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Electron work functions, surface potentials, and electron number density distributions and electric fields
in the surface region of 26 metals are calculated from first principles within the free-electron model. The
number of free electrons per atom is taken as the group number as listed in the Periodic Table. Grain orienta-
tion effects are not considered. The calculation proceeds from an expression of the total energy as a func-
tional of the electron number density including exchange and correlation energies as well as a first inhomo-
geneity term. The self-consistent solution is then obtained via a variational procedure akin to the Ritz
method. Surface barriers are found, in most cases, to be due principally to many-body effects, but dipole
barriers are small only for a number of alkali metals, becoming quite large for the transition metals. As one
might expect, surface energies are found to be inadequately described by this model which neglects atomistic
effects. Considering the simplicity of the model, reasonable results are obtained for electron work functions
and surface potential characteristics for all metals studied, maximum electron densities varying by a factor

of over 60,

I. INTRODUCTION

HE wealth of experimental data available today

on electronic work functions of bare metal sur-
faces! is not at all matched by theoretical calculations.
There have been numerous empirical correlations made
relating the electron work function of metals to atomic
volume, compressibility, the first atomic ionization po-
tential, the energy of the lattice, surface energy, and
electronegativity. These efforts are enumerated by
Samsonov et al2 (see also Dobretsov and Matskevich?
and Steiner and Gyftopoulos?). Also, some efforts have
been made toward formulating a first-principles de-
scription of various aspects of this quantity®® for
certain metals. However, such calculations of the total
(bulk plus surface contribution) electron work function
have been provided only for the alkali metals. The
most sophisticated of these is that formulated by
Bardeen! for Na. A free-electron model was used and
the Hartree-Fock equations were solved approximately.
This is in contrast to the progress made in overlapping
areas. For example, many-electron!! and atomistic
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effects'? have been included in theoretical studies of
bulk metallic properties of many metals. Likewise,
many-electron effects and some atomistic effects have
been included in the theory of adsorption on metals's
using modern formulations of the many-electron
problem.

A second topic considered here which is related to the
electron work function is that of the surface potential.
Recently, a calculation of the surface potential of Na
which refines Bardeen’s work by making use of a
modern many-electron formulation™ has been provided
by Loucks and Cutler* (see also Ref. 15). However,
these authors neglect the effect of the surface dipole
potential and place an infinitely high potential barrier
at the surface in order to calculate wave functions. The
first assumption may well be reasonable for Na, but
it will be shown that dipole barriers cannot be neglected
for most of the metals studied here. The second assump-
tion, of course, rules out self-consistency. More re-
cently, Bennett and Duke!®'7 have introduced self-
consistency into a many-electron calculation of the one-
electron potential at a bimetallic interface.

A small step is made here toward bringing bare
surface work function theory up to the level of sophisti-
cation of neighboring fields, and in the process to gain
a greater knowledge about metal surface properties in
general. A calculation of the work function is presented
here for 26 metals including Na, using the jellium model.
In addition, the electrostatic (double-layer) barrier,
representative electric fields, electron number density
distributions, and one-electron potentials were calcu-
lated for the surface region. The jellium or free-electron
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model is used here so that many surface parameters can
be calculated rather simply. Conclusions can then be
made as to which surface characteristics are adequately
described in this model and which require further so-
phistication in their description. Also, our understand-
ing of the metal surface can be considerably enhanced
without undue effort. A recent formulation'® of the
inhomogeneous electron gas which includes Coulomb
correlations was used in an approximate self-consistent
first-principles solution of the model. The number of
free electrons per atom was taken as the group number
as listed in the Periodic Table. Grain orientation effects
were not considered.

We found that exchange and correlation potentials
make up the major part of the surface barrier for most
of the metals considered. However, the ordinary Cou-
lomb potential barriers are significant for all of these
metals except Cs, Rb, K, and Na. Also, the results ob-
tained using the simple model described previously
show encouraging agreement with available experi-
mental data for all the metals considered.

This paper is divided into four major sections. In
Sec. II the basic equations used are derived. Section
IIT is devoted to a comparison of some of the results
obtained with existing theoretical findings. Results for
26 metals and comparison with experimental data are
presented in Sec. IV. Concluding remarks are given in
Sec. V.

II. DERIVATIONS

Following Bardeen, the free-electron or *jel-
lium?”’5:17:19-2 model with planar surface (see Fig. 1) is
used. Bardeen’s use of the Hartree-Fock equations is
not followed, however, because it provided much nu-
merical difficulty. Also, since the Hartree-Fock equa-
tions neglect antiparallel spin correlations, attempts to
take such correlations into account are necessarily ad
hoc in nature.? Hohenberg and Kohn'® (see also Refs.
25-27) have recently derived a powerful formulation of
the many-electron problem. This scheme, which uses
the electron number density as the basic variable, pro-
vides considerable simplification and includes all many-
electron effects in the original formulation. Thus it will
be used here.

Hohenberg and Kohn'®* (HK) have shown that the
ground-state energy E, of a confined interacting in-
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I16. 1. Electronic and positive charge densities
for the jellium model.

homogeneous electron gas can be written as a functional
of the electron number density #(r). Further, they have
shown that E,[#] assumes a minimum value for the
correct #(r), if admissible density functions conserve the
total number of electrons. Thus, #(r) can be determined
from

@/sm){ E[n]—uN}=0, (2.1)

where u is a Lagrange multiplier such that® u=9E,/dN,
and N=_fn(r)dr. HK write®

E,,[n]=/v(r)n(r)dr

/ /n(r) n(r') drdr'+Gn],

[r—1]

(2.2a)

where v(r) is a static external potential, G[n|=T[7]
+E.[n], T, ] is the kinetic energy of a system of
noninteracting electrons with the same density #(r),
and E,.[#] is then the exchange and correlation energy
of an interacting system.

HK derive an expansion of G[#] originally for the
case of slowly varying # in successive orders of the
gradient operatorV acting on # (r) which can be written®

~ 3/3\18
G[n]=1% (3n2)3 / n5/3dr——<—> / n43dx
4\

i 1 [ (Va)
—0056/ dr— [ —dr -
0.0794+n  72) &

The integrands of the first three terms on the right-
hand side of Eq. (2.2b) represent, respectively, the
kinetic, exchange, and correlation energy densities of a
uniform electron gas of density ». The Wigner inter-
polation formula was used to represent the correlation
energy of a homogeneous electron gas at metallic densi-

28 L. Hulthén, Physik 95, 789 (1935).

% Atomic units are used throughout this paper, except where
noted otherwise.

3 Equations (87) and (89) of Ref. 16, converting from Ry to
a.u. in the former equation.

(2.2b)
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FiG. 2. Relation between the electron work function ¢., the
Fermi energy Ep, and the effective one-electron potential energy
for a state at the top of the Fermi distributions V®.

ties. The fourth term is the first of the inhomogeneity
terms, i.e., those terms containing one or higher orders
of the gradient operator acting on 7.

Several comments about Eq. (2.2b) are in order.
First, it is shown elsewhere’! that at least some in-
homogeneity terms must be included in a work function
calculation. It is well known that a simple Thomas-
Fermi theory predicts that the work function of any
physical system is zero. We have shown?® that including
the homogeneous electron gas exchange and correlation
energy terms, but not including inhomogeneity terms,
leads to a predicted work function which is nonzero
but is the same for essentially any system. It will be
seen in the following that the addition of the first
inhomogeneity term alleviates this anomaly.

Secondly, the random-phase approximation (RPA)
was used by HK to derive the factor 1/72# in the first
inhomogeneity term. Although the RPA has exhibited
failings at electron densities as low as those found in
conduction bands,! this inhomogeneity correction to
the total energy apparently has a rather wide range of
applicability as shown by the successes of Kirzhnits®
and of Kalitkin.®® Kirzhnits considered isolated noble-
gas atoms and Kalitkin compared his results with ex-
perimental bulk properties of solids. Also, the RPA has
been used with some success in metal surface
theory.133415 Thus it is used here.

Third, HK note that a “gradient” expansion of which
the sum of the integrands in Eq. (2.2b) is an example
does not converge®® for actual electronic systems due to
number variations with position. However, they expect
it to be useful in the sense of asymptotic convergence3®
for sufficiently slowly varying number densities. A for-
mulation based on the ‘“gradient” expansion has ex-

31 J, R. Smith (to be published); also see Ph.D. thes!

32 D. A. Kirzhnits, Zh. Eksperim. i Teor. Fiz. 32, 115 (1957)
[English transl.: Soviet Phys.—JETP 5, 64 (1957)7.

$ N. N. Kalitkin, Zh. Eksperim. i Teor. Fiz. 38, 1534 (1960)
[English transl.: Sov1et Phys —JETP 11, 1106 (1960)]

3¢ P, A. Fedders, Phys. Rev. 153, 438 (1967)

35 S, Ma and K. A. Brueckner, Phys Rev. 165, 18 (1968).

36 P, Morse and H. Feshbach, Methods of T heoretical Physic
(McGraw-Hill Book Co., New York, 1953), Vol. I, p. 434.
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hibited some successes even for the case of atoms?®
where the density variation is rather rapid. Also,
Kirzhnits® investigated explicitly the convergence of
an expansion of E,[n] in successive powers of 7 not
including correlation energies. He calculated E,[#] for
the argon atom, and found in an approximate manner
“excellent convergence of the approximation process,”
at least when his first four inhomogeneity terms were
included. Finally, HK note that quantum density os-
cillations are not included in the expansion given in Eq.
(2.2b). However, it has been reported'” for a jellium
model with planar surface that the Friedel oscillations
occurring inside the metal are greatly diminished by
requiring that the surface potential be self-consistent
with the electron number density distribution. Since a
self-consistent calculation is done here, they are ne-
glected. Finally, corrections to the Thomas-Fermi equa-
tion derived by expansion procedures have been shown
by Schey et al¥” to be pejorative in many instances.
However, they note that expansions of the total energy
(as we use here) lead to “remarkable improvement.”

Keeping only the first inhomogeneity term and com-
bining Egs. (2.1) and (2.2), one obtains for our model

dn 1 /dn\? .
__2_<_> = 36\:% (3r2)2355+ (o — )
n

az: az
3\ 0.05675/34-0.0059143
—<—> nil3 ], (2.3)
- (0.079-Fn/3)2

where, for self-consistency, d2¢/dZ2=4x[n, H(—Z)—n],
n,. is the positive jellium charge density, H(Z) is the
Heaviside (step) function, Z is the Cartesian coordinate
taken on an axis normal to the surface, with Z=0 at the

jellium surface,
n(r')
p=o()+ / ar
[r—r'|

and, in this case, 2(r) is the negative of the potential of
the ion distribution.

Note that in the jellium model, # — 7, and all deriva-
tives of #— 0 as Z— —o. Also, ¢,=electron work
function®® = —(9E,/dN)y—n,= —p. Thus one obtains
(. is described in Fig. 2)

0o=—o(— ) —1(3n2)2/3p 208
'0.056n+2/3—}—0,0059n+1/3 3\ 1/3 y
(0.079+4n B2 ( ) M

(2.4)

T

where ¢(— ) represents the value ¢ asymptotically
approaches deep within the metal and ¢ is set equal to
zero at large distances from the metal.

It should be remembered that this is a many-electron
calculation. However, Kohn and Sham? have shown

37 H. Schey et al., Phys. Rev. 137, A709 (1965).
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that it is possible, formally, to replace the equations of
the many-electron problem by an equivalent set of one-
electron equations. The effective one-electron potential
energy V® is given formally by

6Ea:c
VO =— [n]
on

+e. (2.5)

A comparison of Kirzhnits’s®? first inhomogeneity
term in his expansion in powers of 7 of the Hartree
total energy and that in Eq. (2.2b) shows that they are
identical. Thus, the first inhomogeneity term contri-
butes only to 7s[#] in the RPA. So, to O(|V#|?) in E,,

3\ 0.056124-0.0059n13
V<1>=¢—<—> nlis . (2.6)
(0.0794-n113)?

v/

V® as given in Eq. (2.6) is just the potential energy
that one would obtain?® for the highest one-electron
energy state of a uniform eléctron gas of density # in its
ground state. Thus it follows that, at least to O(|V#|2)
in E,, V® is equivalent to the effective potential energy
for a state at the top of local Fermi distributions.

V® can be obtained immediately through Eq. (2.6)
once the many-electron problem is solved, and it is
exhibited in several of the figures for the reader who is
interested in a one-electron calculation.

In order to obtain #, it is certainly simpler to solve
Eq. (2.3) than, e.g., a set of Hartree-Fock equations.
However, we will simplify the solution of Eq. (2.1) still
further. Let us assume that the extremal of Eq. (2.1)
belongs, to a good approximation, to the following
family of functions®2':38:

Z<0
Z>0

n=mn.—3n %, @)

n=3n e F%,

where 3 is a family parameter.

Note that for every value of 8 the family (2.7)
satisfies certain requirements of self-consistency. First,
n asymptotically approaches 7, in the metal interior
and zero in the vacuum region outside the metal.
Secondly,

—+o0
/ [n—n,H(—2)]dZ=0.

There are no experimental data on # which provide a
direct test of the validity of the family (2.7). It will be
shown below, however, that the results obtained using
these simple functions are in at least as good an agree-
ment with experiment as could be expected using a
flat-surfaced jellium model.

The corresponding Coulomb potential is

ga=21rn+eﬁz/ﬂz—-47rn+/ﬁ'2, Z<0
o= —2mn, e PZ/B Z>0.
38 T. Toya, J. Res. Inst. Catalysis Hokkaido Univ. 8, 209 (1961).

(2.8)
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Equation (2.1) becomes

dE[n]/d8=0
or, equivalently,
do/dB=0, (2.9

where
a=/ dZ{ e[ n]—e[n H(—2)]}, (2.10)

in which e[#] is the energy density, ie., EJ[7]
= [ e,[n]dr; and ¢ is the surface energy, or the energy
necessary to cleave a metal per unit area of new surface
formed. Thus o is the total energy of the separate pieces
after splitting minus the total energy of the unsplit
block.

A simple result of analytical manipulations of the
terms on the right-hand side of Eq. (2.10) up to and in-
cluding the first inhomogeneity term is provided below,
except for the correlation energy integral over the range
— o0 <Z<0. This last term was easily programmed, and
is designated below® as I(n,)/g.

This gives®

T2 7.503
130 (37"2)2/3

2438

(0.572)

o=

3/3\ VB n, A8 I(ny) 0.084n
( > L (0.330) —— il

4 8

T

a Bry
X| @—3}a+3+a 1n——>+*— n2, (2.11)
a+1 72

where terms are given in the same order as those in
Eq. (2.2), and where a=213X0.079/n.,153.

Thus B8 can be determined by combining Egs. (2.11)
and (2.9), and this result can be used to determine #
and ¢ via Egs. (2.7) and (2.8). With these, the quanti-
ties ¢, and V® can be determined immediately from
Egs. (2.4) and (2.6), respectively.

III. COMPARISON OF RESULTS WITH THOSE
OF OTHER CALCULATIONS

Work Function of Na

Results obtained here, as well as Bardeen’s results,
are listed in Table I. Wigner’s uncorrected interpola-
tion formula was used in this instance, so that a more
direct comparison could be made with Bardeen’s work.

Considering the different approximations made in the
two calculations, the agreement is quite good. Notice
that the work function and Coulomb barrier are 0.39 V
higher than Bardeen’s results. No decision can be made
based on the experimental data as to which theoretical

3 A table of values of 7 (n,.) for all metals is available and will be
sent upon request.

% Note that the result given earlier (Ref. 21) for the first term is
slightly incorrect.
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TasrLE I. Comparison with Bardeen’s results for work function, Coulomb barrier, and surface energy for Na.
Double-layer moment Work function Surface energy
(eV) (eV) . (J/m?)
Experi-
Here Bardeen Here*  Bardeen mental® Here Bardeen®
Neglecting
correlation energies 0.786 0.4 2.74 2.35 2.35 0.112 0.088

0.978 ~1

Neglecting exchange

and correlation energies 3.12 ~4

a Wigner's uncorrected interpolation formula (Ref. 10) was used here because Bardeen used it.

b Value listed for work function is Fomenko’s recommended value (Ref. 1).

¢ The actual calculation of the surface energy using Bardeen’s results was done by Huntington (Ref. 41).

value is more accurate. This is because, first, the value
listed is for polycrystalline Na, and, second, there are
inaccuracies even in the knowledge of this value. If our
results turn out to be more accurate, then the difference
may be explained by the fact that, as stated by Loucks,"
only a partially self-consistent solution was achieved by
Bardeen with respect to the electrostatic part of the
problem, since the exchange potentials were chosen at
the beginning and held fixed throughout. But, as noted
earlier, it has been reported” that the Friedel oscilla-
tions inside the metal are greatly diminished by self-
consistency requirements. Since these oscillations lead
to a “humping up” of electronic charge inside the metal
which lowers the dipole moment and work function,
their overemphasis could lead to values of these quanti-
ties which are too low.

Finally, it is clear that this calculation supports
Bardeen’s conclusion that the surface barrier of Na is
due primarily to exchange and polarization forces with
ordinary electrostatic forces playing a minor role.

Surface Energy

The surface energy for Na was calculated by Hunt-
ington,* using Bardeen’s potential.’’ Table I shows that

v at ny103a.u.) of

— == —— 133(Cs)
1.67 (Rb)
— == 195(K)
3.77 (Na)
—_——— 6.92(Li

Units of V(l) are ezlrs,
where rg = (3/4mn 13

F1c. 3. VO in the surface region of the alkali metals.

4 H. B. Huntington, Phys. Rev. 81, 1035 (1951).

the surface energy of Na calculated here agrees rather
well with that calculated by Huntington. Neither is in
good agreement with the experimental value* of 0.240
J/m?2. Herring,"® however, has pointed out that it is not
“fair” to compare the surface energy o of a jellium
metal with an actual metal of the same electron density.
Table IT shows values of ¢ for Na, Li, and K. The disa-
greement with experiment is even more pronounced for
Li than for Na and, in fact, o goes negative for
>13X1073. Thus further results were not listed.

It should be noted that the electron work functions
and surface potential characteristics depend on the
variation of ¢ [e.g., do/dB in Eq. (2.9)7] and not on the
value of ¢ itself. Thus, the fact that the surface energy
results do not agree with experiment does not imply
that the results for the work functions and surface po-
tentials should not be trusted.

Na Surface Potential Characteristics

To compare our V® for Na (see Figs. 3 and 4) with
the results of Loucks and Cutler* (see their Fig. 5), one
will have to bear in mind that our potential pertains to
an electron at the top of the Fermi distributions,
whereas they averaged their exchange contribution.
Also, as mentioned earlier, they neglect the small Cou-
lomb contribution. Their potential curves are quali-
tatively similar to V@, except that their curves ex-
hibit noticeable damped oscillatory behavior in the
interior of the metal. As previously noted, Bennett et
all™ have concluded that these oscillations are exag-
gerated by lack of self-consistency. Figures 3 and 4
present curves of V'@ and relative electron number den-
sities, respectively, in the surface region of the alkali
metals as a function of Z/r;, where r,= (3/4mn,)'3.

TaBLE II. Surface energies of K, Li, and Na—
comparison of results.

Surface energy (J/m?)

Metal Theory Experimentals
K 0.0688 0.146
Na 0.111 0.240
Li 0.132 0.510

a Reference 20.
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IV. RESULTS FOR SELECTED METALS

Method of Selection

It seems reasonable that all metals usually regarded™
as ‘“free-electron-like” in their bulk properties could be
treated within this model. In addition, the surface
properties of even the transition metals have been de-
scribed with a certain degree of success within the free-
electron model. Examples of such successful applica-
tions are the Richardson-Dushman equation de-
scribing thermionic emission, the Fowler-Nordheim
vacuum field electron emission theory,? the plasma
oscillation characteristic loss theory,* and the analysis
of periodic deviations in the thermionic Schottky
effect. Thus, those metals which were in some way
amenable to analysis using the free-electron model were
chosen for consideration and are listed in Tables ITI and
Iv.

The characteristics of the metals enter into the model
only through the quantity #z;. Thus values of #,, the
number of conduction electrons per atom, must be
designated. For all but the simplest metals this choice

TasLe ITII. Work functions of selected metals—
comparison of results.

Work
function (eV)
g Experi-
Metal Na (103 a.u.) B Theory mentals

Cs 1 1.33 1.33 2.64 1.81
Rb 1 1.67 1.32 2.71 2.16
K 1 1.95 1.32 2.76 2.22
Na 1 3.77 1.27 2.93 2.35
Li 1 6.92 1.24 3.11 2.38
Ag 1 8.73 1.23 3.19 4.3
Au 1 8.80 1.23 3.19 4.3
Cu 1 12.6 1.23 3.32 44
Ca 2 6.90 1.24 3.11 2.80
Mg 2 12.8 1.22 3.33 3.64
Cd 2 13.8 1.22 3.36 4.1
Zn 2 19.5 1.22 3.50 4.24
Be 2 35.8 1.26 3.75 3.92
La 3 12.0 1.22 3.30 3.3
Tl 3 154 1.22 3.40 3.7
In 3 17.0 1.22 3.44 3.8
Ga 3 22.3 1.23 3.56 3.96
Al 3 26.9 1.24 3.64 4.25
Sn 4 174 1.22 345 4.38
Pb 4 19.4 1.22 3.50 4.0
Ta 5 413 1.27 3.80 4.12
Nb 5 41.6 1.27 3.81 3.99
\i 6 56.2 1.30 3.91 4.5
Mo 6 57.4 1.30 3.92 43
Re 7 70.4 1.32 3.98 5.0
Ir 8 84.2 1.34 4.02 5.3

a Value listed is Fomenko’s recommended value (Ref. 1).

271,,-W. Swanson and L. C. Crouser, Phys. Rev. Letters 16,
389 (1966).

4 Q. Klemperer and J. P. G. Shepherd, Advan. Phys. 12, 355
(1963).

#71. J. D’Haenens and E. A. Coomes, Phys. Rev. Letters 17,
516 (1966). .
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TasLE IV. Surface potential characteristics of selected metals.®

Electric Barrier height (eV) Double
field® Experi- layer
Metal (V/m) Theory® mental (eV)
Cs 6.03 X107 4.22 0.258
Rb 7.72 X107 4.54 0.327
K 9.22 X107 4.79 4.12d 0.386
Na 2.09X108 6.04 4.854 0.794
Li 444108 7.84 6.084 1.55
Ag 5.62X108 8.70 1.99
Au 5.88X108 8.74 2.01
Cu 8.62X108 104 11.44 291
Ca 4.42X108 7.82 5.94 1.55
Mg 8.80<108 10.5 9.844 2.95
Cd 9.48 X108 10.8 3.18
Zn 1.31 X109 12.9 15.244 4.45
Be 2.12X10° 17.9 17.724 7.76
La 8.22X108 10.1 2.77
Tl 1.05X10° 11.5 3.55
In 1.16X10° 12.0 3.90
Ga 1.47X10° 13.9 5.06
Al 1.71 X109 15.3 16.05¢ 6.00
Sn 1.18XX10° 12.2 3.98
Pb 1.31X10° 12.9 13.78e 443
Ta 2.34X10° 194 8.78
Nb 2.36 X109 19.5 8.84
w 2.86X10° 23.0 114
Mo 2.89X10° 23.3 22-24f 11.6
Re 3.25X10° 26.2 27-29¢ 13.8
Ir 3.60X10° 29.0 15.9

a The quantities listed here are obtained self-consistently with those
listed in Table IIIL.

b Evaluated at Z =3ao.

° Maximum magnitude of V),

d Obtained by adding Fomenko's (Ref. 1) recommended work function to
x-ray emission bandwidths as listed in Wilson (Ref. 48).

e Fermi energy as given by J. R. Anderson and A. V. Gold [Phys. Rev.
139, A1459 (1965)] is added to Fomenko's (Ref. 1) recommended work
function.

f Reference 44,

is not obvious.44—4 However, some properties such as
Fermi energies of many simple metals®® are well repre-
sented on a free-electron model using the group number
(as listed in the Periodic Table) for #,. The group num-
ber will be used for #, for all metals considered here. It
will be seen that this convention yields surface-barrier
heights which are consistent with experiment.

ngln, at ny(03a.u.) 0

nelny

Surface~
2

0 J I
-6 -L2 -8 -4

F1G. 4. Relative electron number density distribution in the
surface region for the alkali metals.

4 J. G. Daunt, in Progress in Low-Temperature Physics, edited
by C. J. Gorter (North-Holland Publishing Co., Amsterdam,
1957), p. 213.

46 1. Pauling, The Nature of the Chemical Bond (Cornell Uni-
versity Press, Ithaca, N. Y., 1960), 3rd. ed., Chap. 11.

4 T, Rhodin, P. Palmberg, and E. Plummer, in Abstracts of the
Fourth International Materials Symposium, Lawrence Radiation
Laboratory, 1968 (unpublished).

18 A, Wilson, The Theory of Metals (Cambridge University Press,
New York, 1965), p. 94.
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Fic. S. Electron number density distributions in surface
region for W, Al, and Cs.

For purposes of discussion, the metals are grouped
according to common properties. The alkali metals, the
refractory transition metals, and the noble metals are
obvious groupings. The rest of the metals can easily be
grouped according to group number.

As is seen from Figs. 5 and 6, the metals considered
cover a wide range of electron densities, thus providing a
stern test of model and method.

Electron Work Functions

Table IIT compares our results with the experimental
values for polycrystalline metals recommended by
Fomenko.! It should be noted that there is considerable
scatter in the data that he collected.

Several comments are in order concerning the findings
listed in Table III. First, the theoretical values of ¢,
listed increase with increasing #,. Second, the ordering
within groups by experimental work function (e.g., low
to high) is generally the same as the analogous ordering
by theoretical work function. Also, the ordering of
groups by average experimental and theoretical work
functions, respectively, yields identical results, with the
exception of the noble metals. Finally, it is seen that
theoretical work functions of the low 7, metals (prin-
cipally the alkali metals) are higher than the experi-
mental work functions. But for the rest of the metals,
the theoretical value slips below the experimental value,

_with the difference showing some tendency to increase
with 7, again with the exception of the noble metals.

One might be tempted to ascribe the exceptions found
in the case of the noble metals to the choice of n,=1.
That is, although this choice might be useful for cal-
culation of certain bulk properties, it may be argued
that their surface band structure® can be significantly
different*-* from that of the bulk. However, a recent
surface experimental determination of the inner po-
tential of Cu gives a value® which is consistent with the
use of 7,=1. Inclusion of grain orientation effects may
clarify matters.

49'V. Heine, in Abstracts of the Fourth International Materials
Symposium, Lawrence Radiation Laboratory, 1968 (unpublished).

% S. S. Nedorezov, Zh. Eksperim. i Teor. Fiz. 51, 868 (1966)
[English transl.: Soviet Phys.—JEPT 24, 578 (1967)].

51 1. Marklund, S. Andersson, and J. Martinsson, Arkiv Fysik
37, 127 (1968).
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F16. 6. V@ in the surface region for W, Al) and Cs.

A decision based on comparison of experimental data
and theory should be made as to the accuracy of the
jellium model in the prediction of electron work func-
tions. This decision is complicated by the fact that there
are, of course, errors in the experimental data and that
grain orientation effects are not included in the calcu-
lation. From the preceding discussion we have seen that
there is a general agreement in the ordering of the
theoretical and experimental work functions within
groups and in the ordering of group average work func-
tions. Further, the deviation of the theoretical work
functions above or below the experimental values listed
is within the range of variation conceivably caused by
grain orientation effects for the bulk of the metals con-
sidered. But the entire range of experimental work
functions is only about 2.5 V. Thus, although the theo-
retical values generally pass the test of comparison
with experiment, it is not as stringent a test as one
might desire.

But the surface potential characteristics can be
turned to for further testing. It will be seen in the next
section that experimental barrier heights vary by about
25 V. This should provide a much more difficult test for
the theory.

Surface Potential Characteristics

The results for electric field, barrier height, and elec-
trical double layer are listed in Table IV. Sample plots
of V® are given in Figs. 3 and 6-8. Included also on
some of the plots is the function — (4Z)~L. Although all
surface potentials must asymptotically approach the
image potential at large distances from the metal, an

vl at ny103a.u.) of

26.9 (Al)
12.8 (Mg)

Units of VD are ezlrs,
where rg 5(31117m+)1’3

0 1
Zlrg

F1c. 7. V@ in the surface region of Al and Mg.
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ambiguity arises because it is not clear where to place
the Z=0 plane [appropriate to the function —(4Z)~1]
with respect to the jellium surface. Thus the function
— (4Z)~' is not necessarily the image potential, but can
be used for scaling purposes.

Several trends can be inferred from the results. First,
the listed barrier heights (maximum value of V®) in-
crease with increasing 7. Second, although generally
the better part of the surface barriers are due to many-
body effects, the ordinary electrostatic contribution to
the barrier is small only for the alkali metals through Na.
In fact, for some of the refractory transition metals,
the dipole barrier is more than half of the total barrier.

A comparison of calculated total barrier heights with
experiment for electrons at the Fermi level provides
another check on the validity of using the group num-
ber for #,. Since the barrier height is quite sensitive to
724, and since it was only desired to check reasonableness
in the choice of #,, listing of experimental values was not
made exhaustive or necessarily “latest-word.” In com-
paring our theoretical values of barrier heights with ex-
periment, one must remember that the effective poten-
tial seen by an electron depends on its velocity. As
previously pointed out, V@ applies to electrons at the
Fermi level and thus values of the surface barrier ob-
tained from, say, electron interference microscopy, may
well not be descriptive of the maximum magnitude of
V®. Also, as mentioned earlier, it is not necessarily
true that the experimental barrier height should be
given by the experimental value of the work function
added to the experimental or theoretical bulk Fermi
energy. For example, D’Haenens and Coomes* point
out that, following this procedure, one would obtain
lower total barriers than their (surface) experimental
values indicate (see, however, Ref. 52). These authors
explain that the energy-level system could understand-
ably undergo modification at the surface.? Thus where-
ever (surface) experimental values of the surface barrier
for electrons near the Fermi level were known to differ
significantly from the sum of the bulk Fermi energy and
electron work function, the result of the surface experi-
ment was used in Table IV. A comparison of theoretical
and experimental barrier heights listed in Table IV
shows that the values generally agree within experi-
mental error. This lends support to the use of the group
number for 7,.

In addition, a comparison of plasma oscillation theory
results with the data obtained in surface characteristic
loss experiments can be used to determine %, (see, e.g.,
Ref. 43 or Ref. 53). The results of these authors support
the use of the group number for #, for many metals.

Finally, electric fields were calculated. It follows from
Eq. (2.8) and the values of g listed in Table IT that the
electric field do/dZ varies rapidly with position, always
pointing out of the metal. Now in a real metal there

52 P, Kisliuk, Phys. Rev. 122, 405 (1961).

( 5 174) N. Tharp and E. J. Scheibner, J. Appl. Phys. 38, 3320
1967).
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F16. 8. V@ in the surface region for selected refractory metals.

are very strong fields in the ion cores (experienced
generally by the core and not the conduction electrons)
which are not present in the jellium model. Therefore,
the electric field is calculated at a somewhat arbitrary
point outside the metal surface [Z=3(ao)] where the
result should be free of strong core field effects.

The listed values of the fields calculated at the afore-
mentioned point increase with #,, increasing by roughly
a factor of 50 in going from the alkali metals to the re-
fractory transition metals.

Semiempirical calculations of electric fields as seen by
adsorbed particles on molybdenum® and tungsten?:5¢
agree rather well with the theoretical values obtained
here.

V. CONCLUDING REMARKS

The following generalizations can be inferred from
the results obtained here:

(a) There is approximate agreement between the ex-
perimental data and the work functions and surface
potential characteristics obtained here using the free-
electron model. This lends support to the premise that
it may be possible to calculate rather accurate values
for some metal surface characteristics via introduction
of refinements to this simple model. This may even be
so for some of those metals whose bulk characteristics
are not so easily described, e.g., the refractory transition
metals.

(b) Many-body effects were found to be of importance
in all cases and ordinary electrostatic effects are quite
strong for many of the metals considered.
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