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The eRect of electronic relaxation processes on the angular correlation and on the angular distribution
of radiation from oriented nuclei is investigated. The influence of the environment on the radioactive nuclei
is taken into account by reducing the density operator for the total system (nucleus and surroundings
mutually interacting) to a density operator for the nucleus alone. Elimination of the unobserved bath vari-
ables is performed with the help of Zwanzig s projection-operator technique. The Iiouville formalism is
used throughout. The (initially unspecified) properties of the environment enter the theory via second-order
correlation functions, which are dehned in terms of equilibrium ensemble averages of certain bath operators,
like, e.g. , the hyperfine-field operator. The matrix elements of the nuclear-evolution operator (which is a
superoperator in Liouville space) with respect to a complete orthonorrnal set of multipole operators are
just the usual perturbation factors G» «' of perturbed-angular-correlations theory. The consequent use of
the multipole representation yields immediately the Qnal formulas needed in the expression for both the
angular distribution of radiation from oriented nuclei and the angular correlation function. The general
theory includes relaxation processes due to magnetic and quadrupole interactions. The important case
of purely magnetic interactions is discussed in more detail. Specialization to relaxation caused by randomly
fluctuating fields yields a formula which contains both the Abragam-Pound result for time-fluctuating
quadrupole interaction and Micha s extension to randomly time-varying magnetic fields in multidomain
ferromagnets. Exact high-temperature solutions are presented for single crystals in a static magnetic Geld
and with magnetic-type relaxation processes (axially symmetric case). For nuclei with spin I=1, the
extension to arbitrary temperatures has been considered. The application of the present theory to the
problem of multipole relaxation (which arises, e.g., in spin-lattice relaxation measurements with NMR/ON
technique) is discussed.

I. INTRODUCTION

'HE inAuence of static extranuclear perturbations
on angular correlation has been exhaustively

studied during the last twenty years, and a full account
of the important results has been given in standard re-
view articles. ' Attempts to understand the effects of the
fluctuating part of the radioactive nuclei's environment
on angular correlation, or on the angular distribution of
radiation from oriented nuclei, have almost exclusively
been based on the classic paper of Abragam and Pound'
and, to a much smaller extent, on the Dillenburg-Maris
theory of random statistical interactions. ' In the
Abragam-Pound treatment a time-dependent perturba-
tion operator representing the surroundings is added to
the static part of the nuclear Hamiltonian. Standard
first-order perturbation theory is used to account for
the additional interaction.

The Dillenburg-Maris theory gains its conceptual
simplicity by postulating the validity of a certain master
equation. The transition matrix is left physically un-

* Work performed under the auspices of the U. S. Atomic En-
ergy Commission.
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specified and is only restricted by some invariance prop-
erties. The disadvantage of leaving the perturbing inter-
action mechanism unspecified is that the damping
constants appearing in the final angular correlation
function play merely the role of fit parameters. I'or the
interpretation of an experiment, this is a rather unsat-
isfying situation.

The present theory of relaxation effects on angular
correlation and on radiation from oriented nuclei is
based on a model which has been used by the present
author to study the inhuence of electronic relaxation
on Mossbauer spectra. The main features of the model
are briefly described in Sec. II. In contradistinction to
Coester's density-matrix approach to perturbed angu-
lar correlations' (PAC), we will not postulate an instan-
taneously acting, time-dependent Hamiltonian for the
interaction between nuclei and environment, but will

instead derive a relaxation operator by reducing the
density operator of the entire system (nuclei and sur-
roundings mutually interacting) to a density operator of
the nuclei alone. The more general case, in which the
entire particular ion, rather than the nuclear spin, is
relaxing to its equilibrium state (worked out for
Mossbauer relaxation by Afanasev and Eagan' and by
Gabriel et al. ), will not be considered in this paper.
Spin-lattice relaxation in ionic solids most often requires

4 H. Gabriel, Phys. Status Solidi 23, 195 (1967).' F. Coester, Phys. Rev. 93, 1304 (1954).
6 A. M. Afanasev and Yu. Kagari, Zh. Eksperim. i Teor. Fiz.

45, 1660 (1963) LEnglish transl. : Soviet Phys. —JETP 18, 1139
(1964)g.

7 H. Gabriel, J. Bosse, and K. Rander, Phys. Status Solidi 27,
301 (1968).
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application of the more general theory. The present ap-
proach yields a good description of spin-lattice relaxa-
tion in metals, if the interaction Hamiltonian is suit-
ably chosen.

The general equation of motion for the nuclear-
density operator is a non-Markoflian integrodifferential
equation, and no exp/icit, practically useful solutions

(except for oversimplified special examples) are known.
Throughout the sections following Sec. II, we consider
only second-order effects in the interaction between
nuclei and environment. A further simplification is
achieved by studying only the long-time behavior of the
generalized master equation. With respect to the per-
turbation of a nucleus in the intermediate state (PAC
case), the latter approximation implies that the condi-
tion 7-,&&7.~ is fulfilled. The correlation time v, charac-
terizes the behavior of the electronic correlations enter-

ing the relaxation operator. (In the definition of
Hubbard, 8 ~. is temperature-dependent because it must
satisfy the inequality r,&Ps/AT )The s. econd-order
approximation is sufhcient only if the smallest of the
nuclear spin-lattice relaxation times is large compared to
r, (which is usually true in metals). Of course, the poten-
tial of the generalized master equation is only partly
exploited, whenever the assumptions mentioned above
are used.

From the equation of motion for the nuclear-spin

system we get an operator which describes its time
evolution. . Ke will show that the matrix elements of
the evolution operator with respect to Fano's state
multipole representation' are exactly the perturbation
factors Gss '"(t) (we essentially use the notation of FS
whenever possible). We start with the general form of

the perturbed directional correlation function for a nu-

clear double cascade. It is given by the trace expression

P'(ki, ks, t) = TrLp(ks) p(ki, f)j. (&)

The density matrix p(ki, o) describes the nuclear system
immediate1y after the emission of the first radiation in
the direction ki at time f=o. The density matrix p(ks)
corresponds to the second transition at a later time t.
Due to interactions with extranuclear perturbations,
p(kit) is in, general different from its value at t= 0. We
obtain it by acting on the initial density matrix p(ki, o)
for the intermediate state with an evolution operator
Q(t) (to be specified in Sec. II)":

p(k, ,t) = Q(t) p(k, ,o). (2)

The main problem is to derive, for a given interaction
mode1. , an explicit expression for the evolution operator
0 entering

VV(k„k, ; t) =Trfp(ks) Q(t) p(ki, o)$. (3)

" P. S. Hubbard, Rev. Mod. Phys. 33, 249 (1961).
' U. Pano, Phys. Rev. 90, S77 (1953).
"Throughout this paper we agree to orient the time axis hori-

zontally from the right to the left; i.e., in a graphical representa-
tion a density p(ts) would appear to the left of p(t&) for ts) t&.

We notice that a similar expression can be written
for the angular distribution of oriented nuclei, taking
into account destruction of the initial orientation state
by relaxation effects. In the case (which is of very limited
practical importance) where the excited state of a par-
ticular nucleus is oriented, we just have to substitute
p(ki, o) ~ p, (0) and omit the index 2 in p(ks). The angu-
lar distribution of the p radiation is then given by

1I'(»f) =T Lp(k) fl(t) p'(0) j (4)

which replaces (2). Under certain circumstances, the
reorientation effects are completely described by intro-
ducing time-dependent orientation parameters Bs(t) in
the final expression for the angular distribution (see
Sec. VII).

II. FORMAL DESCRIPTION OF EXTRA
NUCLEAR INTERACTION

One aim of the present paper is to point out the inter-
relationship of quantities used in NMR studies and
PAC or NMR/ON experiments and to describe in
either case the influence of the environment on the
nuclear-spin system. It is, therefore, natural to basethe
calculations on physically equivalent models. We apply
a procedure which has recently been used to study the
inhuence of electronic relaxation effects on the Moss-
bauer line shape. 4 ~ The method exploits the elegant
projection-operator technique of Zwanzig, " first used
by him in problems of nonequilibrium statistical me-

S R d G f., H A I'Ih I, de J H k
A/pha-, Beta-, and Gamma-Ray Spectroscopy, edited by K, Siegbahn
(North-Holland Publishing Co., Amsterdam, $966), Poi, 2."R.Zwanzig, Physica 30, 1109 (1964),

It is time-dependent, if there is any noticeable interac-
tion of the nucleus, oriented in the excited state at time
$= 0, with the surroundings.

The more important case is that in which a P-radio-
active parent nucleus, with a sufficiently long lifetime,
is initially oriented, thus causing an anisotropy in the
subsequent transition(s) starting from the excited state
of the daughter nucleus. Lde Groot et al."discuss, for
a system without relaxation (Q=Z), how the angular
distribution function (4) has to be modified in this ex-
perimental situation. ] If the interaction of the parent
nucleus with the environment is not negligible, we may
again use Eq. (2), replacing p(kt, o) by the density opera-
tor po for the parent nucleus with spin Io. The y angular
distribution is described by

~&'(k, t) =TrLp(k) pp(t) j,
where ptt(t) corresponds to the state of the system after
the P decay. In contrast to the PAC case, cha, nges in the
y anisotropy are caused by reorientation effects in the
parent nucleus; thus the time dependence of ptt(t) is
merely due to
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chanics. The first application to a line-shape problem
has been given by Fano. "All aforementioned theories,
as well as most of the NMR theories, "are based on a
density-matrix approach. That the latter is directly
apphcable to our problem is clear from Eqs. (2) and
(6).

We recall some of the main features of the widely used
model: The radioactive nuclei (dilutely dissolved in a
host lattice, so that their direct interaction can be ig-
nored) are considered to be imbedded in a hea, t bath
responsible for the extranuclear interactions that we
are interested in. The elimination of the unobserved
bath variables is accomplished by means of Zwanzig's
formalism, which combines the use of Liouville operators
with that of an appropriate projection operator. The
Hamiltonian for one particular nucleus is the sum of
three terms:

sidered elements of the Liouville space 2 is indicated by
adopting the notation

~
A). The action of a superopera-

tor R on
~
A ) yields some

~
B)=R

~
A) . The reader is

referred to the Appendix for details.
The reduction of (9) to an equation of motion for a

red. uced density operator p(n) of the spin system alone
is achieved by Zwanzig's formalism using the special
projector"

P= pr(R)Tr~, (10)

where pr(R) is the equilibrium density operator for the
reservoir. The operation (10) performed on W(n, R)
yields the reduced density operator p(n) which is inde-
pendent of the b ath variables:

PW(n, R) =pr (R)p(n) .
The irrelevant part (1—P)W(n, R) in the decomposition

X=K„+'dt'„z+'dt'„zn (7) W= Pw+ (1—P)W
The Hamiltonian for the nucleus K„ includes the in-

teraction with an external magnetic field. (Although we
have also investigated the NMR/PAC and NMR/ON
situations including relaxation effects we here restrict
ourselves, for the sake of simplicity, to the case where no
rf field is applied. ) The second term, BC~, is the Hamil-
tonian for the reservoir. With respect to the interaction
Hamiltonian BC&„, we only assume that it can be written
as a scalar product of irreducible tensor operators:

~..=Z Z (-1) T, ' ( )F, "'(R),

acting on the nuclear system and the bath, respectively.
The density operator for an ensemble of equivalent nu-
clei in the reservoir W(e,R) obeys the equation of motion

;Pw(rt, R)/ay= t X,WJ=LW(rt, R), e= 1. (9)

On the right-hand side of (9) we have introduced a
special superoperator L,, the Liouville operator associ-
ated with the Hamiltonian K and defined by the com-
mutator relation as indicated in (9). The concept of
superoperators has been generalized to include, besides
the Liouville operator, any superoperator R transform-
ing an ordinary operator A of a given Hilb crt space into
another operator 8=AA of the same space. In order not
to obscure the main physical features of the paper, we
have collected the mathematical tools in the Appendix.
Of special interest for our problem will be the finite-
dimensional unitary vector space 9, spanned by the
2I+ 1 state vectors of the nucleus with spin I, and the
associate Liouville space 2 of dimension (2I+ 1)',
spanned by the operators 3 of 8,. The fact that the
operators A, 8, ~ ~ ~, of %, (transforming a state vector

~ P) into another one, i.e., ~ y) =A
~ f)) may be con-

18 U. Fano, phys. Rev 131, 259 (1963).
'4 For a review and further references see J. M. Deutch and I.

Pppenh eim, in A am nces in kIcgn et' c Resonance, edited by J. S.
1Vangp (Academic Press Inc. , New York, 1968), VoL P,

is exactly eliminated from (9) by the projector tech-
nique. It is very useful to split the Liouville operator L
into

L=L'+L",
L'= L.+(La.)i,
L"=La+(La. (Lz )a) =L~+—ALz„,

(14)

(1~)

i.e., to combine with L the static contribution of the
spin-bath interaction, given by the ensemble average

(I .)z=TrzPz. pr(R)$ (16)

The Liouville operators L' and L" obey the relations'

PL"P= 0, PL"(1 P) = PL",—(17)

iL'p(t) — dr—M'(r)p(t —r) . (18)

The influence of the heat bath on the nuclei is condensed
in the relaxation (super-) operator

M(t) =Try)AL g„e "t.' r & r ALg„pr(R)$. (19)

We notice that the exact equation of motion is nonlocal
in time. As is well known from nonequilibrium statistical
mechanics, the non-MarkoKan behavior of (18) arises
from the exact elimination of the time-varying irrelevant
part of the density operator W(n, R) . Equation (18)
shows that it is not in general possible to describe the
influence of the environment by adding a time-depend-
ent perturbation to the nuclear Hamiltonian as was as-
sumed, e.g., by Coester. ' For applications to a particular

which have been used to simplify the expressions. With
the initial condition that at t= 0 the combined n-R
system is uncorrelated, i.e., (1—P)w= 0 for t= 0, we
derive the following integrodiff erential equation for
n(&):



ANGULAR DISTRIBUTION OF NUCLEAR RADIATION 509

physical problem it is often desirable and also sufhcient
to study approximate solutions of a problem. We re-
strict our further calculations to the second-order term
in I.~„, i.e., we will replace the Liouville operator in the
exponential by L~. A rough criterion for this to be valid
has been given in the Introduction. Using (8), we can
factorize (19) into nuclear-operator parts modulated by
correlation functions depending on the properties of
the dissipative lattice system. With

T+q(~)X= [Tq(~),X)+, arbitrary X. (28)

The exact formal solution of (18) is easily found by
Laplace transformation to be

operator belonging to the nuclear part of the interaction
Hamiltonian (8) and T+, '"' is the superoperator defined
by. the anticommutator relation

(i) —p' (i) (p' (k)) 20 p(P)="(P)p(t=0)—=LP &+iL'+M(P)] 'p(t=o), (29)

()q'~) (t) = exp(itL)i)()q(~) (0)
= exp(it%)i)() q(~) (0) exp( —itBC)i), (21)

we define correlation functions and their Fourier trans-
forms by

where p(p) is the Laplace transform of p(t) and

dt e q"M(t)

d&q J k'q'( )e i(ut- (22)

D~.'"(t)= l (—1)"'(9-.")(t),~-'"'(0)j)~

d&q Xiq (&q)e (23)

Using (A25) and the identity (a(t)b(0))z= (a(0)b( —t)))~,
it can be shown that the following relations hold:

J i'q'(~) 8—( 1)q+q' J' iv q'( ~)—
= (-1)""I~-q " '(~) (24)

gq &'q'(&q)+ —( 1)q+q'+(gq a'—q'( (q)

= (—1)q+'E, . ;"—q(~). (25)

The quantities defined in (22) and (23) are not inde-
pendent of each other but are related by

E),q'q'(&q) = tanh-', p&q J)„'q'((q), p= 1/kT, ti= 1! (26)

which is analogous to the well-known quan tum-
mechanical Auctuation-dissipation theorem. We follow
the assumption by Wangsness and Bloch15 that the
fluctuations of the magnetic and electric fields Lcon-
nected with k= 1 and k=2, respectively; see Eq. (8))
are uncorrelated, and therefore restrict ourselves to
correlation functions with k= k . In addition, we will be
interested mainly in the axially symmetric case which
requires g'= —g. The correlation functions (24) and
(25) are real for k=k' and (t'= —(2.

Introducing (22) and (23) into (19), we find

+k
M(t) = P P LC "(t)T,&') exp( —itI.')T;&")

I(;=1,2 q, q' t!&:

+Dxq'q'(t)Tq(') exp( —itL')T+, "j) (27)

where, according to our notation, Tq(~) is the Liouville

R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953).

00

exp(ixt)dt =i +qrb(x)—
0 S

(31)

and decompose

M(t) exp(iL't) =M+iM (32)

In the representation that we will use, both M and 3/I
are real, i.e., we separate a second-order energy renor-
malization M from the damping term M. Ke will give
explicit expressions for 3II and 3I/ for the special case of
an axially symmetric environment. The approximation
leading to the Markof6an equation of motion

ap(t) jat= i(L'/M) p(t) —Mp(t)—(18')

The form of (29) establishes the connection with the
Laplace transforms of Eqs. (2) and (6). The evolution
operator Q(p) (or its Laplace inverse Q(t) j is now ex-
plicitly defined by (29) in terms of the static nuclear
Liouville operator I.' and the effective interaction of the
nuclei with the lattice M(P). The relaxation operator
(30) is a function of the spectral density of the correla-
tion functions (22) and (23).

For times t& q.„the generalized master equation (18)
can be approximated by a Marko@an equation of motion.
Since we restrict ourselves to second-order effects in the
spin-bath interaction, we may approximate p(t —q.) in
the integral of Eq. (18) by the formal solution of the
unperturbed Liouville equation p(t —q.)=exp( —iL'q. )
&&p(t). Furthermore, since the correlation functions, and
consequently M(t), are practically zero for t)r„ the
upper limit of the remaining integral in Eq. (18) may
be pushed to infinity. We will make use of the identity
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is valid only for t) 7, and this requires 7.&))7-, for radio-
active nuclei. (For impurities in metals, this condition
is fulfilled in many cases. ) In the region where 7, is of
the order of magnitude of the mean nuclear lifetime v-~,

results based on the approximation (32) have only very
limited validity. To find a rehable solution in this case
we could, e.g. , first specify the time behavior of the
correlation functions in (27) and then look for a solu-
tion of the non-Markof6an equation (18). In this paper
we will restrict ourselves to the aforementioned ap-
proach with the advantage that the noise spectrum of
the Quctuating lattice need not be specified at this stage
of the theory.

III. CONNECTION BETWEEN EVOLUTION
OPERATOR AND PERTURBATION

FACTOR

We choose the PAC case and expand the operators
appearing in (1) into an orthonormal set of basis opera-
tors" or basis supervectors in Liouville space. For the
problem of extranuclear perturbation of the nuclei in
a given state specified by spin I, the normalized spheri-
cal tensor operators U, t "i [their properties are described
in (A17)—(A20)] are an appropriate set of basis super-
vectors. Using (A19) twice and the definition of the
scalar product, Eq. (1) reads

IV. MATRIX ELEMENTS OF THE MULTIPOLE
EXPANSION OF THE RESOLVENT

We go back to the Laplace transform of 0(t) defined
in (29). The resolvent Q(p) is a function of the static
perturbation I.' and the damping term iV(P). The
Hamiltonian for static magnetic and quadrupole
interactions

X'= P g (—1)oTo&x&(rs)F q&x'
X=1,2 Q=X

=&masn+&ququ ~ (36)

where I'Q' ' stands for the extranuclear static fields
including the part induced by the surroundings, can be
expressed in terms of the normalized multipole operators
U@' &. Using the Wigner-Eckart theorem and (A17), we
have

and the matrix elements of the Liouville operator associ-
ated with (36) are simply given by

(U (&i
l

Ii
l
U, (&'))

( 1)QgxF (rci(U (&i
l [U %) U, is'i])

X(U, '"'
l
&(t) I

Uq'"')(U""
I p(ki, o)) (33)

(p(k) l
Uq&@&)=A),iris(gp)[4~/(2/(+1)] &s (34)

The perturbation factors defined by

G „' '(t) = (U, '" l
Q(t)

l
U, '"') (35)

The k's assume all integral values up to 2I; the multipole
orientation g, as it was named by Fano, is specified by
all integral values between —k and k. From comparison
of (34) with Eq. (FS208), both specialized to the unper-
turbed case (Q=A), we immediately find [in terms of
spherical harmonics and the coefficients AI, defined by
Eq. (FS99)]

Q (—1)@R F tie&c, ,rcpt'i'. (38)
X,Q

The structure constants c are defined in (A24) as the
product of a Wigner 3-j and 6-j symbol and a phase
factor, which vanishes for K+4'+h= (even integer). By
their definition, the structure constants are different
from zero only if Q+g'= g and the triangular conditions
for the 6-j symbol are fulfilled.

Because we identified T(" and T(2' with the tensor
operators of the nuclear magnetic moment and quad-
rupole moment, respectively, the quantity F&') equals
the effective magnetic field (except for the sign, if
~masn p Heff) FS's definition of the quadrupole
Hamiltonian contains an extra factor 5x which is not
present in (36). The corresponding quantities are re-
lated by

reduce to Eqs. ( SF20)9, ' irf the evolution operator 0
can be represented in the special form OX=A.XA+,
where X is an arbitrary operator of 'LL. This can be shown

by a, simple change of representation (A28). A(t) is a
unitary operator describing the evolution of the state
le).ts

&6 U. pano, Rev. Mod. Phys. 29& 74 (~9&7)."FS use the notation 6@ I,
&'& for the perturbation factors (35).

We prefer the abbreviation (35) because it maintains the natural
order of indices introduced by the decomposition (33).

'For a more detailed discussion see H. Gabriel, Lawrence
Radiation Laboratory Report No. UCRL-18496, 1968, Secs. III
and IV (unpublished).

In terms of the magnetic moment p, and the quadrupole
moment eQ, the Rrc of (37) read

(39a)

(39b)
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In the Appendix we have collected some useful sym-
metry relations for the structure constants. Making use
of the last equality in (A26), we fi.nd

(U (k)I L
I
U , (k ))

= (—1)'""'(U "'
I
L'I L '"') (4o)

Equation (40) implies, in particular, that

The calculation of the matrix elements of M'(p) is
straightforward and yields

(Ue(")
I ~(p) I Ua "')

—X
2 Q (. Kkyk(, , ICk'kg

%=1,2 Q, Q'=K k1 qI k2q2

d(o(U„(k»
I
[p+ik)+iL'] i

I U, ("'))Jxqx@'((o)

1 '
Kk)kd, , xk'k2 d~(U k&)

I
[p+i(d+iL']

I
U— ka )gxoxg (~) I

(42)
QQ

The sums over gl and g~ are redundant. The structure rules
constants dQ q

' ' appear as a consequence of the
anticommutator

1A2A:3 &I 2a2
Qnq3 "k2A:3 Qq2q3

ll 2A:g
dQq2q8 ~1&2) &8+&~Qq2qa

(45a)

(45b)
7+, (Ir)

I
U, (k')) —g

I
[U, (x) U, (k')] )

Analogously, for E= 2, i.e., if relaxation is due to quad-

and differ from the likewise labeled c only in the phase. rupole interaction, the upper indices must fulfill at least

We can express this by giving (A24) the form the cond1t1ons

klk2k3 —x[( 1)kz+k2+k8 —1]c klk2k8 (43)

[the definition of P. being obvious from the comparison
of (43) and (A24)]. Then

k)kafka —x[( 1)ki+ka+ks+ 1]c k)4k& (44)

In contrast to the c's, the d's vanish for ki+k2+k3
= (odd integer). The sign changes in the symmetry rela-

tions are indicated in (A26) and (A27). (See the remarks
following these formulas. )

The phase relations together with the triangular con-

ditions restrict the possible combinations of the multi-

pole orders considerably. For relaxation processes caused

by tensor operators of the first rank ("magnetic-type
relaxation processes"), E=hi ——1, we have the selection

2k2ka 2k2A:3
CQq2q3

—uA2 k~y&CQq2q3 )

2r2a~
dQq2qa "A2, A3+2dQq2q3

(45c)

(45d)

for the coefficients c and d to be nonzero. For a sys-
tem with cylindrical symmetry (g&

——
g& and Jx@x@'

= l)@. @Jx@x @),)9 it is obvious from (42) that again

(U, IM(p)IUa )=Bq, (Uq IM(p)IU,
'

)

In the applications, we will be interested mainly in this
case. Moreover, for a large number of experiments the
magnetic-type relaxation processes are dominant. We
specialize (42) to this important case by restricting E to
Z= 1.By virtue of (45a) and (45b) the sums over ki and
k~ can be performed, and we are left with the much
simpler expression

+l 1 +"
(U, (")I~(p) I U,"')=&i' 2 ~kk (—1)'(~o...'"')'- d~(U. '"

I
[p+i~+iL'] 'I U.,(")~io'-'(~)

Q~l 7l Qo

+Oo

d~(U„"'l(9+la+iI.'j '~ El„(™'))E,q' ~( )) (4tia).
If the quadrupole interaction is negligible compared to
the magnetic energy in the L' appearing in the resolvent
under the integral, the second term in (46a) is nonzero

only for k=4'&1, because L „„is diagonal. Even if
the full L' is not strictly diagonal, it will often be a rea-
sonable approximation to fix the frequencies in the inte-
grand by a diagonal-part approximation for the resol-
vent. To do this we decompose L'=Li+L2, where

Li (L2) has diagonal (nondiagonal) matrix elements

only. Then to the lowest approximation

(U~'"
I
I:*+'L'] 'I U. '")= [&+(U.'" I'LiI U. '"')

+(U, (')
I
L,[x+ iL,]-(L,

I U, (»)]- .

The above approximation is better the slower the corre-
lation functions J((d) and X(a&) vary within the range of
the frequency shift due to exact diagonalization of L'

'f' We sometimes use the notation J~y+q=—J~q+&.
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(measured with respect to the frequencies of the
diagonal-part approximation). The two parts into which

(46a) decomposes in the cases mentioned are

1 +"I ' &((q)d(q
X—

ql ~ p+1(q+q(qqqz
(46b)

+1
(U (/g)

I ~(p) I
U (%+1)) g 2 Q e 1&|kd 1k+&k

Q I

1 +"E q'-@((d)d(q
X—

ql p+1(d+1Mgq~
with

q(dgq= (Uq I
qLmsgn

yL,„„Lp+i~+iL...„j-L,„„IU, ("&). (46c)

For the pure magnetic case, we have, according to (38),
(39a), and (A24),

gP ())& i» g ( H„)
Xq{3/I:I(2I+1)(I+1)3)"'

= ( )JH.«/I)q—=q)&q, for all k; 5= 1. (47)

For later use we give for this special case the final pairs
of matrix elements for g=M+ilUI introduced in Eq.
(32):

obeying the relations

I- '4)=- —I '( —X), I-- "b)==I "(—y) (50)

(Uq('& IM I
Uq("'&) =(U q('& )1rII U q("'&), (51a)

(U, '"' IM I U, '"')= —(U, '"' IM I U, ("'&) . (51b)

We have shown in detail in this section that the vari-
ous matrix elements necessary for the evaluation of
6».«' are expressed in terms of the nuclear multipole
moments p and eQ, the extranuclear static fields, and the
correlation functions depending on the properties of the
surroundings. The nuclear spin does not appear explic-
itly but, of course, determines the range of possible k
values and the numerical value of the structure con-
stants. The evaluation of the perturbation factors is
completely reduced to a simple algebraic task.

V. CALCULATION OF THE PERTURBATION
FACTORS

A. General

All the correlation functions are real for a system with
axial symmetry; therefore the same is true for the matrix
elements (48). Using the properties (24), (25), and (50)
of the correlation functions and the symmetry relations
for the structure constants given in the Appendix, we
easily prove that for both k'= k and k'= k~ 1

(Uq(~& I&I Uq(+)

+1
=&i' E (—1)'(eoq q'"")'Iio' '(~~Q)

+1
eoqiq d—Qqn +&Q (~rQ) ~

Q~l

(U (k&
I ~I U' (&))

(48a)

(48b)

We now have the choice either to diagonalize the
denominator in the resolvent (29) or to invert a, finite-
dimensional matrix in the Liouville space. In both
cases one has to use a computer for higher spins. We
brieQy discuss in what follows how the general problem
can be adjusted economically to a subproblem defined
by the experimental situation. We will study in detail
special problems which have exact solutions. In this
paper we always use the method of matrix inversion.

In the general case G),&,
.qq'(p) is given by the inverse

of the following (2I+ 1)&&(2I+1) matrix:

G» '"(P)= (Uq("&
I I:P &+iL'+~(P)3 'I U""'), (52)

+I
= —R,' g cq„'""d o- "+'"Iq"(~rQ) — (48d)

Q 1

1 " Jqo'-&(g)
Io'(y) = dx-
Io"4') =- Kro' o(x)

dx
x y

(49)

The functions I@' and Iq,"are the Hilbert transforms of

the correlation functions4

with elements defined in Sec. IV. To define what we
called "subproblem, " we consider a y-y correlation ex-
periment. Only the even-even terms of 6~A,,

«' are of
importance in this case. For pure radiation, the maximal
0 is given by min(2I, 2L&,2Lq), where Li and Lq are the
multipole orders of the radiations in the cascade. The
dimension of the matrix to be inverted is, however,
determined by the nuclear spin only. For an ideal ex-
periment it would be sufhcient to calculate all possible
G».«' (0 and k' even integers). The admixtures of the
other matrix elements to this relevant submatrix can
be taken into account exactly with the help of the so-
called partitioning technique. The problem is simplified
by the special structure of the matrix d= p A+i L'+PLY,
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as we will see later. First, we arrange a in the following form:

~ ~ ~

0 app

2
ap1 ape

1 alp
3
5

a11
a33

.C D.
(53)

We have suppressed the possible q values in

(lJ (i)
i
g

i
P, (@'))—g~~, cv'

so that every elenlent a». is in fact a matrix itself."
Secondly, we partition the total matrix into blocks of
two square matrices 3 and D and the rectangular ma-
trices 8 and C. The interesting part of the resolvent 0
can be determined from the following theorem for par-
titioned matrices:

(A —BD 'C) '
(~) '=

D 'C(BD 'C A) '—(BD 'C If) 'BD —'

(D CI1 'B) '—
(54a)

Therefore,

(0)),). =[(If—BD 'C) '$~„.)... l~, k'evenintegers. (54b)

B. Examp1es

l. Randomly Fllcllating Fields

Two interesting cases have been discussed in detail.
Abragam and Pound' have treated the case of a ran-
domly fluctuating quadrupole interaction as it appears,
e.g., in liquids. Micha extended the method to a multi-
domain ferromagnetic metal with both an average static
magnetic Q.eld in each domain and a randomly time-Quc-

tuating component. No external fields are present in
either case. The common approach with respect to the
time-fluctuating part is to split the ensemble average
into an average over directions and magnitudes of the
perturbations. If we interpret our bath operators Vg'~)
or i)o'~) [see Eqs. (8) and (20)$ as classical fields Fo &~),

as in (36), we must also read the former ensemble
average ( )II as an average over an ensemble of ran-

2 The reversed order of lower and upper indices has been intro-
duced to agree with the customary notation GI,&

«'.

For k, &4 we are usually interested only in the per-
turbation factors up to k=4. In a real experiment,
higher-order terms, even if theoretically possible, are
not obtained with sufhcient accuracy. The described
procedure nlight be used a second time to determine the
experimentally relevant G), ), (k, k'=0, 2, 4).

dom processes. The main assumptions used by the
authors2 are that ~,&&r~ and cur,(&1, where ~ is either
the Larmor frequency in the average static field or cv, ~,

the splitting of the intermediate state by interactions
other than the fluctuating field gradient. In the follow-
ing we show how the same results can be deduced from
our formalism. The erst assumption justified the use of
the Markman approximation, as we mentioned in
Sec. II. The condition cur,&(1 allows us to neglect the
frequency dependence of the remaining correlation
functions, i.e., to write Jxox o(~) = JIr@x o(0). If fol-
lows from (46a) that this approximation is equivalent to
a cancellation of the static Liouville operator I.' in the
llltegl and.

Because (U, '~)(3f~ V, '"')) transforms under rota, —

tion as the product of tensor operators, the average of
the relaxation matrix over the Euler angles can easily
be found to be

((U,&" ~M
~

Uq ~"')))'""-=t')),),.8 .(24+1)-'

XQ (&,-")~~~ U,-"))=—4), &„4i. (55)

A glance at (42) shows that in the present approxima, -
tion only the first term contributes, because we have
k1=k2, g1=g2 and the structure constants c and d can-
not be different from zero simultaneously. In the erst
term we can neglect the imaginary part for ~r.((1.[It
can be shown4 that for an exponentially decaying corre-
lation function C~ox @(t), the Hilb—ert transform of the
associated JIro~—o(~) is smaller than Jz@~ o(~) by a
factor ~r, .) Substituting the surviving and properly
simplified part of (42) into (55), we find

Xi = (2k+1) ' Q RII' Q (—1)oJir@Ir—o(0)
X=1,2

(~ ~alii) 2

+x
(—1)'J~o o(0)

%=1,2

( 1)k+Ic+2I (56)
2I+1 I X J
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The sums over the squared structure constants can be
performed using the orthogonality relation for the 3-j
symbol and the sum rules (6.2.9) and (6.2.11) of
Edmonds's book. ."

The relaxation constants (56) are exactly the same
as those reported by Abragam and Pound [their Eq.
(71)] and Micha [his Eq. (21)].

Fpr K= 1 and an exponential correlation function
with a single correlation time ~„we find

(—1)o~„-o(0)=((H—(H))') .=((&H)')",
g—1

and therefore, using (39a) and the explicit expression
fpr the 6-j symbol and the gyromagnetic ratio instead of

p)
& = i,q((~H)q)r. h(h+1). (57)

The perturbation factor is given by

G„(p)=(»+1)- Z [p+'-.~+~.~-',

rom which both the time-dependent and the integral
attenuation factors are easily derived.

In (56), the sum of Jrcox @ over the multipole orien-

ta, tion Q is invariant under rotation. The correlation
functions can therefore be described v ith respect to an

arbitrary coordinate system. For an axially symmetric
field gradient with an instantaneous symmetry axis

along s', we may write

+2

(—1)oI„'-o(0)=(V. .')..
The lengthy expression for Xq [see (FS354)j will not be
repeated here.

G qq(t) e Atfvgq &k—qt t—)0 (61)

The time-integral perturbation factors follow immedi-
ately from (59) by substitution of p= 1/r~ and rnulti-
plication by 1/r~.

The main deviation from the Abragam-Pound solu-
tion (56) is that there exist individual damping con-
stants for every multipole orientation g. It follows from
(51b) that r&q ———v& „i.e., the frequency shift in (60)
leads to a symmetrical change in the frequencies at &g
relative to the center at g =0. The associated damping
constants are even functions of q(X~q=X~—q). This fol-
lows from (51a).

Introducing the explicit expressions

requires ~~))v „as before. We restrict ourselves to the
diagonal terms (48a) and (48c). The solution is then
given by

G„-(p)=(v, &I(p 8+ [I- ...+~~+~)- Iv, t»)
= (p+iL~r, ct+ (II.'"'

I
IrII U. '"')j

+(II,'"'IMI U, '"&)) ', (59)

which is exact in the present approximation, ca/id for
arbitrary k, and does not explicitly depend on the nu-
clear spin J The order of magnitude of the second-order
frequency shift cannot be estimated without specifying
the electronic correlation mechanism. It is negligible for
~~a..((1, but might be appreciable in situations where
~~v-, = 1. Using the abbreviations

.„,=~,q+(U, & &

IVIVI II,&'&),

= (U &»
I
3f

I
U '"')

the time-differential perturbation matrix is given by the
Laplace inverse of (59),

Z. Static Magnetic Fields and Magnetic Relaxatjon
Processes. High Temperature Li-mit

In the last examples the terms depending pn the cprre

la tion function li(a&) dropped out by averaging over the
directions. The same mathematical simplihcation may
also be effected in single crystals without the assump

tion of randomly fluctuating classical fields. By virtue

of (26), the damping part of the relaxation matrix re-

duces to diagonal form in the multipole representation

if J3~&&1. The frequencies we a,re concerned with ai-e

integral multiples of the Larmor frequency & belong

ing to the effective field at the nucleus [see Fqs. (48a)
and (48b)1. The high-temperature limit in nuclear mag-

netism may in fact include rather lov temperatures even

if the effective field is high. The study pf the analytica
solution of the high-temperature approximation is there

fore of some interest.
In the following we always assume that the quanti&a

tion axis is along R~f f and that no quadrupple interac
tion is present. The use of the ma. trix elements (48)

21 A. R. EfIrnongs, Arlgular Momentum irl, Quantum Mechanics
(Princeton University Press, Princeton, N. J., 1957).

+00

Jip (co) =— dt exp(i&et)( —',[h,(t),h, (0)]+)~,
2

(65a)

+o0

I -"(o))= —— dt exp(i(ut)
2

&&(-'[h+(t)»-(0)l+) =I»"(—~), (65b)

~='&/3[I(I+ 1)(2I+1)]—itq (62a)
'""=Wn[(h+g) (h~g+ ])/2jitq

into (48a.), we find that

~&q 7 (tI [Iip (0)+Ill ( Q)g)j
—h(h+ 1)Ar" (—~g)) . (63)

The appearance of the gyromagnetic ratio shows that
the correlation functions are expressed in terms of an
effective hyperfine field (hf) operator Hht, i.e. , the inter-
action Hamiltonian has been given the form

+1
xg„„——Q (—1)&Tot'&(u)v @"&=—yI Hgf, (64)

Q~]

With h=H, tt —(H,tt)a, the correlation functions are
then defined by
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which shows that, to all multipole orders, the damping
is determined by secular and nonsecular processes. As
is well known from NMR studies, the latter include the
effect of transitions induced between the states of differ-
ent multipole orientations by the transverse components
of the hf operator. The secular processes describe the
influence of the spread of Larmor frequencies due to the
change of the s component of the hf operator. The
damping constants (63) may be expressed in terms of
the appropriate longitudinal and transverse spin-lattice
relaxation times Tl and T2. Instead of (63), we then

y„,=k(k+1)/2T, +q2(1/T2 —1/Tl). (63')

For rapidly decaying correlations in the electronic sys-
tern, col,v-,(&1, and isotropic hf interaction, TI becomes
equal to T2, and the damping constants are then inde-
pendent of the multipole orientation q.

The case TI&T2 should under favorable conditions
be directly observable in a time-differential PAC experi-
ment. Let us look at a typical experimental geometry.
We orient the static magnetic field perpendicular to the
detector plane and observe the two radiations with col-
linear counters (0=2r). Furthermore, we consider the
case k, =2 (realized, e.g. , in the extensively studied

MI EI(+~2&1

cascade of "PRh). The directional correlation function is
then given by

Wl(~; t) = 1+-„'A22(G22 '(t)+3 ReG22" (t)]
= 1+4A22 exp( —3t/Tl)

X{1+3 expL —4t(1/T2 —1/Tl)] cos(v22&!)),
where A22 is the correlation factor (FS92) of the unper-
turbed correlation and v22=2p&z+M22". Besides the
second-order frequency shift %2222, the relaxation is
manifest in the two damping terms. If we eliminate
from the experimental data the exponential decay (due
to the nuclear lifetime and the relaxation factor 3/Tl),
a damped cosine oscillation should occur according to
the second exponential in the equation for Wl(t).

3. External 3fagnetic Field and Magnetic Relaxation
Processes for Arbitrary Temperatures

We consider a simple example for the general case
sketched in Sec. V B 1. Because the results are now no
longer independent of the nuclear spin, it must be speci-
fied from the outset. We choose the simplest case and
take I= j. for the spin of the intermediate state. The
dimension of the particular unitary vector space is
1V=2I-+1=3. The matrix (a) introduced in Sec. V A
gets the following explicit form for the present example:

(a) =
.(Ui'& iM+iM& U'")

0
(U

~
p+'Ll. „...„+Ml+M i

U('&)

(U('»M+2M & U(2&)

0
(U(2&

~
MyiM

~
U&»), (66)

(U~'&.
~ pyiP ...+M j+M

~
U&'&).

where the missing indices q and q' indicate that each
element in (66) is itself a square or rectangular matrix.
For an axially symmetric system, only terms with g =g'

are nonzero. All matrix operations with the supermatrix
(66) can then be done as if the elements were simple
numbers. We nevertheless use the rigorous matrix nota-
tion, because the formulas are then easily generalized
to the nonsymmetric case without change in the order
of terms. It is a general feature of the resolvent that
(besides p in the upper left corner) all elements of the
first row vanish. The asymmetry of (66) is obvious
from the nonvanishing element of the first column and
the other "low-temperature" nondiagonal matrices in
(66).

It follows from (54) that, due to special structure of
(66), the first column does not contribute to the inverse
of submatrix (b) labeled by k= 1, 2. Explicitly, we find

Gpp(p) = 1/p
G p"(p)= —(b ') "M "1/p i=12

i.e., Gpp(f) = 1, as required, and the even-odd term is of
no interest for y-y directional correlations. The remain-
ing (b) matrix consists of the diagonal square matrices,
already known from (59), and the two rectangular
matrices belonging to multipole orders 4= 1 and 4=2.
Using (60) and (57), we find the following tridiagonal
irlati ix:

(b) =

P iV22+&122

0
0
0
0

0
P ZV21+X21

0
0
0

0
0

P+&2P
0
0

0
0
0

P+ ZV 21+X21

0

0
0
0
0

P+ 2V 22+X22

0
~21 Z~21

0
0
0

0 0
0 0

3f21" 0
0 M21"+2M 1"
0 0 (68)

3f12"—z3E12" 0 0
0 OD 0
0 0 M12 "+i&12"

p iV11+Xll —0 0
0 p+Xlp 0
0 0 P+ZV11+Xll
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partitioned in the indicated manner. Equation (68) is a, simple example for the application of the partitioning tech-
nique (54) to calculate (f& ')22 ——[(A—BD 'C) '$22. The result can be given the form

G22 (P) M )22 [P+2P2Q+7120 (M21 +23 I21 )(P+2P10+&110) (M12 +ZM12 )J
q=o, ~i, ~2, I= 1 (69)

which shows clearly how the low-temperature terms modify the high-temperature solution (59) or (61).For spins
I&1, the results are of a similar form.

For specializing (69) to the possible multipole orientations g, we have to keep in mind that pPp=M 0& =0.This
ensures that G2200 is real. The perturba, tion factors with

l g, l

= 2 are exactly those of the high-temperature solu-
tion, because ¹122=¹222=0[see Eq. (68)$. Therefore, G2222(t) can be taken from (61).The Laplace inverses of

p+40
G22 (p)

(p+l120) (p+~10) M21 M12

P+ZP11+ &111

G22"(p) =
(p+ZP21+ &121)(p+2P 11+All) (M21 +ZM21 ) (M12 +ZM12 )

(70a)

(70b)

are easily expressed in terms of the negative roots
[120&o&iP,"& (i=1,2)$ of the denominators. The time-
dependent perturbation factors are superpositions of
two exponentials:

G "(t)=a e 0""+t&e
—-p"" (71a)

G 11(t)—g a (z 1&+—Pz &+&'$ 0
—(~z +it&1 & & (71b)

Equation (71a) has the form of the Dillenburg Mariso

solution for the particular PAC problem under con-
sideration. A detailed comparison of their statistical
theory with our approach will be given elsewhere. In
our theory, the effective relaxation constants and
modified frequencies (if present) may be expressed ex-

plicitly in terms of the electronic correlation functions.
The lengthy formulas will not be given here for all com-
ponents, but only for (71a). The negative roots of the
quadratic equation are (I= 1)

120 2 (A10+~20) ~2 [(&110 &120) +4M21 M12
= —2y2 Jii"(~d[2& (cosh-', Poor) '$
= (1/Tl)[2&(cosh-,'Pp&z) '$. (72a)

In the high-temperature limit the second term drops
out and G.2"(HT) = exp( —3t/Tl) as it should. At ex-

treme low temperatures we get a double root, o.o" ')

=2/Tl, according to (72a), and therefore G2200(LT)
= (1—t/Ti) exp( —2t/Tl), for I= 1.

Inderiving Eq. (72a), we have used Eqs. (26), (39a),
(48), and (63a). The temperature dependence of the
damping constants is determined partly by the correla-
tion function J»"(p&z,), and, in addition, by a low-

temperature correction which follows directly from (26)
and is therefore independent of the particular interac-
tion model. The cofactors ao and bo are also temperature-
dependent and given by

ap=-', (cosh-', Pp&z+ 1), bp
———',(1—cosh-', Pp&z) . (72b)

VI. ANGULAR DISTRIBUTION FROM
ORIENTED NUCLEI. RELAXATION

EFFECTS

The radiative detection of magnetic resonance" in
oriented nuclei (NMR/ON) has opened a new experi-
mental method of measuring spin-lattice relaxation for
radioactive nuclei at low temperatures. It is, therefore,
worthwhile to discuss how the present theory may be
applied to this problem. The underlying physical model
makes our approach especially appropriate for spin-
lattice relaxation in metals, a field investigated inten-
sively by various groups. "

The basis of this section has already been given in the
Introduction [see Eqs. (4)—(6)j. For practical reasons,
we discuss reorientation effects in parent nuclei. A1.-

though it is now a well-established experimental fact
that the preparation of the initial conditions is of crucial
importance in the NMR/ON technique, we will not
plunge into the complexities of a theoretical description
of the preparation procedure. I-et us assume that our
parent nucleus can be characterized by a particular
axially symmetric density matrix pp(t= 0) at the end of
some preparation process. The time evolution of the
system of radioactive parent nuclei together with the
environment is again fully described by the evolution

operator Q(t).
As in the PAC case, we determine the radiation pa-

rameters by comparison with the unperturbed case
0=K For a system with cylindrical symmetry, the
initial density matrix pp(0) is fully defined by the Rp&"&

components of Fano's statistical tensors (FS41b):

R '0& = P (—1)'0 "'(Ipmo, Io —2220'
l kq)

mp, mp'

&&&~pit 0(0) l~p') =(~.'" lt 0(0)) (73)

22HyPerfme Structure and Euclear Radiations, edited by E.
Matthias and D. A. Shirley (North-Holland Publishing Co. ,
Amsterdam, 1968).
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We mention the following relations for quantities used
instead of Eo(k) in the various standard articles"":

(L) —G (I) (de Groot) —(2I+ ])--i/'ip (Blin-stoyle) (7g)

The angular distribution (5), in standard notation, is
given by

W, ;.i(k; t)=—W(0, t)

= P UtFtFi, (cos9)(Uiio&
I Q(t) I

Ut'"')Bi, (0)
k, k'

=P UtFiJ't(cosg)Ilx(t), (75)

is apparent from (51b) that Mtt "——0 for all k,k'.]Ex-
cept for the case that coL,v.~1, the energy renormaliza-
tion is negligible; therefore we cancel 3II in (79), even for
asymmetric situations.

Equations (78) and (79) may be rewritten in a form
which shows that the assembly of nuclear spins relaxes
asymptotically to the temperature of the lattice. This is
accomplished by using the fact that the real part of the
relaxation operator M applied to the equilibrium den-
sity matrix for the parent nuclei,

per(X') = exp( —X'/kT)/Tr exp( —X'/kT),
with

A(t) =P G~i "(t)&a (0), where T is the lattice temperature, gives zero:

&pod(X') =0. (80)
according to (35).The U&F&„depend on .the decay scheme
of the particular nucleus. In the asymmetric case, Eq. Equation 80 implies the following relations between

(76) h t b g
1' dt the matrix elements of M in the state multipolehas to be generahzed to

representation:

R,&"&(t) = P G».«'(t)R, .~'&(t=0).
k/ q/

k/ q/

In the case that only the directional distribution of the
y radiation emitted from the daughter nucleus is ob-
served, the sum in, (75) contains only even k. Neverthe-
less, statistical tensors of odd rank contribute to the
associated Bt(t) according to (76).

We now show that the problem of reorientation eRects
in ON studies is intimately related to the theory of
multipole relaxation. Schwegler'4 has extensively
studied this problem, utilizing methods of irreversible
thermodynamics to take into account the dissipative
properties of the heat bath. The theory of multipole
relaxation has a1.so been sketched in Fano's version of
the Wangsness-Bloch theory. "

We base the following considerations on the physical
model described above. According to the remarks at
the end of Sec. II, the long-time behavior of the system
is governed by the differential equation

dR, &~&/dt =d(U, "&
I pe(t))/dt

= Q (U, &"i
I

i(L'+M) M—
I U, &'&)R;—&"'&. (78)

k/ q/

The perturbation factors obey the same diRerential
equation, subject to the initial condition G».«'(t=o)
= bkk 6«. It then follows that

G& «'(t)
= (Uq&

"&
I expL —i(L'+M) t—Mt)

I Uo "&), (79)

which is, of course, just the inverse Laplace transform
of Q(p) defined in (29) I

with 3/I(p) replaced by ~.
In the case of cylindrical symmetry of the initial den-
sity matrix, only the Gtt."'s are required in (76). In
this case, the imaginary part M drops out exactly. I

It
' R. J.Blin-Stoyle and M. A. Grace, in Encyclopedia of Physics,

edited by S. Fliigge (Springer-Verlag, Berlin, 1957), Vol. 42.
ee H. Schwegler, Z. Physi)i 181, 22 (1964); 189, 163 (1966).

= Q Mi, t «'Ro &'&(eq) =0. (81)
k'q'

We also conclude that, for the special perturbation
matrix (79) (with M=0),

k/ q/

With

= Q Gi &, '"(t)R "'&(eq) =R,&~i(eq) . (82)
k/ q/

(83)

the differential equation (78) now reads

dhEq&k)
= Q (U, "&

I
iI.' 3III U, .i'&)A—R;&"—'& (84)

k'q'

=P (Uol'l
I eXpL —(iL'+ALII)tf

I
Uo&'i)

holds. Substitution of Eq. (86) in (75) yields an expres-
sion for the time-dependent angular distribution, gen-
eralizing Shirley s Eq. (10), which was used in a dis-
cussion of spin-lattice relaxation investigations by
NMR/ON techniques. "

2' D. A. Shirley, in Ref. 22, p. 843.

and has the formal solution

DR, &'&(t) = Q (U, &"l
I expL —(iL'+M)tf

I U, &"'&)

k'q'

xttR;&"'&(t=0). (85)

For the axially symmetric case, the simpler equation

~A(t) =&a(t) —A(eq) =P Gi, i "(t)~&i:(t=o)



It is well known, and apparent. from Eqs. (85) and
(86), that the angular distribution of radiation emitted
from oriented nuclei depends on the preparation of the
initial state and on the dynamic properties of the sur-
roundings. A discussion of the latter part has already
been given in the preceding section; the details will not
be repeated here. A few remarks might be in order with
respect to the case of a static magnetic field and relaxa-
tion processes of the magnetic type. It can be shown

quite generally that under these conditions I. ,g„
commutes with the axially symmetric relaxation opera-
tor M. Therefore, the I.iouville operator 1. „„drops
out of Eq. (86), and we are left with

AB„(t)=g (Uo~'&~exp) —3II/]~ Uo~'&)ABg (1=0). (87)

In the high-temperature approximation, where the oR-

diagonal matrix elements of 3II may be neglected, we
already know from Eqs. (60) and (61) that

AB (t) = exp( —X t) AB (t= 0) . (88)

For the interaction Hamiltonian (64), the damping con-
stants Xio follow from (63) and (65b) to be

Xio= —k(1~+1)p'Ai"(os) =Io(4+1)/2Ti. (89)

We notice that the relaxation rate is determined by a
nslltiple of the usual longitudinal spin-lattice relaxation.
time T». As mentioned above, this simple result is valid
only in the high-temperature limit and in the absence
of quadrupole interactions. To cover the entire tempera-
ture range, the procedure of Sec. V 8 3 has to be used.
It is sometimes more convenient to diagonalize the re-

laxation matrix M to determine the relaxation con-
stants tOne . of the eigenvalues is always zero—see

Eq. (67).$ The solutions are similar to Eq. (72a), the
solution for I=1. Numerical calculations for higher

spins and various initial conditions are in preparation.

VII. SUMMARY AND DISCUSSION

We have shown that the combined use of the I.iouville

operator formalism and I'ano's expansion of operators
into an orthonormal set of multipole operators is also

a powerful tool for treating relaxation phenomena in

PAC or in experiments with oriented nuclei. An account
of the less familiar mathematical means has been added.

The perturbation factors have been given as the
multipole representation of a resolvent, which is defined

in terms of the I-iouville operator for the static extra-
nuclear interactions and of a relaxation superoperator
(define by the nucleus-bath interaction and the prop-
erties of the environment). Several examples have been
discussed: (i) randomly fluctuating fields (Abragam and

Pound. ' a,nd Micha, '); (ii) single crysta, ls in static mag-
netic flelds (external and/or caused by the lattice) with

relaxation processes of the magnetic type (the "high-
temperature" condition ~oz/kT((1 was assumed to be

fulfilled); (iii) for nuclei with spin I= 1, extension of
case (2) to arbitrary temperatures; and (iv) the influence
of reorientation effects (relaxation processes) on the
angular distribution of radiation from oriented nuclei
(general discussion).

The following supplementary remarks are concerned
with some approximations made in the general part of
the theory and with the quantities entering the final
formulas. In Sec. II we have used the relaxation opera-
tor X, i.e., we have neglected the memory eRects which
are contained in the generalized master equation (18).
The Markoflian equation of motion (18') resulting from
this approximation is valid only for times long com-
pared to the electronic correlation time v-, . Since, for
radioactive nuclei, the available time is the nuclear life-
time v~, use of the limiting relaxation operator N is
justified only when ~,&&v.z. In a forthcoming paper we
will discuss the relaxation problem in PAC, including
the intermediate case 7, r~. The restriction to second-

order correlation functions requires, rougly speaking,
that y'(HhP)g7, '((1, which can be seen from Eqs. (60)
and (63)—(65). Since the reciprocal nuclear spin-lattice
relaxation times are proportional to y'(Hi, P)rir„ the
criterion r,«T„i,„must be valid in addition to and

independently of 7.,«7.~. Conditions like co&7-,&&1 have
not been used in our theory, except in discussing special
situations, as in Sec. V 8 1.

The second-order correlation functions Jx@x@'(a&) are
basic quantities for the particular physical model used
here and in related papers. Relaxation eRects in NMR,
Mossbauer experiments, PAC, and NMR/ON may be,
and have been, described in terms of essentially the
same electronic correlation functions.

In general, we must not expect to be able to express
the damping constants appearing in the perturbation
factors in terms of the two spin-lattice relaxation times
used in the Sloch equations for the macroscopic mag-
netization. Relaxation times measured by conventional
NMR characterize the irreversible behavior of only the
dipole polarization, although, of course, higher-rank
statistical tensors are present for I)-';. In a directional
correlation experiment, for instance, we observe under
suitable conditions (at least in principle) damping con-
stants belonging to higher-rank multipolarizations, e.g. ,
by looking at the perturbation factors G22«(t) and
G44«(t). The same is true for relaxation processes ob-
served using the NMR/ON technique.

The general theory of multipole relaxation (formu-
lated briefly by Fano, " in detail by Schwegler, " and
within our approach in Sec. VI) yields an increasing
number of independent relaxation times for increasing
spin values. t For a system without any symmetry the
maximat number of independent relaxation times is
(2I+1)'—1 according to Refs. 16 and 24. Even for
axial symmetry and I= 1, we already get 6ve independ-
ent dampin. g constants. J It seems rather unlikely that
all of the possible relaxation times can be determined.
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experimentally, especially for higher spins. Thus, in

practice, the problem will be to interpret consistently
the incomplete smaller set of experimental parameters.
Provided that the basic assumptions of the present
theory are suitable, the electronic correlation functions

J&9 @'(~) may be used. Only in special cases, as in the
ones leading to (63') or to Eq. (89), the usual spin-
lattice relaxation times occur. There, the damping con-
stants are linear combinations of T~ and T2 with fixed
"geometrical factors, " which depend on. the multipole
order k and the multipole orientation g. That such a
simple result is not always valid is clear from the ex-

ample of Sec. V 8 3 Lsee Eq. (72a)j.
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APPENDIX

Liouville Representation
I

%e collect here some properties of the quantum-
mechanical Liouville operator erst used by Kubo, "then
applied to problems of nonequilibrium statistical me-
chanics by Zwanzig" and, subsequently, to line-shape
problems by various authors. ' ' ""In the present paper
we make use of operator techniques described by Fano"
and applied to the theory of multipole relaxation by
Schwegler. '4 For the problem under consideration we are
mainly concerned with the special 6nite-dimensional
unitary vector space 'lt of dimension 1V (spanned, e.g. ,
by the standard representation (Is,I,}of a spin system
of angular momentum I) and linear operators acting on
state vectors of %..

Let us assume for simplicity that the quantum num-
bers I and m specify the state uniquely. From the com-
plete orthonormal set of vectors ( IIm&} in tt we define
a set of operators (IIm&(Im'I } which may be con-
sidered elements of a unitary space 2 (Liouville space)
with dimension E . Following Sauermann, we denote
this orthornormal basis in 2 by ( IIm)(Im'I }= (IImIm') }
or, if no confusion arises, simply by ( I

mm )}.Using this
"Dirac" notation for the basis operators

I
mm') in 2 and

26 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
~7 M. Blume, Phys. Rev. 174, 351 (1968)."G. Sauermann, Physica 32, 2017 (1966).

the orthonormality and closure relations

(ImIm'
I
ImiIm2) =8, ,8 ~ „ (A1a)

g IImIm')(ImIm'I =8 (unit operator in 2), (A1b)
mm'

we find, in complete analogy to the usual rules of quan-
tum mechanics, for the decomposition of a,n operator
AQ'tt, considered as an element of the Liouville space

(A I
= Q (A I

ImIm') (ImIm'
I

mm'

= P (ImlAIIm')*(ImIm'I . (A2b)

The advantage of this seemingly complicating notation
will soon become evident. To make calculations in the
Liouville space it is necessary to introduce superopera-
tors It!, S, (definitions to be given later), denoted by
a caret, which transform an ordinary operator Ag'lt
into some B=AAC%t. For the expansion of a super-
operator R we have (suppressing I in all subsequent
formulas)

R g=P lmm')(mm'IAlm, m, )(mim, l
. (A3)

mm mgm2

The matrix elements of R are characterized by four in-
dices. A special example of such a tetradic is the well-
known Liouville operator L defined, for a, given Hamil-
ton&an 3C, by

I-A =
I X,A.J, for arbitrary AQ'tt

with matrix elements given by

(A4)

(mm'II. lm, m, )
= &mlXlm, &b„. ,—(~~, IXlm &b. , (AS)

The physical significance of this special superoperator
L becomes clear if we choose the eigenbasis, say,
(Ia&, lb), }, of X four our matrix representation.
Equation (AS) may then be written as an eigenvalue
equation

I lla&(b I)
—=I

I
ab) = L&.—&bjl ab), (A6)

i.e., the operator
I ab) is an eigenoperator of I.belonging

to the physically observable beat frequencies +,&
—=5—'

&((E —Eb) as eigenvalues. We obtain a different eigen-
operator I ba), corresponding to ebb, = ei, b, by Liou—ville
conjugation:

I
ha) =Cr,

l
ab) (with Cz, '=Cr, ), as pointed

out by Ben-Reuven. "
In addition to (A2a) and (A3), we mention the multi-

plication laws for a superoperator R with an ordinary

"A. Ben-Reuven, Phys. Rev. 141, 38 (1966&.

IA) = Q IImIm')(ImIm'IA)

= g IImIm')(Imld
I
Im'), (A2a)
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The adjoint of a product of superoperators is, according
to

operator A and for two superoperators R and S:

(~~'IRA) —= &~ IIu I
m'&

(A I
RSB)= (R+A

I
SB)

= (S+R+A
I B)= ((RS)+A

I B), (A16)
(mm'

I
Rs

I mm)

(mrs'
I
R

I mim2) (mim2 I slmnz) . (As)
m1m 2

So far we have used a very special system of ortho-
normal basis operators. The generalization to other
complete sets of (not necessarily Hermitian) opera, tors
is discussed by Fano" and is based on the fact that the
linear operators 2, 8, ~, in a unitary space LL of di-
mension E span another unitary space 2 where a metric
can be introduced by defining a scalar product3

(RS)+= S+R+.

The Liouville operator L, is Hermitian if K is Hermitian.
This follows immediately from (A15), which for arbi-
trary 2 leads to

I.+
I A) =

I
[K+,A j) .

By (A15), Hermitian (R+=R) and unitary superopera-
tors (R+R=RR+=E) are de6ned.

(AIB) =Tr{A+B} (spur metric). (A9) Exyansion in Mgltipole Oyeratoxs

As mentioned above, we use the notation
I A), I B),

to emphasize that these operators are considered to be
elements of Z. Indeed, the Liouville space 2 is a unitary
space, since it follows directly from (A9) that for arbi-
trary vectors IA), I B), I C) and arbitrary complex
numbers n, P the properties

(AIB)*=(BIA), (A10)

(A
I
mm') = (mm'

I A) *
= &~'I A+I ~&= &~ I

A lm'&'. (A14)

%e introduce superoperators A, S, , in 2, so tha, t

RIA) = IRA)

is defined for all A Q'tt, and

RIA)=IRA)gZ or RAg~

(~AyPB I C) =~*(A
I C)+ P*(BIC), (A»)

(AIA))0 [if (AIA. )=0, then A=O) (A12)

hold. We notice that according to (A9) the special scalar
products (mm'I A) and (A I

mm, ') are unambiguously as-

sociated to the ordinary matrix elements of the operator
A with respect to the basis {lm&}:

(mm'I A) =Tr{(lm&&m'I)+A}
=Tr{l~'&&~I A}= &~IA l~'& (A13)

The theory of extranuclear perturbations on angular
correlations can be formulated within a finite-dimen-
sional unitary vector space; therefore, the mathe-
matical tools discussed above may be applied. The
dimension of 'll is determined by the spin I of the inter-
mediate nuclear state. It is reasonable to perform all
calculations in the same representation in which the
final expression for the angular correlation is usually
given. In the present paper we therefore use as an ap-
propriate set of basis operators the normalized spherical
tensor operators U, &~) which have the real matrix
elements

(IesIm'I U, (+)—=&Iml U, (~) IIm'&

p I 0 I~—( 1)I-m(2/+1)1/2I (A1&)
4—m q m'1

The index k takes all integral values up to k=2I;
g is restricted to —k(g(+k. Including the nor-
malized unit operator Uo") = (2I+1) '" 1, we have
1P= (2I+ 1)' different operators U, (") in tt.

To point out the connection with both the first sub-

section of this Appendix and the notation used by Fano,
we interpret the multipole operators as elements of the
Liouville space 2, denoted by I U, (")).Then the ortho-
normality relation reads

(U, '" I U, '"')=Tr{U,(")+U, (')}= b(,i. b„. (A18)

I
U (k))(U (le)

I
E (A19)

R{l A)+I~B&}= IRA)+elRB).

With the help of (A9) we define the adjoint R+ of the The condition jA18j implies that
superoperator R by the relation

(A IRB)=(R+A IB). (A15) (Uo(
I
U~(")) =Tr{U~(")}=0, for k, q&0. (A20)

and the completeness of the basis {I U, (")}in 2 is ex-
for all A tt. They are linear operators if for arbitrary

pressed by
complex numbers

"H. Primas, Helv. Phys. Acta B4, 33j, (1961). The expansion theorem for an arbitrary operator AQ%,
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and a superoperator RCZ is simply

I ~)=2
I
Uq"')(Uq'"'

I ~) (A21)

the name "structure constants" for the expansion coeffi-
cients. With Racah's definition of the adjoint spherical
tensor operator

(k)+ ( 1)qU (k) (A25)
&=Z Z IUq"')(Uq'"I&IU""')(Uq "'I. (A22)

kq k'q'

Of special interest are the Liouville operators U, &~'

associated to the multipole operators by the definition

(A4). The commutator of two multipole superoperators
can be reduced to the known result for the commutator
of the associate U, '~)'s. This follows from

(k) U, (k')g —[U (k) [ U, (k') g]]
—[[U (k) U, (k')] g]+ U, (k') U (k)g

[ U (k&) U (»&]= Q c»»»U (»& (A23)
&3q8

using the fact that [ U«(k», Uqq(k»] itself can be ex-

panded into a sum of basis operators. The definition of
the expansion coeKcients (structure constants) is given

by

krkq» —(U (»)
i
U (kz)

i
U (kq))

(U, (»)~L-U (k» U (k.&])

—Tr{U ( )+LU ( ) U ( )]}

( 1)ql—qq{ ( 1)kg+kq+» 1}

&&L(2k +1)(2k +1)(2k +1)]'"
kr kq kq kr kq k

X (A24)I I I qr qq
—

qq&

The explicit expression for the structure constants in
terms of certain products of 3-j and 6-j symbols has
been taken from Judd. " In a sketch of the theory of
continuous groups Judd also mentions that the tensor
operators U, (") (—k&q&k, 1&k&2I) can be regarded
as infinitesimal operators of the unimodular group in
2I+1 dimensions, 5Uqr+r. For this reason we also use

"' B. Judd, Operator Techniques in 2 tomic Spectroscopy
(McGraw-Hill Book Co., New York, 1963).

and the properties of the trace, several symmetry rela-
tions can be established. For example, for fixed position
of the first pair of indices,

Ic1@2&8—(~) &1&2&8—f 1 ) q1 &1&8&2
qlq2q3 i ' J ql q2 q3 4 J q198q2

= (~)(—1)q~c k~kqkq (A26)

or, for the permutation of the first two columns and
cyclic permutations of columns,

kykqkq (~)c kqkgkq
qlq2q3 q2q1q8

( 1)qg+qqc kqkqkr (A27)

When two signs are given, the upper one has to be taken.
The lower signs in parentheses apply when the c coeffi-
cients are replaced by the d coefficients defined in Eq.
(58) of Sec. V. The structure constants play a central
role not only in the theory of continuous groups but also
in practical calculations utilizing the expansion in multi-
pole operators. For some special cases we have given the
explicit expressions for the c's. R. Melhorn has written
a computer program to calculate (in both decimal and
prime factor notation) all structure constants important
in the theory of perturbed angular correlation and re-
lated problems. The transformation theory of vectors
in the Liouville space can be.formulated in complete
analogy to the ordinary transformation theory of quan-
tum mechanics. Here, we mention only a special case.
The change between the state multipole representation

{~
U, '"&)} and the standard representation {~

ImIm')}
follows from (A2a) and (A21) by substituting for the
arbitrary operator

~
2) the tensor operator

~ U, '"') or
the basis operator ~ImIq)k'), respectively. This yields

~

Uq'k&) = g ~ItÃItpl')(ImIqw'I Uq(k&), (A28)
tnml

~

ImIm') =P
~
U, 'k')(U, '"

~

ImIrn'), (A29)

the elements of the transformation matrix being given

by (A17).


