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Lindhard Dielectric Functions with a Finite Electron Lifetime*
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The Gnite-electron-lifetime expressions for the longitudinal and transverse dielectric functions of a free-
electron gas obtained by Lindhard in the self-consistent-field approximation are examined. It is shown
that these results are incorrect, and appropriate expressions are developed for the case where the system
can be characterized by a single relaxation time.

'HE free-electron-gas dielectric response functions,
both transverse and longitudinal, were first

derived by Lindhard' in the random-phase or self-
consistent-field (SCF) approximation. This calculation
was done in detail for the electron lifetime 7.= ~, but
a scheme for incorporating a 6nite r was indicated. It
is the purpose of the present paper both to demonstrate
that the hnite-r generalizations are incorrect and to
develop correct expressions. We consider only the case
where the system can be characterized by a single r (as
in s-wave scattering), and do not treat more complex
scattering situations.

TRANSVERSE DIELECTRIC FUNCTION

Since the transverse dielectric constant has been less
extensively discussed in the literature than the longi-
tudinal, we present here a brief derivation thereof, using
the self-consistent-field technique of Ehrenreich and
Cohen. '

Consider a transverse electromagnetic wave propagat-
ing in the s direction with the electric Geld in the x
direction. We can then write the single-particle Hamil-
tonian for particles of charge —e and mass ns as

H=Hp+Bt,
where Ho is the usual kinetic energy term and, to
lowest order in the vector potential A,

IIi (e/mc)A, p„—— (2)

where c is the velocity of light, p, is the x component of
the canonical momentum, and A is the x component of
the vector potential. Wave functions

~
k)= V—'I'

)&exp (ik x), with V the volume of the system, yield

&o(k)="(k&, (3)
where so= It'k'/2m.

To lowest order in the perturbation, the equation of
motion for the single-particle density matrix operator
p is

@(~p/~~) = Ejf,ph=(&o, prh+E&i, poj

We have written
P=Po+Pi,

* Work performed in the Ames Laboratory of the U. S. Atomic
Energy Commission. Contribution No. 2400.' J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 28, No. 8 (1954).' H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, ')86 (1959).
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Note that one factor of (~+is) has appeared from the
time derivative of the density matrix.

Since the x component of the one-particle current
density operator is

jg op= set 5(x xe)'vs+'vg5(x xe)$ y (10)

where v, is the operator representing the x component
of the velocity and x, is the position operator, the
current density for the system is

j =Tr(pi. ")
Now v= (p+eA/c)/m and the Fourier transform of A,
can be written

A, =Q Ape 'o'*po, , ppo„, p.
'

It is then a straightforward exercise to show that the
Fourier transform j,(q) of the current density becomes

, fo("+o)—fo(")
j*(q)= -i —

i

km] cv ~ so+'Ii (co+$$)

ne'
&(Ao8o phoo, p Ao8o plo p (13)

15C

where n is the mean electron density.
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where p~ is the part of p associated with the perturbation,

po(k&= fo(e~) )k&

and fp(eo) is the equilibrium statistical distribution
function. If we take Inatrix elements between the states

~
k) and

~
k+ q&, Eq. (4) becomes

i'(8/c)~)(k~ pr~ k+q)= (ek eo+o)(k~ pi
~
k+tl)

+Lfo("+o)—fo(eo)Ão(~) (7)
where

JI, (~)=(k~e, ~k+ tl&.

We now assume that the perturbation has a time
dependence expL —i(ro+is)t], where, in the usual case,
s —+ 0 serves to switch the perturbation adiabatically on
in the remote past. With this time dependence, Fq. (7)
can be written
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The Fourier-transformed electric Geld is given by

1 BA~
E,(q)=-

c 8t

and, since the time dependence of pi is also that of A,
we have

E.(q) = i(4o+is)A, /c. (14)

Note that a second factor of (4o+is) has emerged from
the A-to-E conversion. Since q has only a s component,
we can use Eqs. (13) and (14), the definition of the
transverse conductivity 0-&,

i*(v)=~ (v*~)&.(v) (15)

and the definition of the transverse dielectric function e~,

e ~ (g4, 4o) = 1+47I M'
~ ($~,4o) /oo ~ (16)

to write
4rr feb '1

oi(q„4o) =1—
~

——P k,'
oo(4o+is) km V &

fo(o~+„o)—fo(o~)
X — +, (17)

ok~qapc og+k(4o+zS) m—
A

where k is a unit vector in the s direction. Allowing q an
arbitrary direction rather than being confined to the s
direction, our expression for ~& becomes finally'

co„'
o, (q,4o) =1-

4o(4o+iS) 2m' V

[&'—(k q)'iv'3[fo(. + )—fo( )j
Xg +1, (18)

k op+ o
—op+ k (&o+zs)

where 4op= (4irrie'/m)"' is the plasma frequency.
This derivation has been based upon an interpretation

of s as an infinitesimal with the s —&0 limit tacitly
assumed. To incorporate a finite electron lifetime we
now identify s as r ' where r is the electron lifetime.
Our expression for e, (q,4o,r) with r finite differs from
that of Lindhard' in that the factor 4o(o&+i/r) appears
instead of oo' outside the bracket in Eq. (18). The
presence of this factor is clearly warranted as is evident
from the above derivation.

Writing the Fermi wave vector as kg, the Fermi
velocity as v+, and using the notation of Lindhard, '

s= q/2kp,

4o =4d+1/r ~

I =oo /g'op ~

we can write, after integrating,

o, (q, (o,r) = 1—(oip2/cod') f~, (20)

'This equation is the analog of Eq. (3.14) of Ref. 1. Note,
however, that there is a factor of —, missing in the 6rst term within
the curly bracket in Eq. (3.14) and also that the factor (co+is)
appearing outside the summation in Zq. (23) below is just given
as co in Eq. (3.14) of Ref. l.

Gdy 3
o&(q,~,r)a=1+

4ooo' 2 (q/')'

X {q&'—[(ql')'+ la tan '(qP)), (22)
where

1'= wpr/(1 mr)— (23)

It should be noted that the Soltzmann limit appears
in the correct form only with the correction to the
Lindhard expression. Since the s~0 limit of the
self-consistent-field dielectric function corresponds to
the region of validity of the Soltzmann equation result,
and since the incorporation of a finite electron lifetime
into the Boltzmann equation is straightforward, the
fact that the corrected e~ of Eq. (20) reduces in the
Boltzmann limit to the correct form is convincing
evidence of the validity of the correction obtained
herein.

To make this point in a somewhat more dramatic
way, let us consider the following limit for the case of
finite r. Suppose co=0. Then from the Lindhard
expression o, (q,O,r) = Oo., whereas from Eq. (20)
0, (q,O, r) is finite. Now consider q~O. Then from
Eq. (20)

lim o&(q,O, r) = ne'r/m',
@~0

the correct result. This limit is also obtained if, in
Eq. (20), we first let q

—& 0 and then take 4o —& 0. The
reason that the Lindhard expression fails in these
limits is that for q

—+ 0 it does not reduce to the correct
classical limit, o(4o, r),i„„.«i= 1—4o„'/4o4o', whereas Eq.
(20) does. 4

LONGITUDINAL DIELECTRIC CONSTANT

In the derivation of the transverse dielectric function
above, the appropriate finite-lifetime expression arose

The expression here given for e(co,7)oiasaje ] is valid, for free
electrons, within the framework of the SCF approximation (or
random-phase approximation) when g ~ 0. This is discussed,
along with some other points concerning the incorporation of
lifetime effects into dielectric functions, by H. Khrenreich and
H. R. Philipp, Phys, Rev. 128, 1622 (1962).See also H. Ehrenreich,
in +he Optical Properties of Solids, edited by J. Tauc (Academic
Press Inc., New York, 1966), p. 106.

where
3 ps —44'+1)

f&= o (s'+ 3N"+1) —— [1—(s—44')'g' in~
32z &s—u' —1P

(s+I'+1
+[1—(s+u')'j'ln~ . (21)4+u' 1—

The correction to the transverse dielectric constant,
deduced above then involves the replacement of the
factor 4o

' of Ref. 1 by the factor (4oro') ' in the multiplier
of f,.

If we consider q&(kr or s —& 0, Eq (20. ) can be readily
shown to reduce to the transverse dielectric function as
obtained from a simple relaxation-time solution of the
Boltzmann equation:



554 K. L. KL I EW E R AND R. FUCHS 181

simply from retaining all factors of (a&+is) when they
appeared. Such is not the case for the longitudinal
dielectric constant. The problem arises in this case from
the fact that, when longitudinal fields are present, the
electron gas relaxes to the state of nonuniform density
which is induced by the longitudinal field rather than to
the uniform equilibrium state characterized by f~(e&,)
of Eq. (6).

We are herein interested in the longitudinal dielectric
function in the self-consistent-field approximation.
Since, however, we shall be drawing analogies with the
longitudinal dielectric function formalism associated
with the Boltzmann equation, we summarize the
Boltzmann equation results here. If you derive the
longitudinal dielectric constant by making the simple-
relaxation-time approximation in the Boltzmann equa-
tion (that is, you compel the system to relax to the
state of uniform density), the result is e (q&a&, r)B,

is'
~.( ",)-~.(")

el'(q, cu) =1—lim p, (29)
ev's —ex+~(~+ss)

using the time dependence described above. According
to Lindhard, the appropriate finite-lifetime generaliza-
tion of el'(q, &u) is obtained by putting s=r ', which
leads, after integrating, to

el'(q, co,r) = 1+ (3(u,'/q'vp') f„ (30)

using the notation of Eqs. (19). Since el' ——1+bio l'/~,
we find

I s—I+1
fl ——-', +—$1—(z n—')'] In

Ss —Q —1

s+I'+1
+$1—(s+u')'jln, (31)I —1

e„(q,s),r) B
——1— $(q/') —tan —'(ql')]. (24)

(Ul) ~(~+'/r)
limo l'(O, cu&r) = —i~ne'r'/m —& 0,
ca~0

(32)

where e„B is given by Eq. (24) and 1' by Eq. (23). in
the limit r —+ ~, ~~ g ——e ~. We note also the following
limiting behavior of e~ ~ and o.

~ g, the latter defined for
the longitudinal case by

el(q&M&7) B—1+47IZO'l(q&CO&T) B/M.

(i) limo.
~ B(0,co,r) =ne'r/m,

co ~0

the expected dc conductivity.

(26)

(27)

Kit tel' has shown that the longitudinal dielectric
function which takes account of relaxation to the state
of nonuniform density in the Boltzmann equation
approximation is given by

e, (q,~,r)B
(e B—1)

(25)1-'( ..—1)(q ')I'(-+'/ )/(3 .")

that is, the correct dc conductivity is not obtained. In
addition,

limel'(q, 0,7) = 1+~ '~'
@~0

(33)

which does not agree with the Fermi-Thomas expres-
sion. Hence we can conclude that el'(q, ~,r) is not a
correct dielectric function for finite w.

In an attempt to develop an appropriate dielectric
function for finite r we proceed as follows. First we will
obtain the self-consistent-field analog of e„~.Recogniz-
ing then that Eq. (25) provides a prescription for
constructing a dielectric function that includes relaxa-
tion to the nonuniform state (el) from one which does
not (e ), we will then tentatively conclude that the
appropriate finite-7' generalization of the Lindhard
dielectric function is of the form of Eq. (25), with e„
being the self-consistent-field analog of e„~.

In the limit s~ 0, el'(q, &v,r), Eq. (30), should reduce
to e„(q,co,r) B, Eq. (24).' But

(u) lime( B(qp)&r) = 1+3(u„'/q'op'&
Ql~0

(28) lime&'(q, co,r) =1-
z~0

3M&

(Vl')'(~+~/~)'

the Fermi-Thomas screening result.
The usual expression for the self-consistent-field

longitudinal dielectric constant, here denoted el'(q, &o),

X[(gl') —tan '(q/')$, (34)

which is not equal to e„&. The second terms on the
right-hand sides of Eqs. (24) and (28) differ by a factor
of (co+i/r)/~ We define e.„(q'~,r) to be that modifica-

See, for example, Ref. 2.
7 When q —+ 0, with co finite, the longitudinal and transverse

dielectric functions become equal. See, for example, the latter
reference in Ref. 4, especially pp. 124—128. Thus, as q —+ 0, the
longitudinal dielectric function must reduce to c(co,r),I„„„1=1—~„/(neo') (see Ref. 4), a limit not obtained from Eq. (30).

The insertion of a Gnite lifetime into eg'(q, oi) corresponds to a
simple relaxation-time approximation. This approximation with
the Boltzmann equation yields e„(q,co,r)&. Thus we should have
lim, o 6g (QN r)=6 (g,ar, r)~.

5 C. Kittel, QNantlm Theory of Solids (Wiley-Interscience, Inc.,
Ne~ York, 1963), pp. 326—332. In Kittel's Eq. (33), cr„ is the
longitudinal conductivity obtained when the electron gas relaxes
to the equilibrium state of uniform density, while 0' takes account
of relaxation to the state of nonuniform density. Going over to our
notation, we therefore write o„as r ~ and a' as o-' ~ so that this
equation becomes o„n=ol B(1+o(o~B/o'o)(ave/'3o, }g ' From.
Kittel's Eq. (32), c,=co/q; also, o-0=ne'r/m =~„'r/4x and a =v~r/
(1—icvr). Noting that 0. z = (co/4z. i) (e„gg—1) and cr' ~= (co/4+i)
X (6g & 1), one can readily solve for ~~ & and arrive at Eq. (25)
below.
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3(v„'((a+i/r)
E~(rlqM)7)= 1+ fi.

g Vga
(35)

As outlined above we then use the form of Eq. (25) to
write a tentative longitudinal dielectric function
&i(q)&)&)zen)

&l (q)~p )&ten

(e —1)
(36)

1—i (e„—1)(qP) '((o+ i/r)/(3(u~'7)

where e„ is given by Eq. (35).
With ei ~.„——1+4m io i t,~/co, we find

limo i (0,(o,r) =ee'r/m.
co ~0

Tlius 6g g does yield the correct dc conductivity. In
the limit or=0 and q

—+0, e~ &,„should reduce to the
Fermi-Thomas result, given in the right-hand side of
Eq. (28), whether r is finite or infinite. But,

(37)

that is, ei(q, 0,r)t,„ is given by the Fermi-Thomas
expression for all q rather than just in the limit q —+ 0.
LNote that the correct Fermi-Thomas screening is
contained in ei' of Eq. (29) but not in e„(q,cu, r),
Eq. (35).']

That Eq. (37) is true for all q is indeed unfortunate,
since, in the limit ~~0, the longitudinal dielectric
constant should contain the singularity (or the rapid
change when r is finite) for g 2k~ associated with the
Friedel oscillations. Let us put that in alternative
terms. If we consider the Lindhard finite-7 result, Eq.
(30), then, when cu ~ 0, we obtain

3M@
«'(&~0») =1+ fi I ~=o.

g 8p
(38)

When q=2kp, this expression has a singularity when
v —+~ and it is rapidly changing when 7- is finite. That
is, for all values of r such that the concept of a Fermi
surface is meaningful, '0

I
u'I «1 fora&=0 and q 2k~ and

thus the basic structure leading to the Friedel oscilla-
tions is contained in Eq. (38) even for finite r. This
suggests that Eq. (38) is essentially correct for large
il, i.e., g&k~. However, Eq. (38) is not valid for small
il, as is clear from Eq. (33).

This indicates clearly the fact that making a simple relaxation-
time approximation when longitudinal fields are present is invalid
in principle."If the concept of a Fermi surface is to be meaningful, we must
have ezr))k, where ez is the Fermi energy. This means khan'&/2m))I or k~v~~))1 or kgl))1.

tion of ei (q,co,r) which will yield, in the limit s —& 0,
t~(q)G0)t) ii. Thus~

(co+i/r)
(e —1)= (ei' —1),

so that

(e .—1)

1+iI gl' —tan '(gl')]/(ql'cur)
(39)

with e„given by Eq. (35). Note that this modification
has no effect on the q

—& 0 limit of ~~.

In the limit ~ —+0, Eq. (39) with e given by Eq.
(35) is

(4o)

where l=epv-. For q)kg, g5&)1 as discussed above, and
so

Thus the structure in ~~ describing the Friedel oscilla-
tions is contained in Eq. (39). In addition, for q«kp,
Eq. (40) reduces to the Fermi-Thomas screening result,
as it should. We then conclude that the appropriate
self-consistent-field longitudinal dielectric function for
finite r is given by Eq. (39), with e„given by Eq. (35).

In summary, we list some of the properties possessed
by this new dielectric function.

(i) When s —+0, ei(q, a&,~) reduces to that longitu-
dinal dielectric function obtained from the Boltzmann
equation when relaxation to the state of nonuniform
density is included.

(ii) For q +0, ei(q, (v, ~) —& 1——cu„'/Lcm(co+i/r)], the
classical result. Thus the correct dc conductivity is
obtained.

(iii) ei(I qI )4,0, r) contains the structure associated
with the Friedel oscillations.

(iv) lim, OLlim„o Ei(q M T)]=1+3')~'/(q'vp'), the
Fermi- Thomas screening result.

(v) When r ~~, ei(q, ~,r) becomes the Lindard
infinite-r expression.

We are thus faced with the dilemma that the Lind-
hard finite-r result seems to be valid for large q only
and e«,„,Eq. (36) together with the e of Eq. (35), is
valid only for small q.

In seeking to eliminate the low-q restriction on Eq.
(36), it seems reasonable to attempt a modification of
the denominator of the second term on the right-hand
side. The second term in this denominator arises
explicitly from the inclusion of the relaxation to the
state of nonuniform density. Since such collective
effects are most pronounced for small q, we suggest that
the denominator factor (e„—1) be replaced by this
factor in the limit s —+ 0, i.e., the Soltzmann-equation
result (e„ ii —1).This then means that the denominator
becomes identical to that in Eq. (25).Thus our tentative
expression for ei(q, ~,7) becomes

(e„—1)
ci(q,a),r) = 1+

1 i(e„ ii —1)(q/')'(a)+i/r)/(3a)„'r)
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DISCUSSION

To illustrate the difference between the Lindhard
finite-r results and the corrected equations we have
plotted in Figs. 1—4 the real and imaginary parts of the
longitudinal and transverse dielectric functions for
fixed co as a function of q. These curves have been
determined for ep ——0.85&&10' cm/sec, co„=6.61&&10"/
sec, and an effective mass equal to the electronic mass,
parameters representative of potassium. We have used
r=10'/co~ corresponding to a moderately pure metal,
and have chosen frequencies such that A@7-= 10 and 10.

As is evident from the discussion above, the difference
between the Lindhard expressions and those developed
here will be most pronounced when cur &1.For the Reeg,
Fig. 1, the discrepancy is particularly significant. The
Lindhard expression is seen to have an incorrect sign
for small q when cov-(1. This is due to incorrect limiting
behavior as q

—+0. In the limit of q~0, the longitu-
dinal dielectric constant should approach the classical
value of 1 ~~'/$—cv(a&+i/r)$, which the correct expres-
sion does. However, the Lindhard expression approaches
1—co„'/La&+i/r]'. This difference results in an incorrect
sign when cur & 1. For q ~~, both expressions give

The Ime~ is shown in Fig. 2. Again, the Lindhard
and the corrected results diGer markedly when err

7

=10 ', whereas the ~r=10 results agree reasonably
well. The factor-of-2 difference between the diGerent
expressions for Ime~ when AT= 10 and q

—+ 0 is again a
consequence of the incorrect limiting behavior of the
Lindhard result as q

—+0. This factor of 2 occurs
independent of the frequency for cur&&1.

For the real part of the transverse dielectric function,
plotted in Fig. 3, the difference between the Lindhard
result and the corrected result is minor for co7)10.
In both limits, q

—+0 and q
—+~, the Lindhard expres-

sion reduces to 1—cv„'/~' and the corrected expression
to 1 co~'/)co—(~+i/r)$. Thus, for a given curve, the

q
—+0 and the q

—+~ values are the same, since co

is fixed. This is also true for the Ime& shown in Fig. 4.
However, in this case the incorrect limiting behavior
leads to significant discrepancies between the Lindhard
expression and the corrected expression even for large
co, since, in the limits q~0 and q~~, the imaginary
part of the transverse dielectric function as given by
Lindhard becomes 0, whereas the corrected equation
gives (&v„r)2/{&ur$(&ur)s+1)}.

The question as to the general validity of the above-
developed dielectric functions is not easily answered,
particularly for the longitudinal dielectric function.
In the case of the transverse dielectric function the
finite-r expression follows directly from the self-
consistent-field approximation but such is clearly not
so for the longitudinal dielectric function. The argument
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Fxa. 1. The absolute value of the real part of the longitudinal
dielectric function as a function of q/co. The solid lines are the
corrected results, Kq. (39) using e„of Eq. (35), and the dashed
lines are the Lindhard results, Eq. (30). Regions where Reeg&0
are labeled &0. The curves were obtained using parameters
representing potassium (see text).
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FIG. 2. The imaginary part of the longitudinal dielectric function
as a function of q/ar. The solid lines are the corrected results and
the dashed lines are the Lindhard results. The curves were
obtained using parameters representing potassium (see text).
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FIG. 3. The real part of the transverse dielectric function as a
function of q/co. The solid lines are the corrected results, Eq. (20),
and the dashed lines are the Lindhard results. The curves were
obtained using parameters representing potassium (see text).

above leading to the longitudinal dielectric function
Eq. (39) is phenonmnological in nature. Since, however,
we are attempting to incorporate a phenomenological
concept, that of the relaxation time, this could perhaps
have been anticipated. The fact that a number of
limits, embodying a broad variety of physical effects,
are satisfied does engender confidence in the essential
validity of the expressions developed herein when the
scattering can be characterized by a single relaxation
time. To what extent is characterizing the electron gas
by a single relaxation time justifiable' This is the
problem we comment upon now.

If we take the temperature to be suKciently low,
the dominant scattering mechanism will be elastic
scattering of the electrons by impurities and lattice
defects. ""Suppose we then consider impurity scatter-
ing under the conditions cur((1 and q/((1, where /, the
mean free path, is defined by /=vpr. In this hydro-
dynamic regime a single effective electron lifetime
indeed characterizes the system. "It is from this regime
that both e, and e~ LEqs. (20) and (39)$ reduce to the

"D.Pines and P. Nosieres, The Theory of Quautum Liquids, f:
lVorma/ Fermi Liquids (W. A. Benjamin, Inc. , New York, 1966),
p. 188."It is important to recognize here the distinction between the
elastic scattering due to the impurities and the (far slower)
inelastic scattering due to the electron-phonon interaction. It is
the latter process that tends to restore the ground state. See J. L.
Warren and R. A. Ferrell, Phys. Rev. 117, 1252 (1960); A. B.
Pippard, in Low-Temperatlre Physics, edited by C. DeWitt,
B. Dreyfus, and P.-G. DeGennes (Gordon and Breach, Science
Publishers, Inc., New York, 1962), p. 44.

"Reference 11, p. 192. Note that in this case the scattering
need not be isotropic for the single-relaxation-time approximation
to be valid.

FIG. 4. The imaginary part of the transverse dielectric function
as a function of g/co. The solid lines are the corrected results and
the dashed lines are the Lindhard results. The curves were
obtained using parameters representing potassium (see text).

classical dielectric constant as q
—& 0. Thus, the effective

lifetime is that which appears in the dc conductivity
and whose existence leads to the Wiedemann-Franz
law.

When ~T))1, the effects of collisions cease to be
important in determining the properties of the system.
Thus we would expect the expressions we developed for
e& and e& to adequately take account of lifetime effects
under these conditions, since any treatment of lifetime
effects which embodies correct limiting behavior would
probably be legitimate in this regime. The phenomen-
ological character of 7. must be kept in mind, however,
and thus we must allow for the possibility that r may
be frequency-dependent. '

The considerations of the previous paragraph are also
valid when q/))1. Under such conditions the effects of
scattering are minor and a single-relaxation-time ap-
proximation appears to be valid, not in a rigorous sense,
perhaps, but in the sense of a phenomenological scheme
to incorporate the minor effects associated with scat-
tering. Thus, the only regimes where the single-relaxa-
tion-time approximation seems questionable for im-
purity scattering are those for which q/ 1 or ~7 1.
There is, however, strong evidence that these regimes
may also be adequately characterized by a single
relaxation time. We discuss this evidence now.

'4 Phase-space considerations suggest that + should indeed be
frequency-dependent when ~~ ez, the Fermi energy. In addition,
it has been suggested that electron-electron interactions give rise
to a frequency dependence of the lifetime. See, R. X. Gurzhi,
Zh. Eksperim. i Teor. Fix. 35, 965 (1958) LEnglish transl. :
Soviet Phys. —JETP S, 673 (1959)j.
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Suppose we consider, for the moment, the Boltzmann
equation. Let us define S'i, i, to be the transition rate
for scattering from electron state k to electron state k'.
Since we are interested here in elastic scattering (we
are still considering impurity effects), we write

W~~ ——We+ Wi cosa,

where n is the angle between k and k'. Wqq is written in
this way to allow explicitly for the inclusion of both s-
and p-wave scattering. Defining

re ' ——g W~q. and rt '=P Wqq. cosn,
gl k'

it can then be shown" that in the hydrodynamic regime
the effective relaxation time 7..« is given by

7e«VO —Tj

which is just the conclusion reached in Ref. 13. In
addition, it has been demonstrated" that if both s- and
p-wave scattering are included outside the hydrody-
namic regime, then the theoretical'surface impedance
for the anomalous skin effect when the electromagnetic
field is incident normal to the surface can be accurately
characterized by the relaxation time r, tr if rs/ri(0. 4."
Since the surface-impedance calculation is sensitive to
conditions for which ql 1 and coo. 1, this indicates that
for impurity scattering the transverse dielectric con-
stant as determined from the Boltzmann equation can
be characterized by a single effective relaxation time
for all conditions where the Boltzmann equation is valid.
Now we have above extended the calculation of the
transverse dielectric constant into regions where the
Boltzmann equation is not valid, i.e., q&kp. However,
since the peculiarly quantal properties which occur in
the transverse dielectric constant developed above
occur for just such values of q and thus are insensitive
to scattering (see Ref. 10), we can then conclude that
the use of a single effective relaxation time in the trans-
verse dielectric constant is indeed a very good approxi-
mation when impurity scattering is dominant. ~~

"S.H. Liu (private communication).
"For a screened Coulomb interaction, we would expect rolri

(0.2.
'7 Figures 3 and 4 apparently contradict this statement; the

transverse dielectric constant does, in fact, depend upon ~ for
large q. As shown in Fig. 4, the imaginary part of the I.indhard
transverse dielectric function decreases sharply to zero at g 2k+,
while the imaginary part of the corrected transverse dielectric
function approaches a nonzero value, which depends upon 7,
as q~~. There is also significant disagreement as g

—+0.
Figure 3 shows a large discrepancy between the real parts of the
Lindhard and corrected dielectric constants for all g, when
coo =10 i. For q«k~, where the Boltzmann equation is valid, the
Lindhard dielectric constant cannot be correct since it does not
agree with the dielectric function obtained from a solution of the
Boltzmann equation. When q~k~, arguments based on the
Boltzmann equation cannot be applied. It might be argued that
the Lindhard dielectric constant is preferable for q~k~ because
for such conditions it is insensitive to the value of r. We feel,
however, that this is an irrelevant question since we know of no
physically observable effects that are influenced by the value of

For the longitudinal dielectric constant the situation
is similar. Inclusion of p-wave scattering in the solution
of the Boltzmann equation leads to a correction term,
proportional to Tp/ri, added to the denominator of the
second term on the right-hand side of Eq. (25)."We
have made a numerical comparison of Eq. (25), using
r=r, ti, and the equation including p-wave scattering
for a wide range of values of 7-0 and w~. As might have
been anticipated, the only conditions for which there is
an appreciable ( &1%%),physically meaningful difference
between the two are cur 1 and, simultaneously, q/ 1.
When rs/rt 0.4——these differences are 10%%un. The
discrepancy drops to 7%% when rp/Vi=0. 3 and to

3%% when ~s/rt ——0.2. Since these differences are not
large and occur only over limited ranges of q and co, this
indicates that when conditions are such that the
Boltzmann equation is valid, the single-relaxation-time
approximation is excellent. Since, as for the transverse
dielectric constant, the quantum-mechanical extension
to the Boltzmann equation results occur in a regime
where scattering is a minor effect (q &k~), this indicates
that the approximation whereby a single phenomeno-
logical relaxation time is used to represent the effects
of scattering in the longitudinal dielectric constant is

very good when the scattering is by impurities. "
When the temperature is no longer very low, the

major cause of scattering is the electron-phonon
interaction. " In general, when phonon scattering is
dominant, the relaxation-time approximation ceases
to be valid, and our expressions for e~ and e& are of
dubious validity. However, if the temperature is such
that T &On, where On is the Debye temperature, the
conditions for which the scattering is essentially elastic
are restored. "' Thus again, for high temperatures, we
assert the validity of our expressions for e& and 6g."

In summary, we have developed finite-electron-
lifetime generalizations of the Lindhard dielectric
functions for a free-electron gas. These new functions
satisfy all the well-known limiting conditions and, when
the dominant scattering is due to impurities or when the
temperature is above the Debye temperature, are
probably valid for all physically meaningful values of

q and Go.
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the transverse dielectric constant when g~kg. The corrected
dielectric constant can thus be legitimately used for all g, and the
details by which scattering is included cease to be relevant when

g) ky.
"Here it must be remembered that the presence of a single 7.

does not imply a simple relaxation-time approximation.
"A. B.Pippard (Ref. 12)."A. C. Smith, J.F. Janak, and R. B.Adler, Electronic Condlc-

tion in Solids (McGraw-Hill Book Co., New York, 1967), p. 176.
2'This conclusion is only valid, clearly, if kT«el, the Fermi

energy.


