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Ring-Laser Mode Coupling
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Fundamentals of the physics of continuous-wave gas ring lasers, summarized in the preceding paper, are
used to establish a model of mode coupling in the limit of low excitation. It predicts a steady state with each
traveling wave composed of radiation at two frequencies, both displaced by the coupling from the cavity
resonant frequency. Inter- and intrawave instantaneous and time-average beat frequencies are computed.

1. BACKGROUND

where e is an integer and lg is the effective optical path
length measured in the same coordinate frame as the
corresponding wave number. The lengths can be pre-
dicted by the special theory of relativity, which postu-
lates that light travels at speed c in empty, inertial
space. It follows' that if the Ii and 8 waves are ob-
served in a frame attached to the rotating ring, and if
dispersion is neglected, the waves should be separated
in frequency by an amount f& proportional in first
order to rotation rate co„.

f~ =2AM„/X . (1.2)

The factor R has the dimension of length and is deter-
mined as twice the area of the ring divided by its
inertial-space optical path length I. The factor X is the
wavelength of the radiation, l/n
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FIQ. 1. Experimental ring-laser beat frequency fo
as a function of rotation rate co,.

1 M. P. Langevin, Compt. Rend. 173, 831 (1921).

RING laser supporting oscillation in a single,
fundamental, longitudinal, polarized mode is con-

sidered. The electromagnetic fields are treated as a
combination of forward (F) and backward (8) traveling
plane waves, where forward is dered as the direction of

any physical rotation of the ring about its axis. Let a
general subscript 5 denote F or 8. The wave numbers
present are given by

E's= 2rtz/l 8,

One experimental effect encountered early in investi-
gations of such rings is a nonlinearity of the measured
time-average beat frequency f& as a function of rotation
rate ~,. A typical curve of f& versus co„ is shown in
Fig. 1. At sufficiently low rotation rates, fts disappears
completely. This so-called lock-in has been explained
in terms of coupling of the Ii and 8 waves through
scattering of radiation within the laser cavity; theo-
retical formulations of the mechanism based on non-
linear differential equations have been discussed by
many authors. 2 9

A different type of analysis suggests itself as follows:
One postulates that the 6elds achieve the steady state
described in the preceding paper in terms of auto-
correlations. Let the field spatial Fourier amplitudes
be time-Fourier-decomposed. The resulting amplitude
distribution satisfies a self-consistency equation similar
to that first introduced by Lamb'0 and later extended
by Aronowitz" to the case of the ring laser; it is shown
in Appendix C. No matter what the time decomposition
is, for sufficiently low excitation, pulsations in the exci-
tation density and gain are negligibly small compared
to the total gain, making it approximately time-
invariant. Furthermore, when the time decomposition
contains only frequencies separated by much less than
a linewidth, the gain is also nearly frequency-independ-
ent. It is then interesting to derive all the implications
of a model assuming gain exactly time-invariant and fre-
quency-independent. In the following sections, the pre-
dictions of such a linear model are derived. The fre-
quency-domain techniques of linear system theory are
used. Time-invariant rotation rate is considered. The
required gains, the frequencies present, and the relative

'F. Aronowitz and R. J. Collins, Appl. Phys. Letters 9, 55
(1966).

3 C. C. %'ang, in I'roceedirlgs of the Symposium orI, Jft/Ioderrl, Optics
(Polytechnic Press, Brooklyn, New York, 1967); Sperry Gyro-
scope Co. Report No. AB-1272-0070, 1966 (unpublished).

4 Yu. L. Klimontovich, V. N. Kuryatov, and P. S. Landa, Zh.
Eksperim. i Teor. Fiz. 51, 3 (1966) (English transl. :Soviet Phys. —
JETP 24, 1 (1967}g.

~ B. L. Zhelnov, A. P. Kazantsev, and V. S. Smirnov, Zh.
Eksperim. i Teor. Fiz. 50, 1291 (1960) /English transl. : Soviet
Phys. —JETP 23, 858 (1966)g.

6 S. G. Zeiger and E.E. Fradkin, Opt. i Spektroskopiya 2l, 386
(1966) LEnglish transL: Opt. Spectry. (USSR) 21, 217 (1966)].

7 H. deLang, , Appl. Phys. Letters 9, 205 (1965).
C. L. Tang and H. Statz, J. Appl. Phys. 38, 323 (1967).

9 F. Bertein and F. Petit, Compt. Rend. 259, 2980 (1964).I W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964)."F.Aronowitz, Phys. Rev. 139, A635 (1965}.
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amplitudes at each of the various frequencies are all
computed. The observable beat frequency as a function
of rotation rate is discussed. One alternative diBerential-
equation analysis suitable for regions where the assump-
tions fail, namely, below and very far above lock-in, is
described.

Iinear techniques have previously been used to
advantage in laser problems by authors such as Bertein
and Petit, ' Kumagai and Yamamoto, "and Fontana. "
Because of their considerable simplicity, linear tech-
niques can give substantial insight about the system
being described.

2. COUPLED OSCILLATOR EQUATIONS

Several mechanisms couple the Ii and 8 modes in a
ring laser. The gain experienced by each mode has some
dependence on the amplitude of the wave in the other
mode by virtue of the competition for those excited
states of the laser population which can contribute to
either gain. 4 8 By a proper choice of isotope concentra-
tions and mean-mode frequency, this coupling can
practicallv be eliminated. '4 A more persistent mode
coupling results from reQection and scattering processes.
Radiation backscattered from one mode constitutes an
input to the other mode that can be ampliied and
perpetuated. A nonrotating inertial frame of reference
is chosen for analysis of the latter coupling mechanism.
In the absence of coupling, the F and 8 modes oscillate
at optical frequencies Qo& and Qop set by the dimensions
of the cavity and the mode dispersions such that the
corresponding wave vectors satisfy Eq. (1.1). For sim-

plicity it is assumed that Qop=Qog=Qp although the
assumption could easily be removed. In addition, low
excitation is assumed, so that dispersion is unaltered
bv changes in intensities and frequencies caused by
coupling, and Qo is a constant in the analysis. A steady-
state model of the uncoupled F or 8 mode as a linear
system comprises a pair of complex-conjugate poles
located in the frequency domain at &iQO. Since optical
frequencies are so large, the separation of those con-
jugate poles is very large compared to any displace-
ments of poles, frequency shifts, cavity bandwidths, or
spectral linewidths to be expected in the analysis of the
coupled problem. Therefore, the discussion is limited
to poles in the upper half-plane and positive frequency
components of the various signals.

The coupled F and 8 modes are modeled with single
poles p~ and ps, the exact locations of which are de-
termined in Sec. 3. An input signal to the F mode with
Fourier-transform amplitude a~(n) induces a cavity
wave with Fourier-transform amplitude

and similarly for the 8 mode,

(2.1b)

The general amplitudes A and a can stand for electric
fields or magnetic fields, or any convenient combination
thereof.

The inputs to each mode are related to the losses from
the opposite modes. The signal losses per unit time are
shown in Appendix A to be

2hnsA s(t), (2.2)

Scattered radiation generally experiences a phase
shift. The sects of the three or more mirrors in the
ring laser are represented by single phase-shift angles

&ps and Ps p (2.4)

for 8 to Il and F to 8 scattering, respectively.
If the ring laser is rotating about its axis, then in an

inertial frame frequency shifts appear at backscatter-
ing. For all rotation rates of practical concern, the rela-
tive frequency shifts are very small, and are given in
Appendix 3 as

i
bn/no

i
2Eo „/c. (2.5)
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where AQp and AQ& are passive cavity bandwidths.
The fractions of the signal losses that act as inputs to

the opposite modes are designated as

(2.3)

They can be estimated as the square roots of the in-
tensity fractions backscattered into the area of the laser
beam spot. Neglecting effects of mirror curvature, the
spot area is approximately" Xl. Suppose, for example,
that the mirror scatters light uniformly in all directions.
Then the intensity fraction is the spot area divided by
the area of comparable sphere:

Xl/4rrti =X/4rrl

The fractions Sz are then approximately

A~(n) =up(n)/(in —pp), (2.1a) 8-MODE
I Q "PI

'2 N. Kumagai and H. I. Yamamoto, IEEE Trans. Microwave
Theory Tech. MTT 13, 445 (1965).

'3 J. R. Fontana, IEEE Trans. Microwave Theory Tech.
MTT 12, 400 (1964).

'4 J. D. Coccoli iprivate communication).

FIG. 2. Ring-laser mode-coupling model.

I' G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40, 489
(&96&).
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2
sin P

Equation (3.1a) is substituted in (2.7a), Eq. (3.1b) in
(2.7b), giving

A p (0)= (SAQ)'e'~A p(Q)/
4(iQ p—p) (iQ i—80 p—s), (3.2a)

As(0) = (SAQ)'e'~As(0)/

4(iQ Ps—) (iQ+ibQ P—p), (3.2b)
where

4 FB+4BE~ (3.2c)

The amplitudes in Eqs. (3.2a) and (3.2b) are cancelled
and the resulting quadratic equations for the charac-
teristic frequencies are solved, giving

FIG. 3. Evaluation of Ap for given SdQ, @, and various Mt.

alld

where

Qsz ———', (—i p p~b0~6t)

0» ', (———iP—paSQW6t),

(3.3a)

(3.3b)

Q p= ps+ps,
6t= L(80+idp)' —( SAQ)' e'~g'~',

Ap pP ps ~

Shifts are positive for 8 to Ii scattering and negative for
Ii to 8.

When (2.2)—(2.5) are combined under the assump-
tion that co„and 80 are time-invariant, the F and 8
input-signal amplitudes are found as

(3.3c)

The characteristic frequencies are all distinct from
the poles, as is typical even of coupled lossless, gainless
oscillators. It is interesting that each mode has not one
but takeo characteristic frequencies associated with it.
This occurs because the Il and 8 modes are not the
rsormal modes of the coupled system. Note also that the
two characteristic frequencies in the Ii mode are
numerically unequal to those in the 8 mode. Thus, there
are four distinct characteristic frequencies in the
coupled system. Typically, two single-pole oscillators
when coupled yield a system with only tao distinct char-
acteristic frequencies. This somewhat unusual four-
frequency system follows the more typical pattern when
viewed in a frame of reference attached to the rotating
ring, where the characteristic frequencies become

as(&) =~gSs AQ .s' eeeAss (0+~0). (2 6)

(Throughout the paper, subscript S'AS, and where
double signs appear, the upper one corresponds to S=F,
the lower to S=B.)

Figure 2 shows the F and 8 mode-coupling mechanism
as a closed-loop system. Note that this system is not
really linear, since the operations 0—50 —+ 0 and
0+80—+ 0 are accomplished through multiplication by
e""'and e ""',respectively. This feature does not, how-
ever, lead to any difficulty in formulating the coupled
oscillator frequency domain equations, which are found
from (2.1) and (2.6), or from Fig. 2, as

A g (0)=SsAQse'»sA s (0 K)/2 (i—Q P~) (—2.7a)
(3.4a)Qssy= 2 ( s g p&(R)

Qss2= g (—i p p&$) . (3.4b)

a11d
and

A s (0)=SpAQ pe'»&A ~(0+50)/2 (iQ ps) . —(2.7b)

3. IMPLICATIONS OF THE COUPLED
OSCILLATOR EQUATIONS

The following simplifying assumptions are employed:
(a) The backscattered fractions are equal;

SP =SB=S.
(b) The Ii and 8 bandwidths are equal;

The poles and characteristic frequencies can be
specified as follows. First, steady state is assumed, con-
straining the characteristic frequencies to be real. Thus,

Re g p=0,
ImS, =0,

(3.5a)

(3.5b)

where Re and Im denote real and imaginary parts, re-
spectively. Gains adjust to compensate for coupling.
Thus the poles take the form

The characteristic frequencies of the coupled oscilla-
tor system are found as follows. In (2.7b), 0 is replaced
by 0—bQ, and in (2.7a), 0 is replaced by 0+80, giving

A s (0 BQ) =S&Qe'»&A—p (0)/2 (iQ i50 ps)—(3.—1a)
and

A I (0+eQ) =SAQe'e»A s (0)/2 (iQ+ieQ p~) . (3.1b)—

Pp i00 7I, —— —
pB —100 YB ~

Equations (3.5a) and (3.6) imply that

p p=2iQo,

QE PB ~

(3.6)

(3.7a)

(3.'Ib)
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FIG. 4. Phase variation between 8 and
F signals for SEQ/bQ= 0.90.

Note"tt =
~
tte I.

2Q.K

1-K
INERTlAL ZERO l.EVEl.

ii DETECTOR ZERO LEVEL

It is interesting that the assumed stability of signals
present implies one negative y. The pole separation

With the determination of P p and S., the character-
istic frequencies are completely specified:

DP = 2ys (3.7c) Qsi=Qp&-'; (IlQ —6t) (3.11a)

is pure real. Figure 3 shows a graphical construction
whereby Ap can be evaluated as a function of tt'0 for
given SBQ and tt. In the complex s plane, the curve

Im s '= (SZQ)' sing (3.8)

AP = (SAQ)'(sintt )/2tt0, (3.9a)

is drawn and the vectors ~SAQt,'&~' are indicated.
The appropriate Dp is such that 50+id,p lies on the
curve (3.8). Note that as ~ilQ~ decreases to ~N,

~

=SittQ
~

cos-', @~, (R evaluated from (3.3c) tends to zero.
For ~tt'0~ ( ~50. ~, there is no solution for &p satisfying
the requirement (3.5b) that S.be real. Thus the premises
of the model lead to a contradiction in this range. How-
ever, the nonlinear differential-equation techniques
described in Sec. 4 indicate that the modes are locked
together over the whole range.

The remainder of this section assumes 50 above the
lock-in value, but sufficiently close that (R is much less
than a linewidth, ensuring validity of the assumption
that gain is frequency-invariant.

From (3.5b) or from Fig. 3 it is found that

and

Ks =SAQe'4ss'/&i (M+ tR+iAP) .

SZQ&&bQ,
In the limit

(3.13)

~p and ~~ tend to zero, indicating that the waves at
Qp~ and Q~~ have amplitudes much larger than those
at Qtts and Qt.s ~ The former will be called primary
waves, the latter secondary waves. The primary ampli-
tudes are such that (3.7b), (3.7c), and (3.9a) are
satisfied.

Let ~p' and ~~' be defined as

The amplitudes At;(0) and Att(0) comprise Dirac il

functions located at the characteristic frequencies:

As(0) A slit(0 Qsl)+As2tt(0 Qs2) ~ (3 12)

I et symbols ~p and ~~ be defined as

tts ——A sg/A s.i,
and evaluated from the coupled oscillator equations
(2.7) and the characteristic frequencies (3.3):

and from (3.3c) that

6t= PQ' —aP' —(SaQ)' cosy]'t'
=iiQl[1 —r cos'(sp)][1+r sin'(&tt)])'', (39b) The signals are

tie' ——A s2/A ei
=ttsAs i/A sr. (3.14)

where
r = (SAG/K)'. (3.9c)

(etnIi'tt+tt eiQtttt)

(einBtt+tt tetntttt)

(3.15a)

(3.15b)
The cases &=0 and p=tr represent the most extreme
situations. For ttt=0, ~tt0,

~

=M,Q, and above lock-in, Consider the time evolution of the phase angle

I'or P=tr,
~

tt0,
~

=0, and for all other 50,

tttp=O,

8,= [tiQ'+ (SAQ)']'t'

0= +A it —/At; (3.16a)

between the two inodes. From Eqs. (3.15) and the(3.10a '

specific values of the characteristic frequencies (3.11)
it is found that

(3.10b) 0=(R—50+—[+(1+tta'e 'Gt')

dt
The transition to (8=0 at 60=0 is then discontinuous. —g (1+tt 'e' t)]t.tit(3.16b)
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4. CONNECTION TO NONLINEAR DIFFERENTIAL-
EQUATION APPROACH

The mode-coupling problem can be analyzed through
the time-domain differential equations

dA p/dt= ppA p+ ,'SAQe'&»A�ee""', -

+dA/dt =PEA e+ ,'SAQere»A pe "-"'

(4.1)

(4 2)

A most extensive study of this differential-equation
approach has been undertaken by Wang. 3 Others' '
have studied more complicated but essentially equiva-
lent sets of second-order equations. In his analysis,

"R.Adler, Proc. I.R.E. 34, 351 (1946).
'7T. J. Hutchings, J. Winocur, R. H. Durrett, E. D. Jacobs,

and W. L. Zingery, Phys. Rev. 152, 467 (1966)."P.Fenster and W. K. Kahn, Electron, Letters 2, 380 (1966).

A curve of 8 as a function of time in the special case
/=0, SAQ/8Q 0.9, Apt ——Aer is shown in Fig. 4. It
coincides exactly with the curve of 8 computed with
nonlinear differential equation techniques described by
Wang. (The time origin is, of course, arbitrary. ) A
curve of cose as a function of time constructed from
(3.16b) displays a distorted, nonsinusoidal shape. Such
curves seem to have been predicted first by Adler" and
subsequently by many others using nonlinear differ-
ential equation techniques for problems similar to the
laser mode-coupling problem.

Unfortunately neither the instantaneous 0 nor cose
can easily be investigated directly. But intensities are
readily observed, and will suffice to reveal at least R,
the time-average value of 8 in the ring frame. The Ii

and 8 intensities observed are

Ip= 1+ (
~p'~ '+2

~

Irp'
~
cos(+lrp'+&&), (3.17a)

Ie 1+ [lr~'——('+2]lre'[cos(+se'+&t). (3.17b)

Both are modulated at frequency (R. Modulation of the
single beam intensities at the time-average beat fre-
quency between the Ii and 8 waves has been observed
experimentally. '~ '8

Consider now the total intensity I measured by a
detector in the ring frame. Expressed in terms of the
total intensities at each of the two frequencies present,

I"IA»(1+&e) I'+ IA»(1+~p) I'
+2(Apt(1+Its) [ (Aer(1+lrp)(costs, (3.18)

where

u= /Acr(1+Ihip) —gA pr(1+1m)+(Rt.

Apparently I is a constant combined with a sinusoid
with frequency (R and intensity sensitive to the exact
phases &pe and Pep. If either Kp or lre tends to —1, the
beat signal effectively disappears. Thus there can
appear to be a lock-in even if bQ is above 50,. The indi-
cated superiority of single-beam detection of beat
signal at low rotation rate has been observed
experimentally. '8

Wang interprets the signals Ag as complex space-time
functions Ae(s, t) that have only positive frequency
parts when spatially Fourier-decomposed. In this con-
text, the phase shifts are position-dependent:

ass' 4'Ss'
~

t."=p~2I~& ~

The gains contained in ps depend on ~Ap(t)~ and
~A&(t) ~, respectively. In principle, the equations are
nonlinear. However, in the low-excitation limit, the
gain variations are tiny.

In the preceding sections, (4.1) and (4.2) have
essentially been spatially Fourier-decomposed. Steady
state defined in terms of the autocorrelations of the
spatial amplitudes has been assumed. The equations
have then been time-decomposed. In principle, the
original gain dependence on ~Ae(s, t) would be mani-
fest as a symbolic gain dependence on 0, which for
simplicity has been neglected. In each mode, two fre-
quencies separated by an amount (R have been pre-
dicted. Actually, infinitesimal pulsations in the excita-
tion density would generate additional infinitesimal
signals separated by multiples of S.These are neglected
in the linear model, but not in the nonlinear differential-
equation approach. They provide a perturbation on the
system's gross behavior predicted by the linear model.
Mainly they make the individual Ap and A& ampli-
tudes fluctuate less in time. Computations' show that
away from the low excitation limit, the pulsation s
effect on 0 is (a) nil in the &=0 case and (b) a slight
decrease in time-average value in the P=~ case. In
general, the following system of equations is to be
solved. Let

pp iQp yp, —— —
pB ZQp YB )

x= in(A p/A [,e
0= QAe —QA p.

Then in inertial space

x=y& pp+ ', SAQt
I
Ae—/A pl c-os(gpe+8+eQt)

—
i
A p/A e i

cos (ye p —0—RQt) j,
8= ', SAQ[~Ap/Ae~si-n(pep 0 eQt)——

IA&/A pl sin(gpe+0+6Qt)].

The equation for 8 agrees with that derived by Arono-
witz and Collins~ from fundamental self-consistency
considerations. At steady state in the /=0 case, Ap
and A& maintain equal magnitudes. Equality is pre-
dicted also by the linear model, so both models give
exactly the same 8.

5. CONCLUSION

Although the discussion in this and the preceding
paper is limited to ring lasers, the ideas seem applicable
to the explanation of effects that have been observed
in other systems. Consider, for example, a standing-
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wave maser with two modes excited. It is similar to a
ring laser viewed in the ring frame. The distinction
between F and 8 modes becomes that between adjacent,
oppositely polarized standing-wave modes. The coupling
parameter 5' becomes unity, and P&& and
become zero. Amplitude modulation, frequency pulling,
and locking of the modes are all predicted. Presumably
the analysis can be generalized to whatever number of
modes is present.

As another example, consider a standing-wave maser
supporting one excited mode in a weak axial magnetic
field. It, too, is similar to the ring laser viewed in the
ring frame. The distinction between F and 8 becomes
that between orthogonal polarizations. The FB fre-
quency difference is caused by birefringence of the
medium. Irregular precession and locking of the
polarization ellipse are predicted.

Since they can all be predicted quantitatively in terms
of a linear model, it is apparent that the phenomena
mentioned need not be attributed to the nonlineari-
ties of the laser medium. Instead, nonlinearities are
reserved to explain modifications evident at high
excitations.
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The quantity Qp/AQ is commonly called the quality
factor Q of the resonator.

Expression (A2c) shows that when the input signal is
turned o6 at time t, the rate of energy decay is AQ.

The introduction of gain into the cavity, such as is
produced by laser material, modifies p, to give

where
p -+ —y+iQp, (A3a)

(A3b)

with the gain G expressed in frequency units. The gain
6 depends on Geld amplitudes, so the system represented
by (A2c) has become nonlinear. It is no longer strictly
correct to call p the location of a "pole" or to describe
the system by (A2a) or (A2b). However, within the
limits indicated in the paper, linear system theory can
provide useful information about such a system.

These values of 0 are commonly referred to as half-
power points because

~

A (Q~&i&) ~', a measure of energy
density, is at half its maximum value. The interval 2y0
between half-power points is commonly referred to as
the bandwidth AQ of the resonator.

Expression (A2b) gives another familiar concept. . In
one period of oscillation, 27r/Qp, an input increment
a(r)dr decays in energy by the factor

—2z.AQ/Qp.

p = —yp+iQp. (A1)

This serves as a model of a lossy cavity resonator. Let
complex signals be added to the cavity at a rate a(t).
The resulting complex Geld A (t) within the cavity can
be obtained in three well-known equivalent ways:

(a) Components in the frequency domain;

A (Q) = a(Q)/(iQ —p).

(b) Response in the time domain;

A(t)= f' er&' '&a(r)dr.

(c) Field evolution with time;

(A2a)

(A2b)

dA (t)/dt =pA (t)+ a(t) . (A2c)

The expression (A2b) results from inverse Fourier-
transforming (A2a), Eq. (A2c) results from differentia-
ting (A2b), and Eq. (A2a) results from Fourier-trans-
forming (A2c). Expression (A2a) leads to two useful
concepts. For a(Q) = const. , ~

A (Q)
~

attains s42 its
maximum value when

~0+70=~+1/2 ~

APPENDIX A' COUPLED OSCILLATOR
EQUATIONS

Consider a linear system with a single pole located
in the frequency domain at

APPENDIX 8: FREQUENCY SHIFTS AT
A MOVING MIRROR

In principle, the frequency shift experienced by a
backscattered beam is computed by transforming the
frequency from inertial space to the rotating ring frame,
reversing the beam, and transforming the frequency
back to inertial space. The required transformations
can be computed by considering the equivalent circular
ring, "' which has radius R determined as twice the
ring area divided by its inertial-space optical path
length.

Neglecting dispersion, light travels at speed c in
inertial space. It follows that the F and 8 times taken
to traverse distance Rdg in the rotating circular ring are

dt 8 Rdb/(cWRrp„) ——.

The invariance of absolute phase from frame to frame
implies that frequency transformations are as follows.

To convert 0 from inertial space to the ring frame,
multiply by.

F wave, (c—Rip„)/c;

8 wave, (c+Rtp„)/c.

'9 J.D. Coccoli and D. A. Koso, MIT Instrumentation Labora-
tory Report No. E-1943, 1966 (unpublished).

sP E. O. Schulz Dubois, IEEE J. Quantum Electron. QK~2,
299 (1966).
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F wave, c/(c —Rcv„);

8 wave, e/(c+R~„) .
APPENDIX C' LASER GAIN

To convert 0 from the ring frame to inertial space, orders in the mirror velocity, and would not even be
multiply by: applicable for a general irregular polygon, where difer-

ent mirrors lie at different radii from the rotation axis.

When Ii radiation with frequency 0& is backscattered,
it appears in the 8 mode with frequency Qs (c—R~,)/
(c+R&o„) Qs(1—2Rce„/c). Similarly, 8 radiation ap-
pears in the F mode with frequency Q&(1+2Rco,/c).
In the ring laser, all frequencies present are very near
the cavity resonant frequency, so all frequency shifts
are approximately of magnitude

~
K/Qs ~~2R~„/c. Note

that if the ring were a regular polygon, this formula
could have been computed as the first-order approxi-
mation to the Doppler shift experienced by a wave
backscattered from a mirror moving with the ring
instantaneously but not accelerating with it. However,
the Doppler formula would not be correct to higher

n/p. sf'e,(Q„Q) =G, (Q„Q) =—
2 605+

1V (v) e+&Z s,

where the various symbols are defined in the preceding
paper.

At steady state, the laser gain Gs(Qs, Q) for each of
the four frequencies Qz&, Q&2 present equals half the
corresponding energy loss rate, which is ~0 ' times a
fictional conductivity o.z(Qs,Q), which in turn is given

by a self-consistency equation derived in the preceding
paper. Neglecting pulsations in the excitation density,
it is found that
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Measurements of wide-angle (150') scattering and of I. and M x-ray yields in tungsten single crystals
are reported as a function of crystallographic orientation with respect to an incident beam of 1.4-MeV
helium ions. Comparison of these yields establishes both lower and upper limits for the minimum impact
parameter (r; ) between a channeled ion and the tungsten-lattice atoms; these limits are consistent with

Lindhard s estimate that r;„~a,the Thomas-Fermi screening distance (i.e., ~0.11 A for He in W). A similar

comparison between wide-angle scattering and x-ray yield curves is reported for several other lattices —Al,

Si, GaP, GaSb, and U02, again the results are consistent with the predicted relationship: r; ~a. Anomalies

in published orientation studies of E, L, and M x-ray yields are shown to be due to depth eQects.

I. INTRODUCTION
' PREVIOUS theoretical' and experimentais ' work has

established that close-encounter processes such as
wide-angle Rutherford scattering exhibit extremely
strong attenuations whenever the incident beam is
aligned within a predicted critical angle of a major
axis or plane. For example, in tungsten along a major
axis such as the (111),attenuation factors of up to 100
have been observed, indicating that as much as 99%
of the incident beam is being channeled on entering the
crystal. These earlier Rutherford-scattering measure-
ments can be used to establish upper and lower limits

*Permanent address: Research Institute for Physics, Stock-
holm 50, Sweden.' J. I.indhard, Kgl. Danske Videnskab. Selskab, Mat. -I'"ys.
Medd. 34, 14 (1965).

2E. Bggh and E. Uggerhgj, Nucl. Instr. Methods 38, 216
(196S).

3 J. A. Davies, J. Denhartog, and J. I., Whitton, Phys. Re@,
165, 345 (1968).

to r;„.On the one hand, for the channeled fraction
to be as large as 99%, the "forbidden" area w(r; )'
around each atomic row must be less than 1% of the
available area. This sets an upper limit of 0.13 A for
r;„ in the case of (111) tungsten. On the other hand,
the existence of such a strong orientation dependence
also requires that r;„c anont be less than p where p
is the impact parameter of the particular close impact
process. For wide-angle Rutherford scattering of MeV
projectiles, p is typically 10 '—10 4 A; hence, these

upper and lower limits for r;„are about two orders of
magnitude apart.

In order to establish narrower experimental limits
for r;„,we need to investigate the orientation depen-
dence of processes for which p is much larger than
10 ' A. For this purpose, the characteristic inner-shell

x-ray yields are particularly suitable, since they cover
the desired range of impact parameters. Unfortunately,
g, quantitative relationship between the mean radius of


