum E/ectronzcs, edited by P. L.

Kelley, B. Lax, and P. E. Tannenwald (McGraw-Hill Book Co.,
New York, 1966), pp. 735 747. —

+ H. Sauermann, Z. Physik 189, 312 (1966).
3' M. O. Scully and W. E. Lamb, Phys. Rev. 159, 208 (1967).

stimulated emission is large. We have also shown how
corrections to the semiclassical theory can be found
quantitatively by calculating correlations or second
moments. These same calculations give expressions for
quantities interpretable as phase and amplitude
Quctuations when the semiclassical approximation is
good.

The Langevin noise source theories of Haken" and
of Lax,"which were successfully used to calculate the
phase Quctuations, could also be used to calculate the
correlations if sufhcient labor were expended in that
direction. With suitable assumptions about the nature
of the noise sources, the I angevin technique also gives
the spectral distribution of Quctuations, whereas our
moment method gives only the total Quctuations.
Another approach"'4 "has been the equation of motion
for the density matrix, with terms added to simulate
dissipation. This equation then resembles the Fakker-
Planck equation of statistical mechanics. If it can be
solved, it gives the complete statistical distribution of
the variables, but so far headway has been made only
with the case p&,y&))p.""Our second-moment equa-
tions can be readily deduced from the density-matrix
equation. Both the Langevin and Fokker-Planck
methods thus can yield more information than our
approach. However, the second moments are adequate
for the purposes of this paper, require fewer assump-
tions, and can be solved for arbitrary relaxations.

Correlations in the case of a maser amplifier have also
been investigated. For a, linear amplifier the E and MA
terms in (10c) are dropped as part of a small signal
approximation. The resulting solution of the macro-
scopic equations (10) for the amplifier has been given
previously. "The correlations are found from Eqs. (11)
just as for the maser oscillator, but with less work.
The result is that the normalized correlation d is of the
order of (n+1)/W. Hence the correlation term sbD
in Eq. (10b) can be neglected. The problem of increasing
phase Quctuations does not occur, since the phase of the
maser amplifier is determined by the phase of the signal
that it is amplifying.

"W. Weidlich, H. Risken, and H. Haken, Z. Physik 204, 223
(1967); H. Haken, H. Risken, and W. Weidlich, ibid, 206, 355
(1967).


