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Generalized Kittel-Van Vleck Relation between g and g':
Validity for Negative g Factors
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gt js pointed out that a generalized exact relationship exists between the spectroscopic splitting factor g and
the magnetomechanical ratio g' for paramagnetic centers: g'=g/(g —p) with p=(S,)/S, '. Here S' is the
lictitious spin in the spin Hamiltonian and (S,) is the expectation value of the real spin in the state labeled
by 5,'; the s axis is defined by the direction of magnetic field. Several classes of magnetic systems are con-
sidered, where for each system p is constant over a wide range of physical parameters such as cubic crystal
field and spin-orbit coupling, expressing an underlying symmetry of the magnetic ion in its environment.
ft is shown that the sole criterion for validity of the Kit tel—Van Vleck relation g'= g/(g —l) is that (S,)=S,'
and that this may occur even when the admixed orbital angular momentum is very large so that the de-
parture of g from 2 is very large. The generalized relation between g and g' is also applied to cases where g is
negative while g is positive. The extension of the relation between g and g' to cases of interacting magnetic
centers is discussed.

I. INTRODUCTION
' EASUREMENTS on paramagnetic crystals in an

~ ~ external magnetic field lead to the introduction
of two quantities related to the magnetic moment.
These are the magnetomechanical ratio g' and the
spectroscopic splitting factor g (the g factor). The
magnetomechanical ratio of an ion is the ratio of its
magnetic moment measured in units of the 'Bohr
magneton p~ to its angular momentum in units of A..
g' is usually measured by an Einstein —de Haas experi-
ment in which the magnetic held that is used to produce
the magnetization is switched off (or modulated at a
low frequency) and the change in the electronic angular
momentum connected with the change in magnetization
is observed as an angular momentum transferred to the
lattice of the specimen. The relaxation of the electronic
moment is accomplished by processes internal to the
crystal (i.e., nonradiative). The g factor, on the other
hand, measures the energy splitting of a degenerate
state by a magnetic fielcl and is defined (for a doubly
degenerate state) by DE= gfJ, aH.

Although in free ions the quantities g and g' are
identical, in a solid the crystalline field may act on the
orbital coordinates and alter the simple scheme of the
free ion. The removal of some (or all) of the orbital
degeneracy causes a torque to act on a precessing
moment, and as a result g and g' represent different

physical quantities which may indeed have different.

signs. Thus g' gives the sign and magnitude of the
magnetic moment due to the microscopic charges
precessing around the direction of the resultant angular
momentum, while g gives the sign and magnitude of the
precession of the magnetic moment around the direction
of the external magnetic field. g is different from g'

* Under the auspices of the U. S. Atomic Energy Commission.

because the torque equation J=M&(H does not hold
in a crystalline environment. As pointed out by Kittel,
there is a strong analogy between the g factor and the
effective mass of an electron in a crystal lattice; as the
lattice exerts a force on an accelerating electron, so it
exerts a torque on a precessing moment and it is this
torque that results in g~g'. This difference has been
extensively discussed by Kittel' and Van Vleck' who
have given the relation

between g and g' when both are close to the free-spin
value g=2. More explicitly, they assumed that the
state in question had only a small admixture of orbital
angular momentum so that its magnetization and
angular momentum were predominantly due to spin
(such as the ground states of Fe'+ or Ni'+ in cubic
crystal fields). s Under these circumstances the signs
of g and g' would be the same and be that of a free-
electron spin.

Kith the introduction of the spin Hamiltonian for
the description of paramagnetic states, it was generally
assumed that the sign of the g value was arbitrary and
could be changed by reversing the sign of the s compo-
nent of Qctitious spin 5,'. It was pointed out by Pryce, '
however, that not only a magnitude (as implied by the
definition given above) but, under certain circumstances
of symmetry, a sign as well, can be ascribed to the g
value as will be made clear later. The physical meaning
of this sign is that it tells the sense of precession of the
magnetic moment in the external 6eld, a negative g

~ C. Kittel, Phys. Rev. 76, 743 (1949).' J. H. Van Vleck, Phys. Rev. 78, 266 (1950).
3Magnetomechanical eAects for paramagnetic systems have

also been treated by C. J. Gorter and 3. Kahn, Physica 7, 753
(1940).

4 M. H. L. Pryce, Phys. Rev. Letters 3, 375 (1959).
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factor meaning that the moment precesses in the
direction opposite to that of a free-electron spin.

Recently, we noticed that for Ce'+ in yttrium ethyl
sulphate, the g factor was negative, while g' was expected
to be very close to the Lande factor gJ- and hence be
positive. This and other cases with g and g' of opposite
signs will be discussed below. The difference in sign
seemed paradoxical to us and we looked for some
relation between g and g' which would not be restricted
by perturbation theory as is the Kittel —Van Vleck
relation.

We have found a relationship LEq. (22), below]
between g and g' that is valid under far less restrictive
assumptions than implied by the original derivation
of Eq. (I), i.e. , it is not necessary that the admixed
orbital angular momentum be small. The criterion for
validity of Eq. (I) is that the fictitious spin be equal to
the expectation value of the real spin, independent of
how large the orbital angular momentum might be.
The modification of Eq. (I) for the case where g and g'
are opposite in sign follows from the generalized
relation derived below.

In Sec. II, we consider the spin-Hamiltonian def-
initions of g and g' and their relative signs following, in
the latter case, the work of Pryce. 4 In Sec. III, we
discuss the Kittel-Van Vleck relation and its generaliza-
tion with several illustrations. The discussion of g and
g' centers around an isolated set of magnetically
degenerate states of noninteracting, fixed paramagnetic
centers. We have chosen to fix our attention upon such
relatively simple systems in spite of the fact that in the
past most of the experimental situations to which the
relation between g and g' has been applied dealt with
ferromagnetic substances. This course has been adopted
as the basic physical principles involved in the relation
between g and g' are best illustrated by these simplest
paramagnetic systems. In Sec. IV, we briefly consider
the effect of exchange interactions in insulators and
metals.

II. DEFINITION OF g AND g' IN THE
SPIN HAMILTONIAN

A. Syin Hamiltonian

The spin Hamiltonian provides a convenient frame-
work for the representation of the matrix elements of
operators in a manifold consisting of a few low-lying
states of the system. ' In particular, we can represent
the angular momentum J and the magnetic moment M
in this way, and this proves useful in the definition of
the quantities g and g'.

Let us suppose that we are interested in matrix
elements within a manifold of e states i/i), , lf ).
The matrices of any operator 2 will then, within these
states, be m-dimensional, with e' constants. The spin-

5 See, for example, K. W. H. Stevens, in Magnetism, edited by
H. Suhl and G. T. Rado (Academic Press Inc. , New York, 1963);
and C. Herring ibid. , Vol. IIb, p. 20 G.

Hamiltonian operator equivalent of,4 is obtained by
identifying each of the states i/i), , lf ) with one
of the eigenstates of the s component S,' of a fictitious
spin S'=-,'-(e —I). (The prime on the fictitious spin
operators will be used to distinguish them from the
true spin. ) The e' constants can then be represented by
the coefficients of the operators I (identity operator),
S ', S„', S,', S 'S„', (all products of degree (e).
The advantage of this specification is that all operators
are represented by sums or products of angu]ar momen-
tum operators, and the well-developed algebra of
angular momentum can be used. For each operator in
real space, then, there exists a corresponding operator
equivalent in fictitious spin space, and the construction
of the spin Hamiltonian involves the determination of
these operator equivalents.

It should be emphasized that the coordinate axes in
fictitious spin space are in general not related to those
in real space, so that we might write S~', S„', St.' in
place of S ', S„',5,'. We use the present notation since,
as discussed in the following, the fictitious spin space is
chosen to make it correspond as closely as possible to
real space. The distinction should be kept in mind,
however, as it is important in treating the transforma-
tion properties of quantities such as the g matrix, which
has one index referring to real space and another to
fictitious spin space.

In the following, we will restrict our discussion to the
case m=2, i.e., to systems for which the lowest energy
level is twofold degenerate. The case of higher de-
generacy will be touched on briedy, for special cases,
in a later section. If the ground state is twofold degen-
erate, the spin Hamiltonian can be constructed from the
spin operators for S'= —,'. The matrices of all operators
within the ground manifold will be 2)&2 matrices, and
it is well known that any such matrix can be represented
as a linear combination of the unit matrix and S ', S„',
S,'. We suppose then, that la) and lb) are the doubly
degenerate ground levels in real space. To construct the
spin Hamiltonian, we identify the states l&-', ) in a
fictitious spin-2 space with la) and lb). States in the
fictitious space will be denoted by round brackets:
~-,'); true states will be denoted by angular brackets:
u), so that la) ~ l+~) and lb) ~ l

—2). Any operator
A will have four matrix elements within this pair of
ieve», namely &~l~l~i» &~l~l&) &f'l~l~i) &bi~I&).
The operator equivalent of 2 in the fictitious spin
space A,~ is chosen so that the matrix elements of 3
within the states

l a) and
l b) are equal to those of A„

within
l
&2). If we use the standard representation for

the spin-2 matrices,

then it is apparent that

2~+upi+ a.S'=aol+a&, '+a„S„'+~~,', (2)
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(J;&/h
(6)

where the index i refers to one of the principal axes, so
that

ai=+gi/gi z

J~ (g')-'gAS'.

From this discussion we see that the question of a
relation between g and g' reduces to the relation between
the constants (reduced matrix elements) in the spin
Hamiltonian.

B. Equations of Motion of Equivalent
Oyerators and Sign of g

We have indicated above that the parameters in the
spin Hamiltonian are to a certain extent arbitrary. In
particular, one might expect the signs of the g factors to
be completely arbitrary, since an interchange of

I &o)
causes a change in sign of g, . Pryce has shown, however,
that the product of the signs of the principal g factors is
constant, and that this sign has the physical significance
of the direction of precession of the magnetic moment in
the magnetic field.

As the equation of motion for M will be expressed
in terms of operator equivalents, we erst wish to make
some remarks about how equations of motion involving

where the constants n are given in terms of the matrix
elements of A by

«='-((al Ala&+(blA lb&),

~.=(al A Ib&+(bl A
I a&,

„=i((alA lb) —(blA la)),
~.=(a!Ala& —(blAIb&

The above choice of the spin matrices implies that we
use a right-handed coordinate system in spin space, but
the constants are to a certain degree still arbitrary.
One might choose to identify

I

—o) with a) or, indeed,
with any linear combination of Ia) and b), instead of
with

I b). Such transformations are equivalent to
rotations in spin space.

The spectroscopic splitting factor g and the gyro-
magnetic ratio g' can be defined easily by constructing
the operator equivalents for the angular momentum J
and the magnetic moment M. For a doubly degenerate
ground manifold we must have

M = —pe(L+2S) ~ —gpeS' (4)
aIld

J=L+S~ nhS'.

In general, g and o. are matrices. It is shown in the
Appendix that if the system has orthorhombic (or
higher) symmetry, the principal axes of g and n are the
same. The gyromagnetic ratio can be obtained in terms
of 0. for these cases by the definition

operators in real space are carried over into equations
of motion in terms of the operator equivalents. Con-
struction of equivalent operators for a spin Hamil-
tonian is done by requiring that the matrix elements
within the ground manifold in real space of the real
operators be equal to the matrix elements of the operator
equivalents in the fictitious spin states. This implies
that the operator equivalent of the product of two real
operators need cot be eqnal to the product of the operator
equivalents. This is due to the fact that the matrix
element of a product may involve states outside the
ground manifold,

8'ol A~
I
4'o') =K(Vo I

A
I oo)(v I

i'l I4'o'&, (9)

where fo, Po' are states of the ground manifold, and p
runs over all states.

If both A and 8 have matrix elements connecting the
ground manifold to the same excited state, this product
will involve matrix elements whose definition is not
required for the definition of the operator equivalent in
fictitious spin space. If either A or 8 has no matrix
elements connecting the ground manifold to excited
states, the operator equivalent of the product will be
equal to the product of the operator equivalents. The
full Hamiltonian K, including spin-orbit coupling,
crystal-field interactions, and the Zeeman interaction
clearly has this property. In practice, of course, the
Hamiltonian is not diagonalized exactly, but only to
some order in perturbation theory, but to this order the
equations of motion can be taken over to the fictitious
spin space

i' =I A,x]-+ i7iA„=
I A„,x~].

Hence, following Pryce, 4 we may write for the equa-
tion of motion

ihM. ,=I M~,x„]=!M„, —M„H].
Since 3f,~ = —g~p&S ') we find) after using the
commutation relations for the 5 ', that

tJIi(gzgy gzgz
M.,*=—

I
H„M„' H,M,oo, etc. (12—)

The magnitude of each g has physical significance, as
does the sign of the product g,g„g,=det g, which deter-
mines the sense of the precession of M around H. If the
system has axial synimetry, it is reasonable (but not
necessary) to choose g, =g„=gi, so that the sign of
g, =gl~ as well as its magnitude is specified. As Pryce
points out, interchanging

I a) and
I b) changes the sign

of g„and g„but not of g . This leads, in a system with
axial symmetry, to g„=—g, . While this is permissible
it is unappealing, since we prefer that the fictitious
spin space reAect the symmetries of physical space.

The conclusion given here and by Pryce is in con-
tradiction to statements made by Pearson, Hermann,
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Wickersheim, and Buchanan, ' who state that it is
possible to determine the sign of the g factor along
symmetry axes. This is a matter of convention, and
the only physically measurable sign is that of the
product of the three principal g factors.

Irv~&= lv3I ll& —l I-' —l& (14a)

(14b)

Consider the Fq doublet 6rst. We make the identification

lr~~& ~ I+-') and Ir~P& ~
I

—l) Then

(r,.l~ Ir,.&= —g,.(-;Is. I-;)= —,g ..
g» (r,iiIJ'aI re—&

g»B(4X2 4Xg)= )g»B) (15)

so that g, =3g~. This identification leads to the same
values of g, and g„, as cubic symmetry leads us to expect.
We may note that the operator 5+'=5,'+iS„' connects
the state

I

——',) to I+-',-). For this doublet, the spin
Hamiltonian gives g'=+g~ and g=3g~. Let us now

consider the r6 doublet. If we identify Ir6a& —+ I+-,')
' J. J. Pearson, G. P. Hermann, K. A. Wickersheim, and R. A.

Buchanan, Phys, Rev. 159, 251 (1967), Appendix D.
' J. S. GriKth, The Theory of TrarlsitiorI, MetaL Ions (Cambridge

University Press, Cambridge, 1961).

C. Oyyosite Signs of g and g' in Cubic Symmetry

We may illustrate much of the preceding discussion
with some simple examples. Consider first the case of a
rare-earth ion with a single hole in the f shell in a
cubic field. Spin-orbit coupling (assumed large com-

pared to the cubic field) gives J= 5 and J=—,', with the
latter lower. The J=—,

' level is then split by the cubic
Geld into a F6 doublet, a I'y doublet, and a F8 quartet.
Before writing down the wave functions for these
levels, we may show that g'=+gz, the Lande factor,
in each case. This follows because these levels are made

up entirely of J=-,' states. The matrix elements of the
vector operator M = —pii (L+2S) are, within such

levels, proportional to those of J, and in particular
M ~ —piigqJ, where

g, = 1+LJ(J+1)—J-(1+1)+5(5+1)j/I.2J(J+1)j
Hence, from the above definition of g',

g =+gz
We emphasize that this relation holds as long as the
ground-state levels are made up of states for which J
is a good quantum number. Note that it is possible in

principle for gJ- to take either a positive or a negative
sign. For example for S= ~» 1.=3,J=—,

' one has gJ ————,.
However, for the Hund's rule ground states of the rare
earths gz is always positive.

The wave functions for the I'6 and I'7 levels are given
by'

lr6~&=v'(5/12) lb —k&+v'(7/12) Ikk&

lr6p& =+v'(5/»)
I
2k&+v'(7/») I k —

k&

and IrgP& ~
I
——,'), we have

l~'lr &= —g.~ (-:ls.'ll)= ——:g~

= —g»s((5/12) X (—k)+ (7/12) Xk)
=+ (7/6) g»~, (16)

so that g,= —(7/3)g~, i.e., the g factor is negative. We
may be tempted to change the identification of the
levels, so that In& ~

I
—-', ) and IP) —+ I+-', ). This

would certainly change the sign of g, but we would
then find that, since

(r6nl J+Irsp&wo

we would have J+~ const&($ ' and J ~ const&S+'.
The spin Hamiltonian would then no longer display
the cubic symmetry explicitly since then we would
have, as in the axial case discussed above, g = —g„=g, .
We are left with the choice g =g„=g,= —(7/3)gz, '

g'=+gg. We conc]ude that, in the presence of a
magnetic field, the magnetization for the F6 levels
precesses in the opposite sense from the magnetization
in the I'y levels. & each case, however, the gyromagnetic
ratio g' is the same, namely, +gJ. These examples
illustrate the varieties of behavior possible for the g and
g' factors, even in cubic symmetry, and for doublets
arising from the same multiplet.

III. GENERALIZED KITTEL-VAN VLECK
RELATION

A. Criterion for Validity of the Kittel-Van Vleck
Relation and Its Generalization

We now reexamine the well-known Kittel-Van Vleck
relation between g and g'. We wish to consider the
essential approximations made as well as ask how the
Kittel-Van Vleck relation is to be modified and general-
ized, particularly for negative g values.

I.et us consider a manifold of e states which are
degenerate in the absence of a magnetic field and whose
splitting in a magnetic field (the direction of which
defines the s axis) is described by

W =gPHS, '=PIIP(1.,)+2(5',&js, , (17)

where e is related to the fictitious spin 5,' by 25, '+1 =~.
The subscript S,' denotes that the averages are to be
taken in the state associated with S,'. In the following,
all averages are to be understood in this way.

From Eq. (17), we have

g= ((L.&+2(5.&)/S. ', (»)
where g is the spectroscopic splitting factor. The
gyromagnetic factor for this manifold of states will be
given by Eq. (6) above, i.e.,

2mc (M,& (J,&+2(5,&g'= = — . (19)
(~.&+&5.&
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If now we make the assumption that

5,'={5,), (20)

(5,)=pS, ', pW1 (21)

is obvious. Again using (18), (19),and (21), we find that

g'= g/(g —p) . (22a)

Note that p=g —n, where n is defined in Eq. (7). In
this sense, Eq. (22a) may be regarded as a general
expression connecting g and g', which is valid independ-

ent of the sign of g, since a change of sign of g also implies

a sign change for p.
We prefer, however, to speak of a general relation

between g and g' only when p is moderately insensitive
to a range of values of parameters such as cubic crystal
6eld, spin-orbit coupling, etc., i.e., when p rejects some
underlying symmetry of the state. Such is the case for
an orbital singlet ground state in a cubic crystal field
where the spin composition of the ground state is
uncontaminated, i.e., when one considers g shifts only
to first order in spin-orbit coupling. Another illustration
is the I'r doublet of Eq. (14a) and (14b), where g'=gq
=8/7, g=+24/7, and p=3/7, This value of p is

then from (18)—(20) there follows the Kittel-Van Vleck
relation given in Eq. (1):

g'= g/(g —1).

Note that the essential assumption is that 5,'=(5,)
with no reference whatsoever to how large (L,) might be
Furthermore, in addition to the fact that g may be very
large, it may also be either positive or negative. We
stress this point because in the original derivations, ' '
a perturbation theory approach was used which implied

(L,) was small, from which it followed that 5,'=(5,).
For example, an orbital singlet state was considered in

which the angular momentum was quenched and the

g shift arose from the admixture of orbital angular
momentum from excited states by application of spin-
orbit coupling, XL.S only to first order, i.e., from a
term of the type

(olH. Ll~&(~l) L Slo)/~,

where l0) is the ground state and le) refers to excited
states. Since H L does not connect different spin

components, using X to first order in this way preserves
the spin state while admixing orbital angular momen-

tum so that (5,)=S,'. In contrast, if we consider a
second-order g shift to a power X', then the initial spin
st~t~ lS,) may be ~~~ed with

l (5,+1)) and
l (5,—1))

so that we can no longer takeS, '=(5,).We stress again,
however, that the important criterion for Eq. (1) to
hold is that 5,'= (S,) and that this can occur even under
circumstances where (L) is quite large, as will be
illustrated in a few examples below.

The extension of the Kittel-Van Vleck relation to the
most general case with

g'= g/(g —x) . (22b)

On the other hand, g= (—', )(5—y) and so varies with y,
which in turn depends on the strength of the cubic
crystalline field. In contrast, however, if there is also
present an axial crystal field, then p becomes a sensitive
function of this axial Geld."In this case it would not be
as meaningful to try to emphasize Eq. (21), since p is
varying and (21) is no longer an expression of underlying
symmetry as in the other cases.

KPR measurements on Co'+ in cubic symmetry""
yield g values that fall around the value g=13/3,
indicating that p is close to ——,. Using this g value
in Eq. (22b), one finds g'=1.625, which is in fair
agreement with some old measurements of Sucksmith
on CoSO4 and CoCl~ for which he Ands that"

g'(CoSO4) =1.57, g'(CoCI, ) =1.45.
8 A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. (London)

A205, 135 (1951).
9 J. H. Van Vleck, Physica 26, 544 (1960).» A. Ahragam and M. H. L. Pryce, Proc. Roy. Soc. (London)

A206, 173 (1951).
"W. Low, Phys. Rev. 109, 256 (1958).
"W. Low and R. S. Rubins, in International Conference on

I'aramagnetic Resonance, Jerusalem, 196&, edited by W. Low
(Academic Press Inc. , New York, 1963)."%.Sue%smith, Proc. Roy. Soc. (London) A133, 179 (1931).

constant over a wide range of cubic crystal field strength
and spin-orbit coupling as long as J is regarded as a
good quantum number and Russel-Saunders coupling
holds.

Another interesting example in which symmetry
imposes a strong constancy upon p is the case of a Co'+
ion in octahedral coordination. The free Co'+ ion has
5=—,

' and L =3 with a 4P ground term. In a cubic field
the I" term splits into T~, T2, and A2 with the T~ state
lying lowest. A correspondence can be made between
the T~ state and a I' state so that the Tj state can be
represented by a fictitious orbital angular momentum
L' = 1. The true angular momentum is yL where matrix
elements of L are to be evaluated for a I' state. ' '
p has the value ——', in the weak cubic crystal-field limit
and —1 in the strong field limit. When T» is combined
in this way with 5=—'„we get three levels with pseudo
J'= —,', » and —,

' with the J'=
~ doublet lying lowest. The

wave functions for the time reversed states of this
doublet are given by the following combinations of
product wave functions of S, and L,':

P(+-', ) =c, l-;, —1)yc, l-,',0)yc,
l

——',, 1),
0(—s) =Cil —s, 1&+Csl —s, 0&+Csl+2, —1&

Now in the case of cubic symmetry, the coefficients
C are simply the Clebsch-Gordan coupling coefficients
for coupling an angular momentum Ji=1 to J2=& to
give Ji+J,=—,', i.e., Ci ——1/v2, C.= —1/V3, and Cs
=1/g6. These coefficients are totally independent of
the strength of the cubic crystal 6eld as long as Russel-
Saunders coupling holds. Consequently, p is a constant
and is equal to —,', so that
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However, it should be borne in mind, as pointed out by
Van Vleck, ' that the Co'+ ion is not in perfect cubic
symmetry in these compounds so that one would not
expect much better agreement, as p is probably not equal
to ~. With the recent improved accuracy of g' measure-
ments, '4 it would be very interesting to observe the g'

of Co'+ in cubic coordination.

and
E~=l'E; I, +-,')

E =I'E;~„—,'),

(23a)

where +-'„——', refers to the spin quantization, and I
and I+ to the orbital wave functions which are the basis
functions appropriate to trigonal symmetry of the two-
dimensional irreducible representation E of the cubic
group. More specifically,

I+-—
L (u+is)/K2) (24a)

ss +I (I—is)/W2g, (24b)

where I and v transform like s' —si(x'+y') and (ss)

&( (x' —y'), respectively. As there are no matrix elements
of L within E, we have

gii(E) =2('E; I
&
+-,'IL,+25, I'8; I, +-,') =2 (25a)

('8; I, +-',
I L++25+ I'E; u+, ——',)=0, (25b)

from which it follows that g~=0. With g~=0, the sign
of

gled

may be chosen positive or negative.
If one, however, considers the admixtures of higher

'Ts(4') and 'Ti states to 'E by spin-orbit coupling and
trigonal field, then one finds that the modified wave
functions for E are given by

E-'(+—')= ll+ l&+Pl'T—, + —l)
+vl'Ti «+s)+~I'Ts *+ ——:)

+el'Ts,. xs) ——',), (26)

and E+'(I +-', ) is the time reversed state. n is close to
unity and P, , e are small quantities. a+, a, and as
are the three basic wave functions which comprise T»,
and xo, x+ and x those of T2. More details are to be
found in the work of Sugano and Tanabe" and in
Imbusch et al." Kith these modified wave functions,

'4R. Huguenin and D. Baldock, Phys. Rev. Letters 16, 795
(r9u6).

"A. M. Clogston, Phys. Rev. 118, 1229 (1960)."S. Sugano and Y. Tanabe, J. Phys. Soc. Japan 13, 880 (1958).
I7 G. F. Imbusch, S. Chinn, and S. Geschwind, Phys. Rev. 161,

295 (1967).

B. Oyyosite Sign of g and g' with Modified
Kit tel-Van Vleck Relation

The excited E(sE) state of Cr'+ in AlsOs offers a very
interesting example of a negative g value" and a
positive g'. This Kramers doublet is represented by the
wave functions

g'-g/(g+1) (27)

C. Oyyosite Signs of gII and g~~'.' Anisotroyic g
and Isotroyic g'

The Ce'+ ion has a single unpaired f electron with
angular momentum L =3. Spin-orbit coupling gives rise
to the ground-state free-ion term 'Il5g2 and to the 'Ii7/Q

term some 5000 crn ' away. In YES (yttrium ethyl
sulphate), the Ce'+ enters substitutionally for the Y'+
at a site of point symmetry C3q. This splits the /=-,'
manifold into three Kramers doublets characterized by
J,=~~, ~~, and ~2. The relative position and order
of these doublets is determined by the relative strength
and signs of the different crystal field terms. In both
the concentrated CeES and the dilute Ce:YES the

I
+-', ) states lie lowest. "Under these circumstances, one

expects g~~=2gg(J, ) and go=0. In fact, however, one
finds that gc~ =3.810 and g~=0.20. This small value of
g~ has been ascribed to two different possible sources.
First, it has been suggested that the true site symmetry
might be lower than Cay, i.e., C3, which would give rise
to terms of the type I'4' in the crystalline field potential,
leading to a small admixture of

I
&-', ) states into the

ground Kramers doublet, now given by

I b) =0.952
I
+-', )+0.306I —-,'),

I a) =0.952I —', )y0.306I+-;).
(28a)

(28b)

"G.H. Larson and C. D. IeGries, Phys. Rev. 141„461 (1966}.

we now may make transitions between E+' and E '

with a transverse rf field h of the type

(E+'I h+L-IE-'& *

which arise from

(I- +slL-I'Ti «+s&
Here we make a transition from the lower Zeeman

component E ' to the upper one E+' via h+L, whereas
hM+ would be effective for normal spin states; thus
the opposite sense of circular polarization produces
the transition, and hence gl I

is negative. The magnitude
of g~t is also modified by the above admixtures so that
gl( = —2.44. This modification of the magnitude of g~~ is
primarily due to the terms with coefficients P and 5 in

Eq. (26), i.e., to orbital admixture with almost negligible
rnodidcation of the spin state. The orbital admixture is
represented by 0.44 and the negative sign of g is chosen
in accord with the direction of precession. Under these
circumstances, as outlined above, we expect a Kittel-
Van Vleck relation to hold between g and g'. However,
because of the necessity to choose g~I negative to de-
scribe the fact that the opposite-sense of circularly
polarized radiation is needed to induce the transition
as compared to normal free electrons, the lower Zeeman
component must be labeled S,' =+si and the upper one
5,'= —rs, so that S,'= —(5,) and p= —1. In this case
the relation between g and g' is given by
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FIG. 1. Plot of the theoretical g and g' values near the center of
the zone and for F7 symmetry in a cubic semiconductor. ) 5 is the
orbital angular momentum admixed by spin-orbit interaction.

Transitions can now be made from
I u& to

I b& via an r.f.
perturbation of the form h+J so that g~ is no longer
zero. Alternatively, one can still assume the true site
symmetry to be C», but invoke the effect of the V6'
cubic crystal field term in admixing the J=

~ manifold
into the ground state, which as a result of this V6' term
can now be characterized by

(29a)

2) 2 2) 2 r (29b)

where n&)P.
Again we have a nonvanishing gI, arising from

However, in either of the two cases above, the transition
from the lower state Ia) to Ib& is made by h+J or
h+(L +2S ) as opposed to hM+ for normal electron
spins, so that a negative gl I

must be assigned to the
transition. On the other hand, under the assumption
that J is a good quantum number, g'=+g& ——+6/7.
The fact that J is not a good quantum number when
one considers the small admixture from the J=-,' state
has, nonetheless, a relatively small effect on g~~'. (See
note added in proof. )

D. Semiconductors with Very Large g

Another case where a modihed Kittel-Van Vleck
relation is obeyed, although g can be very diferent from
2, is that of electrons in the vicinity of t;bp copduction-

band minimum (k=0, symmetry I',) in a cubic semi-
conductor such as indium antimonide. To a very good
approximation the wave function at k=0 has s sym-
metry around each lattice site so that the spin-orbit
interaction vanishes and the spin-degenerate F6 states
can be taken as pure spin up and pure spin down; we
denote them by I

st) and
I
sg&. The magnetic moment

operator is p= —P(Z+e), where 0 is, in units of 6,
twice the spin moment, and Z is the periodic part of
the orbital angular momentum operator, whose explicit
expression need not be given here. "The transformation
properties of 2 under the cubic group are identical with
those of e (as is obviously necessary if 2+v is to have
physical meaning), i.e. , they both transform as I'4.
There exists a generalization of the signer-Eckart
theorem to finite groups, " and the condition for the
theorem to apply in its simple form is that the rep-
resentation of the operator (2 or e) be contained only
once in the product of the representations of the two
manifolds between which the matrix elements are taken.
Since I'6)&I'q ——I'~+I'4, this is the case here, and hence
the matrices of 4 and o are related by

(30)

where z =z, y, 3 and the proportionality constant ~ gives
the orbital moment induced by spin-orbit interaction.

Because of cubic symmetry, (I'6
I
0

I
I'6) is independent

of the direction of quantization and the g factor is
isotropic. With the basis lsq) and. Is&) we have (s,)
=5,' and hence g=2(X+1), g'= P.+1)/(X+—', ), and

g'=g/g —1. We have plotted on Fig. 1 the values of g
and g' as functions of A, and we see that both can vary
widely with ).

Some words of explanation concerning the value of
X may be useful here since it might appear at erst sight
that because of the atomic s character of the F6 states,
X would have to vanish. However, this is not the case
because a Bloch electron cannot be localized on any
one site but instead travels across the crystal. It is this
interatomic current which is responsible for a non-

vanishing ) here. In a magnetic 6.eld the electrons
travel in very wide orbits and in the expression of the
orbital moment p„b ———(e/2c)(xXv), the smallness of

I
vl is balanced by the large value of Ixl. A detailed

wave-packet argument" due to Herring shows that

p.,t, ———(ek/2m, c)e,

where the spin effective mass m, depends on the band
structure. If the band gap between the conduction and
the p-like valence bands is small and the spin-orbit

splitting of the valence bands is large in comparison,
m, takes values of the order of the orbital effective
mass, which can be very small. From (1) and (2) we

' E. I. Blount, Phys. Rev. 126, 1636 (1962); I,. M. Roth,
J. Phys. Chem. Solids 23, 433 (1962),

' See, for example, G. F. Roster, Phys. Rev, 109, 227 (1958).
~I Y. Yafet, Solid State Physics, edited by F. Sietz and D.

Turnbull (Academic Press Inc. , New York, 1963), Vol. 14, p. 93.
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find that ) = (nz/m, ), where nz is the free-electron mass;
thus ~X~ can be quite large. In indium antimonide,

—25, g
—50, and g ~j..

The above analysis can also be applied to the two-
fold degenerate F7 band which is the split-off valence
band. The only difference is that, due to the atomic p
character of the orbitals, the expectation value of 5, is
(5,) =—',5,'. Thus a modified Kittel-Van Vleck relation
as in Eq. (22a) would obtain with p=-', .

The validity of these relations between g and g'

depends only on the smallness of matrix elements of the
spin-orbit interaction that mix the two spin directions
of the orbital state F under consideration in such a way
that (5,) is no longer 5,' or (3)5,'. For instance in the
III—V semiconductors, the orbitals I'i contain s and f
atomic functions, the latter being admixed by the odd
crystal potential; for the Kittel-Van Vleck relation to
hold, the matrix element of the spin-orbit interaction
between I"i and the higher lying states containing f
functions must be small compared to the distance in
energy to these states (which is satisfied in practice).
However, it does rot have to be small compared to the
band gap, which determines the effective masses and
the orbital moment.

E. Multiylicities Greater than 2
and Thermal Averages

It has been assumed in our definition of the g value
given by Eq. (17) that the splitting in a magnetic Q.eld
of the manifold of states is described by a single g tensor.
This will always be true for the Kramers doublets which
we have used for illustrations up to this point. However,
if one considers higher multiplicities such as the I'8

quartet ('A2) of the ground state of Cr'+ in octahedral
coordination or of Co'+ in tetrahedral coordination then,
as has been indicated by Bleaney, " and Koster and
Statz, "additional terms involving H are needed in the
spin Hamiltonian, i.e.,

K=g"'PH S'+g"'{H 5 "+HyS„"+H,Sg"
—5L35'(5'+1) —1jH S'), (32)

where 5' = ~. Thus two g values are needed in this case.
For higher multiplicities more will be needed. Moreover,
there will now be two g"s as well. If we label the states
of the I'8 quartet

~

——', ), ~

——', ), ~+—', and ~+2), then
the

~

~32) states will have one g'~3~2 and the
~
~2) a

diferent g~~, 2'. One can in principle express each of
these g"s in terms of the g's. However, the relation will
be a very sensitive function of cubic crystal field and
spin-orbit coupling. In practice, in many cases such as
that of the A2 ground state of Cr'+ these extra terms in
the Zeeman splitting are negligible and g~3~~'—g~y~2' as
well, so that the simple relation of Eq. (1) will hold. In
the event that one is dealing with a system of levels i

"B.Bleaney, Proc. Phys. Soc. (London) 73, 939 (1959).
"See, for example, G. F. Koster and H. Statz, Phys. Rev. 113,

445 (&9S9).

/

which have di6erent g,"s, all of which are partially
occupied, then the observed g' in a gyromagnetic experi-
ment will obviously be the appropriate thermal average,
1,e.)

Under such circumstances it becomes less meaningful to
consider the connection between this thermally av-
eraged g' and the various spectroscopic splitting factors
that describe this collection of states.

IV. EFFECT OF EXCHANGE INTERACTIONS

Since measurements of the gyromagnetic ratio g'
are usually made on magnetically ordered materials,
a few remarks on the extension of the preceding con-
siderations to exchange-coupled systems are in order.

A. Effect of Exchange Interactions in Insulators

It is straightforward to include exchange interactions
in a spin-Hamiltonian description of the low-lying states
of ions, since we merely need the operator equivalents in
fictitious spin space of the single-ion spin and orbital
angular momentum operators. The only point which
concerns us is the relative magnitude of the exchange
interaction and the crystal field splitting of the low-lying
levels of the single-ion Hamiltonian. If the exchange
interaction is small, then the 6ctitious spin may be
chosen to be the same as for the lowest lying level. If
the exchange interaction is large, however, it will be
capable of mixing excited levels into the ground level.
This mixing can be taken into account either by enlarg-
ing the magnitude of the fictitious spin to include the
excited single-ion level or by calculating the change in
composition of the ground level resulting from the
admixture of excited states by the exchange interaction.
In this regard we note that such admixtures can change
g but not g' without changing the relative amounts of

~
I-( and ~5

~
making up the state. This would occur in

the example given in Sec. II C of the I'6 and I'7 levels of
Vb'+. These two levels both arise from a 'P7/2 state and
hence have the same amount of I. and S. Mixing one
into the other will nevertheless change the g factor.
YVe conclude that all of the single-ion examples given
above still hold in the presence of exchange, provided
that this exchange is not strong enough to admix higher
crystal field levels. If it is sufficiently strong to do so,
the single-ion calculation must be altered to take the
admixture into account.

B. Effect of Exchange Interactions in Metals

Originally the Kittel-Van Vleck relation was proposed
to correlate the shifts in the g and g' values from the
free-spin value in metallic ferrornagnets. The electron
states in these metals are Bloch states and the previous
discussion of electronic levels in terms of crystal Geld
splittings becomes inappropriate. Instead, the band-
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width and its closely associated quantity, the Fermi
energy, are the relevant energy parameters. In absence
of spin-orbit coupling, the orbital moment is completely
quenched at an arbitrary point in the zone, and so
g'= 2; exchange commutes with the Zeeman energy,
and so g= 2. Hence exchange by itself does not affect g
or g', which is well known.

However, exchange does not commute with the spin-
orbit energy and will therefore introduce corrections to
the g and g'shifts caused by the latter. To our knowledge,
the detailed nature of these corrections has not been
worked out; preliminary estimates indicate that there
are corrections to the shift 6g of order (6g)'F~/J and
8g(J/E~)', where it is assumed that the ratio of the
exchange integral J to EI,, is large compared to 5g.
Exchange may also bring interband contributions but
these have not been estimated. Usually exchange
energies are only a fraction of the Fermi energy and
perhaps also of the interband energies even though for d

bands the latter are often quite small. One may hope
then that the exchange corrections can be neglected
and that the g and g' shif ts can be calculated for
noninteracting electrons. The spin-orbit coupling in the
3d series is less than 0.08 eV, while band-structure
calculations'4 show that in the region of the zone
occupied by the holes in nickel the average separation
of the 3d bands is of order 0.5 eV. Hence a first-order
treatment of spin-orbit coupling seems legitimate,
resulting to that order in the equality (5,)=S,' and in
the validity of the Kittel-Van Vleck relation. Recent
experiments" indicate that this relation is very closely
obeyed in iron and nickel.

C. Coupled Subj.attice in Ferromagnetic Resonance

In the rare-earth iron garnets, the iron is considered
to be one sublattice with magnetization M~ which is
exchange coupled to the rare-earth sublattice with
magnetization M. . Equations of motion are then
mrit ten for this coupled two-sublattice system as
follows:

dM~/d'=y M, X (I+»,), (34)

dM /d'=~, M, X (I+zM, ). (3S)

Here X= exchange constant describing the molecular
field interaction between sublattices A and 8:

yg ——g~(e/2mc),
y~= g~(e/2mc),
H = externally applied field.

These two coupled equations have two resonant fre-
quencies. One of these usually falls at a frequency in the
far infrared and is of the order of yXNt, while the other
falls at a lower frequency in the microwave region and

24 L. Hodges, H. Ehrenreich, and N. D. Lang, Phys. Rev. 152,
505 (1966)."G. G. Scott, Rev. Mod. Phys. 34, 102 (1962).

to a high approximation is independent of A, . This
microwave resonance is given by"

where
Veff" y (36)

Jeff
~'/v'+~a/vs

(37)

Several authors have adopted the practice of calling
M~/y. and M./y~ the angular momentum J~ and J&
of sublattice A and 8. However, we must emphasize
that this is incorrect. ; y~ and y~ are not magneto-
mechanical ratios; they are really the spectroscopic
splitting factor multiplied by e/2mc. The torques
exerted by the crystal field have been absorbed into the

and y~ as we have outlined in the Introduction.
ff therefore measures a spectroscopic splitting factor

and is not what will be observed in an Einstein —de Haas
experiment. The true angular momentum for each
sublattice may be written as J~= (M~/y~)(gz/gz'),
etc. , where g~' is the magnetomechanical ratio given by
Eq. (6).

A very interesting situation arises when one considers
the large damping characteristic of rare-earth sub-
lattices. The rare earths (with the exception of 5-state
ions) have exceedingly short relaxation times down to
about 40'K. These relaxation times may be faster than
any precessional frequency of the rare-earth sublattice
in either the exchange field or the external 6eld. Kittel'
has pointed out that as a result of this damping the rare-
earth sublattice does not respond to a torque as a
normal gyroscopic system. In a gyroscopic experiment it
may in effect be considered to carry no angular momen-
tum but only its magnetization. In that limiting case
3fa/p~ in Eq. (37) which is proportional to J& may be
set equal to zero and

jeff

V. CONCLUSION

We have considered the Kittel-Van Vleck relation
between the splitting factor g and magnetomechanical
ratio g' and have given a generalization to the case
where orbital admixtures are not necessarily small and
where the g factor may be negative. This generalization

26 R. K. Wangsness, Phys. Rev. 91, 1085 (1953).
C. Kittel, Phys. Rev. 115, 1587 (1959).

As one lowers temperature one mill observe a g shift as
the relaxation time becomes longer and 3II~/y~ must
be included in y, ~g. On the other hand, even though J~
may be effectively zero in a resonance experiment when
the relaxation time is very short, it will be effective in
an Einstein —de Haas experiment. One would therefore
see a temperature-dependent g but a temperature-
independent g' over a certain temperature range.
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is almost tautological in character and is most useful
when symmetry leads to a constancy of the parameter
involved independent of the strength of crystalline
fields.

Pote added in proof. In the case of the mechanism
(28), the relation (22) holds with a different p and g
for each direction. We have in this case anisotropic

g values with gll negative and g positive and isotropic.
If (29) holds, however, g' will no longer be isotropic,
since g&' depends entirely on matrix elements between
different J levels. A measurement of g&' would therefore
distinguish the two mechanisms for producing a non-
zero g&. We wish to thank Dr. M. E. Foglio for a
communication on this point.
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APPENDIX

We wish to prove that for a Kramers doublet at a
site of orthorhombic symmetry the g and g' "tensors"
can be diagonalized and their principal axes are the
twofold axes of the crystal.

Let x, y, s be the crystal axes and e, m, refer to one
of them. Then the rotation operators R (vr)=e ' ~

commute with the Hamiltonian and hence they leave
the space spanned by the two states of the Kramers
doublet invariant. We can choose then as basis vectors
iu) and iv) such that

R, (7r) (u)=e—' (u&, R, (7r) ~o)=e-'e)v&,

and, if K is the time-reversal operator,

&lu&= —l~&, &lo&=+In&

Since the spin is half-integral, we must also have

R*(2~) [u&= —(u&, R.(2~) l~&= —
l~&

lt follows that
P= & rr. —

Since time reversal commutes with rotations, we have

KR, (7r) ~u&=Ice-' (u)= —e' )v)
=R (m)ICiu&= -R—(~) to&= —e

—
'ego&

Hence P= —n.
We now show that the s component of any axial

vector, e.g. , L„ is diagonal in ~n&, ~n&

From the vector character it follows that

L„R„(~)= (2~.„—l)R„(~)L..
Consider now (u, L,~):

(u,L,o) = (R, (s)u, R, (m)L, v) =e" (u,L,v) = —(u,L,o) .

Hence (u,L,v) vanishes. From the fact that time
reversal anticommutes with L„, it follows that

(u, L,u) = —(o,L,e) = X, .
We now turn to the I., and L„components. Applying
R, (m) to both sides of (u,L,u), we get

(u,L.n) = —(R.(vr) n, L,R, (~)u) = —(n, I.,u) .
Hence (u, L,u) =0= (v,L,m). Similarly (u, L„u)= (v,L„o)
=0. We choose the relative phases of ~n) and

~
o) such

that (u,L,o) = X, is real. We now show that (u, L„o)=i X„
is pure imaginary. We apply R (s.) to both sides of
(u,t.,u),

(u, L,u) = (R, (m)u, R, (m) L,u) = —(R, (s-)u,I.,R, (m)u) .

Hence,
R.(~) lu&=e "l~&,
R.(m) ~v)= —e"~u&.

To determine 8 we apply R (n) to both sides of (u,L,w),

(u,L,w) = (R.(s.)u,L.R.(m) v) = —e"'(v,L,u) = X, .
Hence 8

Finally,

(u,L„v)= —(R„(vr)u,L„R,(~)m) =+e"'(v L u)
= —(v,L„u)= —(u,L„o)'.

Hence (u Low) =iso.
We have thus shown that in the ~u), ~

w& basis, the
matrix of any axial vector can be written as X,o,+X„o.„
+X,o.„and so:both L+S and L+2S can be written in
this form, i.e., g and g' have the same set of axes.


